SVÄNGNINGSTIDEN FÖR EN PENDEL

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "SVÄNGNINGSTIDEN FÖR EN PENDEL"

Transkript

1 Institutionen för fysik Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt perioden för två fysikaliska pendlar och undersökt hur den påverkas av utfallsvinkel och avståndet mellan masscentrum och upphängningspunkt, l. Metoder som använts för att analysera data är polynomisk regression, linjärisering och dimensionsanalys. Enligt våra resultat ökar perioden med större vinklar, men för mindre vinklar kan perioden beskrivas som en funktion oberoende av vinkeln. Våra resultat visar även att den matematiska modellen stämmer. Viktiga slutsatser är att korrektionensfaktorn beroende av vinkeln är olinjär, samt att perioden beror på två konstanter varav den ena är g -1 och den andra beror på pendeln. Förutom vinkeln beror perioden även på l.

2 1. INTRODUKTION I denna laboration ska fysikaliska pendlar användas för att bestämma vilka parametrar som bestämmer en fysikalisk pendels svängningstid och bekräfta en given matematiska modell, samt besvara hur hur mycket periodtiden påverkas av utslagsvinkelns storlek. Vi ska genom experiment undersöka om följande matematiska modell är riktig: ( ),,där T = Periodtiden l = Avståndet mellan upphängningspunkt och masscentrum = Utslagsvinkeln, samt ( ) = korrektionsfaktorn Genom att göra en dimensionsanalys så kan man bestämma storheterna för konstanterna a och b. Sedan kan man genom upprepade mätningar av perioden med varierande pendellängd bestämma konstanterna a och b numeriskt för varje enskild pendel. Korrektionsfaktorn för olika vinklar kan fås genom att utföra en polynomisk regressionsanalys på mätdatat. Genom att plotta periodtiden som en funktion av vinkeln får man ut korrektionsfaktorn ( ). Vi har undersökt svängningstiden för två olika pendlar. 2. TEORI Vi skriver om ekvationen på ett sådant sätt så att vi kan lösa ut konstanterna a och b numeriskt med hjälp av regressionsanalys. ( ) ( ) ( ), där T = Periodtiden l = Avståndet mellan upphängningspunkt och masscentrum = Utslagsvinkeln, samt ( ) = korrektionsfaktorn Om man plottar upp den linjära ekvationen med hjälp av en dator kan man att bestämma konstanterna a och b numeriskt. - 2/10 -

3 (2) Y = kx + m, där ( ),. Där a är konstanttermen m och b är riktningskoefficienten k. Dimensionsionerna på a och b kan bestämmas genom att göra en dimensionsanalys, eftersom ( ) och 2π är dimensionslösa så har vi att: (3) [ [ [ => a = [ [, b = [ [ där [T] = tidenhet, [L] = längdenhet 3. EXPERIMENT Pendelarna bestod av två masonitskivor med ett stort antal hål för att avståndet mellan masscentrum och upphängningspunkten skulle kunna varieras. Upphängningspunkten var en gängstav fastsatt på väggen i vilken pendeln skruvades fast. På denna gängstav satt även ett lod för att kunna mäta utslagsvinklarna. Fig. 1: Den osymetriska skivan, S 2 : - 3/10 -

4 Fig. 2: Den symmetriska skivan, S 1 : För att kontrollera de vinklar som redan var utsatta på den runda pendel, S 1, kontrollerade vi att två av gradersmarkeringarna var korrekta. Detta gjordes genom att mäta båglängden från lodlinjen till markeringen samt pendelns radie. Då den andra pendeln, S 2, ej var regelbundet formad bestämdes dess masscentrum genom att hitta den punkt på vilken den kunde balanseras på ett finger. För att kontrollera att den utsatta markeringen för 10 grader var korrekt för S 2 mätte vi triangeln som bildades mellan markeringen, upphängningspunkten och lodlinjen. Vi började med att göra ett stort antal mätningar av perioden för S 1 då utslagsvinkeln hölls konstant vid 10 grader. Avståndet mellan masscentrum och upphängningspunkten hölls också konstant. Då vi använde en rund pendel antogs masscentrum ligga i pendelns mittpunkt. Med ett tidtagarur mättes tiden för tre perioder då tidtagaren satte igång klockan samtidigt som han eller hon startade pendeln i vändläget och stannade klockan tre perioder senare i samma vändläge. I senare experiment är detta standardsättet för mätning av perioden. Som jämförelse mättes även perioden då pendeln först startades och tidtagaren sen startade klockan i jämviktsläget för att sen stanna klockan tre perioder senare. För att se hur perioden eventuellt påverkas av utslagsvinkeln gjorde vi upprepade mätningar av perioden för S 1 vid olika vinklar. I dessa försök hölls avståndet mellan upphängningspunkten och masscentrum konstant. - 4/10 -

5 Sist gjordes mätningar av perioden för olika avstånd mellan upphängningspunkten och masscentrum för de två pendlarna. Under dessa mätningar hölls utslagsvinkeln under 15 grader. 4. RESULTAT OCH DISKUSSION Den uppmätta båglängden från lodlinjen till tiogradersmarkeringen blev 18,0(5) cm, samt 89,0(5) cm för 50 grader. Den runda pendelns radie mättes och blev 50,5(5) cm. Genom att använda randvinkelsatsen fick vi att vinklarna var 10,2(4) grader resp 50,5(3) grader. För den oregelbundna pendeln kom vi fram till att markeringen för tio grader var korrekt genom att använda tangens och våra mätvärden. Vi drog då slutsatsen att alla utsatta vinklar på pendlarna var utsatta med tillräcklig precision för våra experiment. De värden vi fick då vi mätte tre perioder för S 1 med konstant utfalls vinkel på 10 grader varierade mer än väntat, se tabell 1 för värden. Tabell 2 visar statistik av mätvärdena i tabell 1. Denna statistik är framtagen i programmet Octave. Då standardavvikelsen var minst för båda tidtagare när denne startade klockan samtidigt som han släppte pendeln är det detta sätt som används under resterande mätningar. Teoretiskt sett borde dock standardavvikelsen vara mindre då klockan startas och stannas i jämviktsläget eftersom pendeln befinner sig där under kortare tid än i vändpunkterna. Vårt avvikande resultat beror antagligen på att samma person startade klockan och pendeln samtidigt för vändpunktsmätningarna, vilket minimerade starttidsfelet. Om vi istället först startat pendeln och sen startade klockan vid en senare vändpunkt hade vårt resultat antagligen blivit detsamma som det teoretiska. Då Christers standardavvikelse var mindre än Madeleines fick han utföra resterande tidtagningar. Tabell 1 Tabell över mätvärden för tre perioder när klockan startade och stannades vid jämviktspositionen respektive vändläget. Mätdata 3T (s) Christer Madeleine Vändpunkt (A) Jämvikt (B) Vändpunkt (C) Jämvikt (D) 5,09 5,20 5,18 5,27 5,09 5,36 5,05 5,36 5,14 5,27 5,18 5,14 5,05 5,36 5,14 5,18 5,18 5,24 5,02 5,27 5,09 5,27 5,20 5,36 5,02 5,20 5,14 5,27 5,05 5,27 5,24 5,24 5,09 5,24 5,11 5,27 5,14 5,27 5,18 5,36-5/10 -

6 Tabell 2 Tabell över statistik av mätvärdena från tabell 2. Rad A i tabell 2 svarar mot värden från kolumn 1-Vändpunkt (A)- i tabell 1, osv. Tabell 3 visar mätdata för olika utfallsvinklar för den runda pendeln. Som väntat blir periodtiden längre för större vinklar, dvs korrektionsfaktorn kan ej antas vara 1 för större vinklar. Figur 1 visar perioden som en funktion av vinkeln. Av denna figur är det tydligt att sambandet mellan vinkel och period är olinjärt. P.g.a. summeringen av två termer under rottecknet i ekvation (0) går ej standardmetoden med linjärisering och logaritmering att använda i detta fall. Andragradspolynomet representerar värdena bättre än linjäriseringen men mätdata för fler vinklar skulle vara önskvärt, samt mer mätdata för varje vinkel. Då det var svårt att mäta perioden för vinklar mindre än tio grader saknas mätdata i intervallet 0-10 grader, men man kan ändå från figur 1 se att antagandet att korrektionsfaktorn är 1 för mindre vinklar ger en godtagbar approximation för vinklar under 15 grader, men ännu bättre approximation fås av vinklar som är max 10 grader. Detta ses i figur 1 genom att andragradspolynomets graf planar ut för mindre vinklar. Korrektionsfaktorn kan beräknas genom att räkna förhållandet mellan periodtiden för en specifik vinkel och interceptet. Tabell 3 Tabell över mätdata och uträknad medelperiod, T, för olika vinklar för den runda masonitskivan. Utfallsvinkel mätning 1 [3T] mätning 2 [3T] (grader) (s) (s) T (s) 10 1,70* 20 5,14 5,18 1, ,18 5,24 1, ,24 5,20 1, ,27 5,27 1, ,42 5,42 1, ,57 5,54 1,85 *Värde från tidigare mätningar (medelvärdet för perioden för Christers mätningar då vinkeln är 10 grader, se tabell 2, rad A) - 6/10 -

7 Fig. 1 Periodtiden som en funktion av utslagsvinkeln, med en linjär och en andragradspolynom anpassning. Tabell 4 visar de värden vi fick på medelperioden då vi ändrade längden, l, mellan upphängningspunkten och masscentrum för den runda pendeln. I detta experiment var vinkeln tänkt att vara konstant 10 grader men då vi använde samma markering på pendeln och ej tog med i beräkningarna att vinkeln ändras med l, (randvinkelsatsen gäller ej längre), blev vinkeln något större för mindre l. Samma experiment utfördes med den andra oregelbundna pendeln. Dessa värden finns i tabell 5. Även här varierade vinkeln något. Tabell 4 Tabell över mätdata och uträknad medelperiod för olika längder på l för den runda masonitskivan. l (m) tid 1 [3T] (s) tid 2 [3T] (s) tid 3 [3T] (s) T (s) 0,12 6,85 6,63 6,66 2,24 0,24 5,14 5,24 5,2 1,73 0,32 5,02 5,02 5,02 1,68 0,36 5,02 5,06 5,02 1,68 0,40 5,06 5,06 5,02 1,68 0,44 5,09 5,02 5,02 1,68 0,48 1,70* *Värde från tidigare mätningar - 7/10 -

8 Tabell 5 Tabell över mätdata och uträknad medelperiod för olika längder på l för den oregelbundna masonitskivan. längd m tid 1 tid 2 tid 3 medel T 0,09 6,09 5,97 5,85 1,99 0,14 4,94 4,82 5,06 1,65 0,21 4,51 4,49 4,51 1,50 0,28 4,49 4,36 4,49 1,48 0,34 4,36 4,49 4,58 1,49 0,40 4,51 4,57 4,58 1,52 0,49 4,89 4,82 4,73 1,61 Med hjälp av programmet Octave kunde vi med dessa mätdata bestämma konstanterna a och b numeriskt för de två pendlarna, genom att ansätta X och Y enligt ekvation (2). Resultatet för den runda pendeln visas i figur 2 och för den oregelbundna i figur 3. Linjäranpassningen i figur 2 ger a=0,0133 och b=0,0939 för den runda pendeln. För den andra pendeln ger linjäranpassningen istället a=0,0077 och b= Fig. 2 X som en funktion av Y för den runda pendeln. - 8/10 -

9 Fig. 3 X som en funktion av Y för den oregelbundna pendeln. För att bestämma tyngdaccelerationen g, betraktade vi enheterna för g samt a och b som vi kommit fram till genom dimensionsanalys. [a]=s 2 m [b]=s 2 /m [g]=m/s 2 Inspektion ger att 1/b har samma enhet som g och eftersom våra två värden på b var ungefär lika för båda pendlar kan man misstänka att b kan vara en konstant som är oberoende av pendeln. Vi testade därför att ansätta g=1/b vilket med våra värden ger g=1/b=1/0.0939=10.6 m/s 2 för den runda pendeln, S 1 g=1/b=1/0.0993=10.1 m/s 2 för den oregelbundna pendeln, S 2 Framförallt för den oregelbundna pendeln är detta en skaplig uppskattning av g och vi drog slutsatsen att antagandet g=1/b är korrekt men att våra värden på konstanterna a och b inte är helt korrekta p.g.a. mätfel. 5. SLUTSATSER En slutsats är att den givna matematiska modellen för perioden för en fysikalisk pendel, ekv (0), stämmer väl överens med verkligheten. Samt att korrektionsfaktorn blir större för större vinklar. Sambandet mellan perioden och utfallsvinkeln approximeras bäst med ett polynom. För små vinklar är korrektionsfaktorn ungefär 1, och kan därmed försummas. Perioden blir då - 9/10 -

10 bara beroende av längden från masscentrum till upphängningspunkten och två konstanter. Konstanten b i modellen är i själva verket g -1 och ska därför vara densamma för alla pendlar, även om b i våra resultat skiljer sig något för de två pendlarna. Konstanten a däremot beror på pendeln, och kan bestämmas genom linjärisering av den matematiska modellen. - 10/10 -

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

AKTIVITETER VID POWERPARK/HÄRMÄ

AKTIVITETER VID POWERPARK/HÄRMÄ AKTIVITETER VID POWERPARK/HÄRMÄ Acceleration Mega Drop Fritt fall Piovra Typhoon Svängningsrörelse Planetrörelse La Paloma Cirkelrörelse FRITT FALL (Mega Drop) Gradskiva och måttband Räknemaskin Tidtagarur

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Tips 1. Skolverkets svar 14

Tips 1. Skolverkets svar 14 JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning

Institutionen för matematik och datavetenskap Karlstads universitet. GeoGebra. ett digitalt verktyg för framtidens matematikundervisning Karlstads GeoGebrainstitut Institutionen för matematik och datavetenskap Karlstads universitet Mats Brunström Maria Fahlgren GeoGebra ett digitalt verktyg för framtidens matematikundervisning Invigning

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0)

a) Ange ekvationen för den räta linjen L. (1/0/0) Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Experimentell metodik

Experimentell metodik 1. Experimentell metodik Institutionen för fysik och astronomi Olof Charlie Karis Svante Svensson Jan Hedman Uppsala universitet 2. Innehållsförteckning 1. OM SAMSPELET MELLAN EXPERIMENT OCH TEORI I FYSIKEN

Läs mer

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Mats Braskén (Åbo Akademi) och Ray Pörn (Yrkeshögskolan Novia) Accelerationssensorn Accelerationssensorn mäter accelerationen

Läs mer

Uppdrag för LEGO projektet Hitta en vattensamling på Mars

Uppdrag för LEGO projektet Hitta en vattensamling på Mars LEGO projekt Projektets mål är att ni gruppvis skall öva på att genomföra ett projekt. Vi använder programmet LabVIEW för att ni redan nu skall bli bekant med dess grunder till hjälp i kommande kurser.

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0)

a) Ange ekvationen för den räta linjen L. (1/0/0) Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist Undersökning av hur kastlängden varierar i kulstötning Längden på en kulstöt beror på olika variabler. Höjden, hastigheten, kastvinkeln samt tyngdsaccelerationen spelar roll. Dessa varibler ska varieras

Läs mer

Bestämning av E-modul

Bestämning av E-modul Bestämning av E-modul Tag fram en mätplan och upprätta mätprotokoll, konsultera gärna laborationshandledaren innan mätningarna startar. Dokumentera den experimentella uppställningen. Genomför mätningar.

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Trycket beror på ytan

Trycket beror på ytan Inledning Trycket beror på ytan Du har två föremål med samma massa och balanserar dem på varsin handflata. Det ena föremålet har en mycket smalare stödyta än det andra. Förmodligen känns föremålet med

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1.

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1. Solar cells 2.0 Inledning Utrustning som används i detta experiment visas i Fig. 2.1. Figure 2.1 Utrustning som används i experiment E2. Utrustningslista (se Fig. 2.1): A, B: Två solceller C: Svart plastlåda

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

8.5 Minstakvadratmetoden

8.5 Minstakvadratmetoden 8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

E-II. Diffraktion på grund av ytspänningsvågor på vatten

E-II. Diffraktion på grund av ytspänningsvågor på vatten Q Sida 1 av 6 Diffraktion på grund av ytspänningsvågor på vatten Inledning Hur vågor bildas och utbreder sig på en vätskeyta är ett viktigt och välstuderat fenomen. Den återförande kraften på den oscillerande

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Projektarbete Kylska p

Projektarbete Kylska p Projektarbete Kylska p Kursnamn Termodynamik, TMMI44 Grupptillhörighet MI 1A grupp 2 Inlämningsdatum Namn Personummer E-postadress Ebba Andrén 950816 ebban462@student.liu.se Kajsa-Stina Hedback 940816

Läs mer

FÖRBÄTTRING AV EN MUSFÄLLA*

FÖRBÄTTRING AV EN MUSFÄLLA* STATENS STANDARDISERINGS- RAPPORT KOMMISSION FÖR HUSHÅLLSARTIKLAR april 2012 FÖRBÄTTRING AV EN MUSFÄLLA* av Homos Humus Husmus Sammanfattning Syftet med detta arbete var att förbättra den trådlindade musfällan.

Läs mer

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut

Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Optimala vinkeln av bortklippt cirkelsektor fo r maximal volym pa glasstrut Frågeställning Av en cirkulär pappersskiva kan en cirkelsektor med en viss vinkel klippas bort. Med den resterande sektorn går

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 3.9.05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Bästa skottläge på en fotbollsplan längs långsidan

Bästa skottläge på en fotbollsplan längs långsidan Bästa skottläge på en fotbollsplan längs långsidan Frågeställningen lyder: Vad är det bästa skottläget? för en spelare som befinner sig på en rak linje på en fotbollsplan. Det är alltså en vinkel som söks,

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man försöker ställa upp en matematisk modell för något fysikaliskt fenomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Skriv gärna på provpapperet

Läs mer

Magnetiska fält laboration 1FA514 Elektimagnetism I

Magnetiska fält laboration 1FA514 Elektimagnetism I Magnetiska fält laboration 1FA514 Elektimagnetism I Utförs av: William Sjöström 19940404 6956 Oskar Keskitalo 19941021 4895 Uppsala 2015 05 09 Sammanfattning När man leder ström genom en spole så bildas

Läs mer

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus

Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus Vetenskaplig Metod och Statistik Maja Llena Garde Fysikum, SU Vetenskapens Hus 2010 10 20 Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet?

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 17 december 2008 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer