Basala kunskapsmål i Mekanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Basala kunskapsmål i Mekanik"

Transkript

1 Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition, och förklara eller definiera även de andra begrepp som definitionen vilar på. Förklara En förklaring skall vara begriplig för någon som inte tidigare har kunskap om begreppet eller företeelsen i fråga, och helst även för den som inte har några kunskaper i fysik överhuvudtaget. En förklaring är i första hand verbal, men kan även innefatta illustrationer eller matematisk notation (som då också måste förklaras). Redogöra Förutom relevanta förklaringar och definitioner kan en redogörelse även innefatta enkla illustrativa exempel. En redogörelse är mer omfattande än en förklaring, och täcker ett större kunskapsområde. Även en redogörelse bör vara begriplig för någon som inte har tidigare kunskaper om det som redogörelsen gäller. I några av kunskapsmålen ska man kunna ge valfria exempel på företeelser. Det förutsätts då att man har förberett ett sådant exempel, och att man kan redogöra för det utan stödanteckningar. Ibland står det att man utgående från X, eller med utgångspunkt i X, ska visa eller förklara något. Det betyder att examinatorn kommer att tillhandahålla X på plats, så X behöver inte memoreras för att man ska klara det aktuella kunskapsmålet. (Däremot kan det behöva memoreras för något annat kunskapsmål.) Ibland ska man räkna ut eller förklara något i ett givet exempel. Detta exempel kommer då att tillhandahållas vid examinationen. En slumpvis utvald uppgift per kategori/kapitel kommer att examineras. Om man klarar den uppgift som man får sig tilldelad på ett visst kapitel anses detta avklarat, oavsett hur examinationen förlöper på andra kapitel. Om man inte klarar den uppgift man fått sig tilldelad måste det aktuella kapitlet tenteras om vid ett senare tillfälle. Då måste man i stället klara två utslumpade uppgifter på det kapitlet. För varje gång man misslyckas med ett kapitel ökar antalet utslumpade uppgifter som examineras med en.

2 A. Vektorer och rörelse 1. Kunna addera och subtrahera ett par givna vektorer i komponentform så väl som i geometrisk form. 2. Kunna definiera skalärprodukt, och ta skalärprodukten mellan två vektorer givna i komponentform eller i geometrisk form. 3. Kunna definiera kryssprodukt, och ta kryssprodukten mellan två vektorer givna i komponentform eller i geometrisk form. 4. Kunna förklara skillnaden mellan en ortsvektor och en vanlig vektor. 5. Kunna definiera medelhastighet och momentanhastighet (vektorversionerna), och grafiskt förklara sambandet mellan dem. 6. Kunna definiera medelacceleration och momentan acceleration (vektorversionerna), och grafiskt förklara sambandet mellan dem. 7. Kunna förklara varför hastighetsvektorn men inte nödvändigtvis accelerationsvektorn är tangent till banan, samt förklara innebörden av en tangentiell respektive icke-tangentiell accelerationsvektor. 8. Kunna härleda uttrycket för centripetalacceleration för cirkulär rörelse med konstant fart. 9. Kunna härleda eller förklara uttrycket r(t) = r 0 + v 0 t + at 2 /2 för partikel med konstant acceleration. 10. Kunna definiera polära koordinater. 11. Kunna härleda eller förklara uttrycket v t =ṙ r r för hastighet i polära koordinater.

3 B. Newtons lagar 1. Kunna redogöra för Newtons första lag. 2. Kunna redogöra för Newtons andra lag. 3. Kunna redogöra för Newtons tredje lag. 4. Kunna förklara vad som menas med tung respektive trög massa. 5. Kunna förklara hur friktionskraften varierar för ett föremål som ligger på en horisontell yta och påverkas av en allt större kraft tills det börjar att glida. 6. Kunna redogöra för hur friktionskoefficienten kan bestämmas genom att mäta den lutningsvinkel för vilket ett föremål på ett lutande plan precis börjar att glida. (I redogörelsen ska ingå bevis av det relevanta uttrycket.) 7. Kunna redogöra för Newtons gravitationslag. 8. Kunna rita ut tyngdkraft, normalkraft, friktionskraft och eventuella dragkrafter (med korrekta storleksförhållanden) på ett föremål som rör sig med konstant fart i ett i övrigt valfritt exempel. 9. Kunna rita ut tyngdkraft, normalkraft, friktionskraft och eventuella dragkrafter (med korrekta storleksförhållanden) på ett föremål med rätlinjig acceleration i ett i övrigt valfritt exempel. 10. Kunna förklara begreppet centripetalkraft, samt härleda uttrycket för densamma. (Formeln för centripetalacceleration får inte betraktas som given.) 11. Kunna ge två valfria exempel (med krafter utritade) som illustrerar att olika krafter kan agera centripetalkraft. 12. Kunna redogöra för Hookes lag, och betydelsen av fjäderkonstanten k. 13. Kunna visa att en fjäder som lyder under Hookes lag ger upphov till en harmonisk svängningsrörelse, och ta fram hur vinkelfrekvensen beror på massan och fjäderkonstanten.

4 C. Rörelsemängd och masscentrum 1. Kunna definiera rörelsemängden för ett system av partiklar. 2. Kunna visa, utgående från Newtons lagar, att den totala rörelsemängden för ett system av partiklar är bevarad. 3. Kunna ge ett valfritt enkelt exempel (med numeriska värden) som illustrerar lagen om rörelsemängdens bevarande. 4. Kunna definiera masscentrumvektorn för ett system av partiklar, och illustrera definitionen i ett enkelt valfritt exempel inkluderandes minst två partiklar. 5. Kunna visa att lagen om rörelsemängdens bevarande är ekvivalent med lagen om masscentrums rätlinjiga rörelse. 6. Kunna definiera masscentrumvektorn för en kropp, och förklara sambandet mellan denna definition och den för ett system av partiklar. 7. Kunna härleda impulslagen (utgående från Newtons andra lag) och med hjälp av ett enkelt exempel förklara dess innebörd.

5 D. Arbete och energi 1. Kunna definiera arbetet som ett kraftfält utför på en partikel som förflyttas från ett ställe till ett annat. (Definitionen ska fungera i mer än en dimension.) 2. Kunna formulera arbete-energi teoremet, och ge ett enkelt valfritt exempel på dess tillämpning (med numeriska värden). 3. Kunna visa att det arbete som krävs för att lyfta ett föremål i ett homogent gravitationsfält är mgh (oavsett eventuell förflyttning i sidled), samt ge ett enkelt exempel (med numeriska värden) som illustrerar hur denna formel kan användas i samband med arbete-energi teoremet. 4. Kunna förklara skillnaden mellan konservativa kraftfält och icke-konservativa kraftfält, samt ge exempel på ett fält av vardera slaget. (Exemplen ska vara tvådimensionella och ges i form av skisser.) 5. Kunna definiera den potentiella energifunktionen, och med utgångspunkt i arbete-energi teoremet visa att den totala mekaniska energin är bevarad. Omständigheterna under vilka detta gäller ska kunna anges. 6. Kunna härleda uttrycket för gravitationell potentiell energi, med utgångspunkt i Newtons gravitationslag och i den allmänna definitionen av den potentiella energifunktionen. 7. Kunna räkna ut flykthastigheten med utgångspunkt i uttrycket för gravitationell potentiell energi, för en given himlakropp (med givna numeriska värden). 8. Kunna redogöra för hur man ur en potentialfunktion kan läsa av (grafiskt så väl som matematiskt) ett systems stabila och instabila jämviktslägen, samt vilka områden som är tillåtna vid en viss energi. 9. Kunna redogöra för vad värmeenergi är, och vad som skiljer den från mekanisk energi. 10. Kunna, ur givna initialhastigheter, räkna ut sluthastigheterna för en given endimensionell elastisk kollision mellan två partiklar. 11. Kunna redogöra för skillnaden mellan en elastisk och en inelastisk kollision, och illustrera med enkla valfria exempel.

6 E. Rotationsrörelse 1. Kunna definiera rörelsemängdsmoment. 2. Kunna definiera vridmoment. 3. Med utgångspunkt i definitionerna av rörelsemängdsmoment och vridmoment kunna visa att den senare är likamed tidsderivatan av den förra, samt förklara innebörden i detta samband med hjälp av ett valfritt enkelt exempel. 4. Med hjälp av ett valfritt enkelt exempel kunna illustrera att rörelsemängdsmomentet beror på valet av origo. 5. Kunna definiera tröghetsmomentet för ett system av partiklar, och för en kropp, och förklara sambandet mellan de båda definitionerna. 6. Kunna förklara den praktiska betydelsen av att en kropp har ett större tröghetsmoment än en annan, och i ord beskriva vilka egenskaper som ger en kropp stort tröghetsmoment. 7. Kunna ange under vilka omständigheter som L z är bevarad, och ge ett enkelt exempel på när så är fallet trots att vinkelhastigheten ändrar sig. 8. Kunna skriva ner parallellaxelteoremet, och med hjälp av ett valfritt exempel illustrera dess tillämpbarhet. 9. Kunna härleda formeln för rotationsenergin hos en roterande kropp, med utgångspunkt i formeln för translatorisk kinetisk energi och definitionen av tröghetsmoment.

7 F. Tröghetskrafter 1. Kunna skriva ner Galileo-transformationen, och redogöra för innebörden i densamma. 2. Kunna förklara vad som menas med ett inertialsystem, och varför sådana är av speciellt intresse i fysiken. 3. Kunna förklara vad som menas med en tröghetskraft, i fallet med linjär acceleration, och ge ett enkelt exempel som illustration. 4. Med hjälp av ett valfritt exempel kunna illustrera skillnaden mellan begreppen centripetalkraft och centrifugalkraft. (I exemplet ska ingå uppritande av krafter i två olika system.) 5. Kunna förklara vad Coriolis-kraft är för något, och under vilka omständigheter denna blir relevant. (Varken härledning eller några formler krävs.) 6. Utgående från formeln för Corioliskraften (-2m v) kunna ange kraftens riktning i ett givet exempel.

8 G. Centralkraftsrörelse 1. Kortfattat kunna beskriva innebörden i var och en av Keplers tre lagar. 2. Kunna bevisa Keplers tredje lag i fallet med cirkelrörelse, och då ena massan är mycket större än den andra, samt kunna ange exakt var i härledningen dessa antaganden görs. 3. Kunna visa matematiskt på vilket sätt den reducerade massan är relevant i samband med problem med två kroppar (d.v.s. hur den dyker upp när man hanterar sådana problem). 4. Kunna förklara begreppet effektiv potential, bland annat genom att ange hur den effektiva potentialen förhåller sig till vanlig potentiell energi och kinetisk energi. 5. Kunna skissera den effektiva potentialen för två gravitationellt växelverkande kroppar, och förklara vad som kan utläsas ur skissen.

9 H. Relativitetsteori 1. Kunna redogöra för innebörden i relativitetsprincipen. 2. Kunna redogöra för innehållet i Einsteins andra postulat, och kunna ange minst två goda skäl för detta antagande. 3. Med hjälp av ett rumtidsdiagram kunna förklara begreppen händelse, världslinje, tidslik, rumslik och ljuslik. 4. Kunna rita in en samtidighetslinje i ett rumtidsdiagram till en given inertialobservatör, och förklara innebörden av densamma. 5. Kunna visa hur det ur Lorentz-transformationen följer att hastigheten c är densamma för alla inertialobservatörer. 6. Kunna skriva ner formeln för längdkontraktion, och definiera beteckningarna i denna med hjälp av ett rumtidsdiagram. 7. Kunna skriva ner formeln för tidsdilatation, och definiera beteckningarna i denna med hjälp av ett rumtidsdiagram. 8. Med hjälp av, och utgående från, formlerna för hastighetsaddition och hastighetssubtraktion kunna räkna ut den relativa hastigheten mellan två objekt i ett givet exempel (endimensionellt). 9. Kunna skriva ner formlerna för viloenergi respektive total energi, och förklara skillnaden mellan dem, samt med hjälp av ett valfritt enkelt exempel (med insatta värden) illustrera skillnaden mellan de båda energislagen. 10. Kunna visa att det relativistiska uttrycket för kinetisk energi för måttliga hastigheter går över i det Newtonska uttrycket. 11. Kunna redogöra för ett valfritt exempel på en process där massan inte är bevarad, och räkna ut (med insatta siffror) hur mycket massan förändras i processen.

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Alex Loiko Freddie Agestam 6 mars 2014

Alex Loiko Freddie Agestam 6 mars 2014 Mekanik, kursanteckningar Alex Loiko Freddie Agestam 6 mars 014 Detta verk är licensierat under en Creative Commons Attribution 4.0 International licens. Det innebär att vem som helst får distribuera,

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Kollisioner, impuls, rörelsemängd kapitel 8

Kollisioner, impuls, rörelsemängd kapitel 8 Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Diskussionsfrågor Mekanik

Diskussionsfrågor Mekanik Diskussionsfrågor Mekanik Frågor markerade med en stjärna ( ) är lite svårare och kan betraktas som överkurs. Vektorer och rörelse 1. Mitt på dagen en solig dag vid ekvatorn kastar du iväg en boll. Hur

Läs mer

Tentamen Relativitetsteori

Tentamen Relativitetsteori KOD: Tentamen Relativitetsteori 9.00 14.00, 16/7 2011 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Tentamen Relativitetsteori , 27/7 2013

Tentamen Relativitetsteori , 27/7 2013 KOD: Tentamen Relativitetsteori 9.00 14.00, 27/7 2013 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

Kollisioner, rörelsemängd, energi

Kollisioner, rörelsemängd, energi Kollisioner, rörelsemängd, energi I denna laboration kommer ni att undersöka kollisioner, rörelsemängd och energi, samt bekanta er ytterligare med GLX Xplorer som används i mekaniklabbet för utläsning

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 006-08-8 Tentaen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen Ett glatt hoogent klot ed assan vilar ot två plana, hårda och glatta

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 007-08-30 Tentaen i Mekanik SG1107, baskurs S. OBS: Inga hjälpede föruto rit- och skrivdon får användas! KTH Mekanik 1. Probletentaen En hoogen stång ed assan är fäst i ena änden i en fritt vridbar led.

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

Tentamen Relativitetsteori , 22/8 2015

Tentamen Relativitetsteori , 22/8 2015 KOD: Tentamen Relativitetsteori 9.00 14.00, 22/8 2015 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Hanno Essén Lagranges metod för en partikel

Hanno Essén Lagranges metod för en partikel Hanno Essén Lagranges metod för en partikel KTH MEKANIK STOCKHOLM 2004 1 Inledning Joseph Louis Lagrange (1763-1813) fann en metod som gör det möjligt att enkelt ta fram rörelseekvationerna för system

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Lösningsskiss: Christian Forssén Obligatorisk del 1. Lösningsskiss Använd arbete-energi principen.

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Föreläsning 17: Jämviktsläge för flexibla system

Föreläsning 17: Jämviktsläge för flexibla system 1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Relativitetsteori, introduktion

Relativitetsteori, introduktion Relativitetsteori, introduktion En av bristerna med den klassiska fysiken är att alla observatörer antas ha samma tidsuppfattning, oavsett sin egen rörelse. Einstein kunde visa att så inte kunde vara fallet.

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

1. Stela kroppars mekanik

1. Stela kroppars mekanik 1. Stela kroppars mekanik L1 Med en stel kropp menas ett föremål som inte böjer sig eller viker sig på något sätt. (Behandlingen av icke stela kroppar hör inte till gymnasiekursen) 1.1 Kraftmoment, M Ett

Läs mer

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi

Relativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Diskussionsfrågor Mekanik

Diskussionsfrågor Mekanik Diskussionsfrågor Mekanik Frågor markerade med en stjärna ( ) är lite svårare och kan betraktas som överkurs. Kapitel 1 1. Mitt på dagen en solig dag vid ekvatorn kastar du iväg en boll. Hur rör sig bollens

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

1. Kinematik (läran om rörelse)

1. Kinematik (läran om rörelse) 1. Kinematik (läran om rörelse) L1 Kinematik är det område inom fysiken som behandlar rörelse hos olika objekt. Vi definierar här rörelse som begrepp, och hur vi kan beskriva rörelse hos föremål. 1.1 Position

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Mekanik FK2002m. Kinematik i flera dimensioner

Mekanik FK2002m. Kinematik i flera dimensioner Mekanik FK2002m Föreläsning 3 Kinematik i flera dimensioner 2013-09-04 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 2 Introduktion Nu har vi gått igenom: - Kinematik i en dimension - Vektorer i två

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Flervariabelanalys E2, Vecka 5 Ht08

Flervariabelanalys E2, Vecka 5 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 5 Ht08 15.1 Vektorfält och skalärfält 15.2 Konservativa vektorfält (t.o.m. exempel 5) 15.3 Kurvintegraler 15.4 Kurvintegral av vektorfält 15.5 Ytor

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Diskussionsfrågor Mekanik

Diskussionsfrågor Mekanik Diskussionsfrågor Mekanik Frågor markerade med en stjärna ( ) är lite svårare och kan betraktas som överkurs. Kapitel 1 1. Mitt på dagen en solig dag vid ekvatorn kastar du iväg en boll. Hur rör sig bollens

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan 1 KOMIHÅG 16: Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 17: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:

Läs mer

Rörelsemängd och energi

Rörelsemängd och energi Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20 KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1

2 NEWTONS LAGAR. 2.1 Inledning. Newtons lagar 2 1 Newtons lagar 2 1 2 NEWTONS LAGAR 2.1 Inledning Ordet kinetik används ofta för att beteckna läranom kroppars rörelse under inflytande av krafter. Med dynamik betcknar vi ett vidare område där även kinematiken

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin Innehåll Förord...11 Del 1 Inledning och Bakgrund 1.01 Vem var Martinus?... 17 1.02 Martinus och naturvetenskapen...18 1.03 Martinus världsbild skulle inte kunna förstås utan naturvetenskapen och tvärtom.......................

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan KOMIHÅG 17: 1 Centrala raka/sneda stötar relativ separationsfart Studstalet e = relativ kollisionsfart Föreläsning 18: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet:

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Delkursplanering FY1202 Fysik B - 150p

Delkursplanering FY1202 Fysik B - 150p Delkursplanering FY1202 Fysik B - 150p Mål Mål som du skall ha uppnått efter avslutad kurs Du skall ha utvecklat din förmåga att planera och genomföra experimentella undersökningar samt muntligt och skriftligt

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Den Speciella Relativitetsteorin DEL I

Den Speciella Relativitetsteorin DEL I Den Speciella Relativitetsteorin DEL I Elektronens Tvilling Den unge patentverksarbetaren År 1905 publicerar en ung patentverksarbetare tre artiklar som revolutionerar fysiken. En av dessa artiklar är

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

Simulering av solsystemet Datorlab med MATLAB. Daniel Vågberg Institutionen för fysik Umeå Universitet

Simulering av solsystemet Datorlab med MATLAB. Daniel Vågberg Institutionen för fysik Umeå Universitet Simulering av solsystemet Datorlab med MATLAB Daniel Vågberg Institutionen för fysik Umeå Universitet 17 april 2013 Innehåll Introduktion 3 Redovisning 3 Simulering av Newtons rörelseekvationer 4 Gravitation

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, typgodkänd kalkylator, lexikon, samt en egenhändigt skriven A4-sida med valfritt innehåll. Tentamen i Mekanik för F, del 2 (gäller även som tentamen i Mekanik F, del B) Tisdagen 27 maj 2008, 08.30-12.30, V-huset Examinator: Martin Cederwall Jour: Per Salomonson, tel. 7723231 Tillåtna hjälpmedel:

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid:

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: Tid: Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 16-6- Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Övningar för finalister i Wallenbergs fysikpris

Övningar för finalister i Wallenbergs fysikpris Övningar för finalister i Wallenbergs fysikpris 0 mars 05 Läsa tegelstensböcker i all ära, men inlärning sker som mest effektivt genom att själv öva på att lösa problem. Du kanske har upplevt under gymnasiet

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan

Solsystemet: Solen, Merkurius, Venus, Jorden, Mars, Jupiter, Saturnus, Uranus, Neptunus, (Pluto) Solens massa är ca gånger jordmassan 1 KOMIHÅG 8: Centrala raka/sneda stötar Flera partiklar - masscentrum Föreläsningar 9-10: Centralkrafter och solsystemet Centralkrafter: Inga kraftmoment på massan Solsystemet: Solen, Merkurius, Venus,

Läs mer

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt Fy 1-mekaniken i sammandrag version 0.3 [140820] Christian Karlsson En del saker nedan tas inte upp i Fy 1-kursen, men är bra att med sig inför Fy 2. Dessa saker är markerade med [NYTT!]. 1 Rörelsebeskrivning

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Mekanik 2007 05 09 Mekanik bk och I, 5C03-30, för I och BD, 2007 05 09, kl 08.00-2.00 Lösningar till probletentaen Uppgift : En partikel i A ed assa hänger i två lika långa trådar fästa i punkterna

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer