TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser."

Transkript

1 TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar

2 Sammanfattning Denna rapport behandlar ett experiment för att ta fram en funktion som beskriver en balks nedböjning när den belastas med en massa. Experimentet har utförts genom att placera en balk i ett balkstativ med fixa ändar och en belastning i mitten. En mätklocka har placerats under för att uppmäta balkens avvikelse. Metoden för att lösa uppgiften utgår från den experimentella metodiken; en exponentiell ansats antas utifrån mätdata som ger ett exponentiellt samband. Approximativt används sedan linearisering och dimensionsanalys för att bestämma konstanter och samband mellan de ingående variablerna. Mellan varje mätserie har en variabel varierats medan övriga hållits konstanta på så viss kan man stegvis lösa ut varje okänd konstant. Det har då funnits att sambandet för balkens nedböjning beror av en funktion som kan beskrivas av balkens belastning, dess bredd, tjocklek, längd, elasticitetsmodul samt tyngdaccelerationen. 1

3 Innehållsförteckning Inledning... 3 Bakgrund... 3 Metod och utförande... 4 Resultat... 5 Diskussion och slutsatser... 9 Referenser...11 Bilagor

4 Inledning Inom den experimentella metodiken utgår man från en metod som ger oss ett kraftfullt verktyg att undersöka fysikaliska situationer. Denna metod utgår från tre punkter som kan sammanfattas i att man gör; nödvändiga antaganden med ledning av mätresultaten; bestämmer sambanden genom linearisering; kompletterar sambanden med en dimensionsanalys. Behärskar man detta har vi ett mycket mångsidigt verktyg för att undersöka en rad områden inom fysiken. Denna metod ställer dock krav utifrån den experimentella metodikens grundidé: att planera, genomföra och utvärdera sitt resultat. Bakgrund Denna rapport är ett resultat av den experimentella metodiken som tillvägagångssätt och har skett i samband med en uppgift som getts av handledare Kourosh Tatar på Luleå Tekniska Universitet. Problemformuleringen som behandlas i rapporten är att formulera en funktion som bestämmer en balks nedböjning under belastning av en massa. 3

5 Metod och utförande Utifrån definitionen av experimentell metodik kommer rapporten under denna rubrik att redogöra för planeringsstadiet av experimentet. Experimentet har gått till enligt följande: en balk av varierande material, bredd och tjocklek spändes fast i sina båda ändar i ett balkstativ; att balken är fixt i sina ändar är en följd av vårt antagande om möjligheten till förskjutning i balkens x-led, vilket skulle ge ett mer osäkert resultat. Balken belastades sedan i sin mittpunkt med en sådan massa att balken böjde nedåt. Direkt under balkmittens nedre långsida fanns en mätklocka med stativ och magnetfot placerad, som med stor noggrannhet kunde uppmäta balkens nedböjning i millimeter. Uppställningen visas i figur 1 nedan. Figur 1 uppställning. Observera att mätklocka ej är representerad i bilden. För att ta fram en funktion för balkens nedböjning måste man först bestämma utifrån vilka variabler nedböjningen beror på. Balkens böjning kan i första hand tänkas bero på den belastning som placeras över balken, massan m. Vidare kan man också anta att böjningen beror på balkens tjocklek H, bredd B, samt dess längd L som mäts mellan de båda ändpunkterna. Vidare måste också balkens material spela roll, det vill säga elasticitetsmodulen E, samt tyngdaccelerationen g. Detta kan presenteras i nedanstående variabellista med variabelns respektive enhet och dimension. Storhet Symbol Enhet Dimension Balkböjning Δy m L Belastning m kg M Elasticitetsmodul E N/mm² ML - ¹T - ² Längd L m L Bredd B m L Tjocklek H m L Tyngdacceleration g m/s² LT - ² Tabell 1 variabellista, tabell över variabler. 4

6 y *mm+ Nedan ses figur 2 och 3 som illustrerar problemuppställningen Δy och de ingående variablerna från tabell 1. Figur 2 illustration av balkens nedböjning. Figur 3 problemdefinition utifrån tabell 1. Utifrån tabell 1 och med hjälp av figur 3 ovan finns nu en tillräcklig definition av problemet för att gå vidare till genomförandestadiet och påbörja mätserier. Resultat Den första mätserien görs för att plotta upp en graf över hur funktionen för balkens nedböjning ser ut. I serien så varieras längden medan allt annat hålles konstant. Varje mätserie består av fyra försök. 0,50 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 0,00 200,00 400,00 600,00 800, , ,00 Längd (L) Graf 1 första mätserien. Längd varierad, allt annat konstant. Origo utplacerad som en nollte mätning. 5

7 ln( y) Utifrån graf 1 ovan tillsammans med tabell 1 kan följande ansats antas: y = K L α E β m γ B ε H φ g θ, (0) där de ingående variablerna är beskrivna i tabell 1, med tillägg om att K är en konstant som kan antas utifrån den exponentiella funktionen som ses i graf 1. Exponenterna α, β, γ, ε, φ samt θ är för tillfället obestämda. Vid en allmän bestämning av variablernas exponenter antas en linearisering där avvikelsen i y-led ställs upp som en funktion av den varierade variabeln v, multiplicerat med en konstant C enligt y = C v ω. (1) Denna funktion logaritmeras för att räkna ut exponenten ω observera att konstanten C inte är nödvändig för att bestämma ω. Logaritmeringen av ekvation (1) ger ln y ln v = ω (2) där ω är lutningen/riktningskoefficienten för den lineariserade grafen, men enligt ekvation (1) ovan också är exponenten till variabeln. Detta ger en allmän metod för att lösa ut de okända variablerna som ställts upp i ansats (0). Denna allmänna metod kommer att användas för att bestämma samtliga exponenter utom β och θ, som bestäms med hjälp av dimensionsanalys. Med en metod för att bestämma exponenterna kan mätningarna fortsätta. I den andra mätserien varierades längden L med övriga variabler konstanta; detta visas efter linearisering enligt ekvation (2) i graf 2 nedan. 0,00-0,50-1,00-1,50-2,00-2,50-3,00 y = 2,9397x - 21,349-3,50 6,20 6,30 6,40 6,50 6,60 6,70 6,80 6,90 7,00 7,10 ln(l) Graf 2 linearisering av andra mätserien. Längd varierad, allt annat konstant. Med hjälp av ekvation (1) och (2), tillsammans med den andra mätserien, kan längdvariabelns exponent α bestämmas. I graf 2 kan ses att riktningskoefficienten till den räta linjen är 2,9397. Avrundning ger α = 3. 6

8 ln( y) ln( y) Analogt görs den tredje mätserien där massan m varieras, övriga variabler konstanta. Graf 3 tas på ovan vis fram utifrån mätvärdena. 1,500 1,000 0,500 0,000-0,500 y = 1,0072x + 0,7157-1,000-1,500-1,000-0,500 0,000 0,500 1,000 ln(m) Graf 3 linearisering av tredje mätserien. Massa varierad, allt annat konstant. Enligt analog metod bestäms nu massans exponent γ. Riktningskoefficienten för den linjära grafen är 1,0072. Avrundning ger γ = 1. Genom en fjärde mätserie för att bestämma exponenten till tjockleken tas graf 4 fram. Metoden analogt enligt ovan. 1,50 1,00 0,50 0,00-0,50-1,00 y = -3,0895x + 4,4895-1,50-2,00-2,50 0,80 1,00 1,20 1,40 1,60 1,80 2,00 2,20 ln(h) Graf 4 linearisering av fjärde mätserien. Tjocklek varierad, allt annat konstant. Ur graf 4 bestäms tjocklekens exponent φ = 3. 7

9 ln( y) Det återstår att bestämma breddens variabel med samma metod. Den femte mätserien lineariserad ger graf 5 nedan. 0,00-0,20-0,40 y = -1,0623x + 2,8907-0,60-0,80-1,00-1,20 2,90 3,00 3,10 3,20 3,30 3,40 3,50 3,60 3,70 3,80 ln(b) Graf 5 linearisering av femte mätserien. Bredd varierad, allt annat konstant. Utläsning av grafen ger att breddens exponent ε = 1. Fyra av de totalt sex exponenterna är bestämda; kvar att bestämma är de två exponenterna θ och β samt konstanten K. Att β inte bestäms analogt via linearisering beror på att det inte fanns tillräckligt många balkar med varierande elasticitetsmodul och samma balkdimensioner tillgängliga vid laborationstillfället. Det går inte heller att bestämma exponenten för tyngdaccelerationen med linearisering då skolan saknar resurser för att variera tyngdaccelerationen. Därför bestäms elasticitetsmodulens exponent β och tyngdaccelerationens exponent θ med hjälp av en dimensionsanalys. Med hjälp av ansats (0) tillsammans med dimensionerna i tabell 1 kan följande samband ställas upp: L = L 3 (ML 1 T 2 ) β ML 3 L 1 (LT 2 ) θ. (3) Det går nu bra att bestämma de två sista exponenterna numeriskt genom att analysera antalet M i vänsterled respektive högerled. Enligt ekvation (3) så innehåller vänsterledet M 0 stycken M, medan det i högerledet finns M 1 M β stycken M. För att vänsterled skall vara lika med högerled så bör β = 1 enligt sambandet 0 = 1 + β β = 1. Det går att bestämma θ analogt β. Studerar man ekvation (3) ses att vänsterledet innehåller T 0 stycken T, högerledet innehåller T 2 T 2θ stycken T då β = 1. För att vänsterledet skall vara lika med högerledet så bör θ = 1 enligt sambandet 0 = 2 2θ θ = 1. Nu när exponenterna β och θ är kända så kan ansatsen skrivas om till (0) till funktionen Δy = K L3 mg EBH3. (4) 8

10 För att bestämma konstanten K så löses K ur ekvation (4) vilket ger K = Δy L 3 mg EB H 3 = ΔyEB H3 L 3 mg (5) Ekvation (5) kan nu användas för att ge ett numeriskt värde till K. För detta görs en sjätte mätning där massan varieras och övriga variabler hålls konstanta, se värden i tabell 2. Storhet Symbol Enhet Värde Balklängd L m 1,2 Elasticitetsmodul 1 E N/mm² Bredd B m Tjocklek H m Tabell 2 sjätte mätningen för att bestämma konstanten K. Massa varierad, allt annat konstant. Med ledning av ekvation (5) och konstanterna från tabell 2, fås tabell 3 nedan. Massa [kg] 0,280 0,401 0,593 0,692 y [m] 0, , , ,00108 K 0, , , , Tabell 3 fyra mätningar som ger varierad konstant K enligt ekvation (5). Utifrån tabell 3 fås ett medelvärde av konstanten, K medel = 0, Avrundning ger K 0,07. Alla exponenter är nu kända och konstanten K är given. I ansats (0) tillsammans med exponenternas värden ges funktionen Δy = 0,07 L3 mg EBH3, (6) där ekvation (6) beskriver den slutliga formeln för en balks nedböjning under belastning. Diskussion och slutsatser Genom att använda experimentell metodik som metod för ett experiment kan man matematiskt komma fram till en approximativ formel där en viss felmarginal kan tillåtas. En kontroll av formeln visar att felmarginalen som störst blir cirka plus minus en tiondels millimeter. Resultatet kan därför ses som en framgång i den bemärkelsen att dess approximativa värde är bra, med tanke på de relativt begränsade försöken per mätserie. Om man skulle använda sig av fler försök 1 Stål, ämnestabell sidan 398 i Physics Handbook 9

11 per mätserie, säg ett hundratal, och vara mycket noggrann i sina mätningar skulle man få en formel vars approximativitet är ännu bättre. Om man ska diskutera i termer av felkällor så är det stor sannolikhet att varje avläsning inte blir korrekt, eller att uppställningen inte är precis; eftersom att balkens avvikelse ibland är ett par tiondelar av en millimeter, ställs det stora krav på att exempelvis balkens längd samt att dess mitt är precist utmätt, och att mätinstrumentet är korrekt avläst. I ett experiment av denna karaktär har man inte kunnat förvänta sig att dessa krav skulle mötas med en sådan strikthet i utförandet. Till sist kan lämnas en rekommendation till andra som skall utföra liknande försök att vara noggranna i sina mätningar och avläsningar då experimentet bygger på mycket känsliga värden. 10

12 Referenser Tryckta källor Nordling, C., Österman, J., (2006). Physics Handbook for Science and Engineering. 8. Uppl., Studentlitteratur. ISBN

13 Bilagor Mätserie 1 Under följande mätvärden så varierades balkens längd, L. Övriga variabler hölls konstanta under denna mätning. Konstanter: Elasticitetsmodul, E = 200 N mm 2 Bredd, B = 30 mm Tjocklek, H = 5 mm Massa, M = 0,401 kg Längd, L [mm] y [mm] 0,460 0,290 0,140 0,050 Tabell 4 mätvärden till mätserie 1 och graf 1 i rapporten. 12

14 Mätserie 2 Under följande mätvärden så varierades balkens längd, L. Övriga variabler hölls konstanta under denna mätning. Konstanter: Elasticitetsmodul, E = 200 N mm 2 Bredd, B = 30 mm Tjocklek, H = 5 mm Massa, M = 0,401 kg Längd, L [mm] y [mm] 0,460 0,290 0,140 0,050 ln(l) 7,01 6,83 6,58 6,25 ln( y) -0,780-1,24-1,97-3,00 Tabell 5 mätvärden till mätserie 2 och graf 2 i rapporten. 13

15 Mätserie 3 Under följande mätvärden så varierades viktens massa, m. Övriga variabler hölls konstanta under denna mätning. Konstanter: Elasticitetsmodul, E = 200 N mm 2 Balklängden, L = 1110 mm Bredd, B = 25 mm Tjocklek, H = 5 mm Massa, m [mm] 0,280 0,390 0,993 1,89 y [mm] 0,570 0,790 2,02 3,90 ln(m) -1,27-0,940-0,01 0,640 ln( y) -0,562-0,236 0,703 1,36 Tabell 6 mätvärden till mätserie 3 och graf 3 i rapporten. 14

16 Mätserie 4 Under följande mätvärden så varierades balkens tjocklek, H. Övriga variabler hölls konstanta under denna mätning. Konstanter: Elasticitetsmodul, E = 200 N mm 2 Balklängden, L = 1110 mm Bredd, B = 25 mm Massa, m = 0, 401 kg Tjocklek, H [mm] 3,00 5,00 6,00 8,00 y [mm] 3,06 0,60 0,340 0,150 ln(h) 1,10 1,61 1,79 2,08 ln( y) 1,12-0,51-1,08-1,90 Tabell 7 mätvärden till mätserie 4 och graf 4 i rapporten. 15

17 Mätserie 5 Under följande mätvärden så varierades balkens bredd, B. Övriga variabler hölls konstanta under denna mätning. Konstanter: Elasticitetsmodul, E = 200 N mm 2 Balklängden, L = 1110 mm Massa, m = 0,401 kg Tjocklek, H = 5 mm Bredd, B [mm] 20,0 25,0 30,0 40,0 y [mm] 0,750 0,590 0,480 0,390 ln(b) 3,00 3,22 3,40 3,69 ln( y) -0,290-0,530-0,730-1,02 Tabell 8 mätvärden till mätserie 5 och graf 5 i rapporten. 16

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Bestämning av E-modul

Bestämning av E-modul Bestämning av E-modul Tag fram en mätplan och upprätta mätprotokoll, konsultera gärna laborationshandledaren innan mätningarna startar. Dokumentera den experimentella uppställningen. Genomför mätningar.

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Magnetiska fält laboration 1FA514 Elektimagnetism I

Magnetiska fält laboration 1FA514 Elektimagnetism I Magnetiska fält laboration 1FA514 Elektimagnetism I Utförs av: William Sjöström 19940404 6956 Oskar Keskitalo 19941021 4895 Uppsala 2015 05 09 Sammanfattning När man leder ström genom en spole så bildas

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND FJÄDERN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM Experimentell problemlösning Bengt Sandell, IFM Reviderad 2012, Mats Eriksson, IFM Innehåll 1. Introduktion... 1 1.1. Fysik - exakt vetenskap... 1 1.2. Hur erhålls en fysikalisk formel?... 1 1.3. Enhetssystem...

Läs mer

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor

5B1147. Envariabelanalys. MATLAB Laboration. Laboration 1. Gränsvärden och Summor 5B47 MATLAB Laboration Laboration Gränsvärden och Summor joycew@kth.se uvehag@kth.se Innehåll Uppgift a... Problem... Lösning... Grafisk bestämning av gränsvärden... Beräkning av gränsvärden...2 Uppgift

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

8.5 Minstakvadratmetoden

8.5 Minstakvadratmetoden 8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Var försiktig med elektricitet, laserstrålning, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålning, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. 1 Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Gunilla Viklund Birgit Gustafsson Anna Norberg

Gunilla Viklund Birgit Gustafsson Anna Norberg L ÄRARMAT E R I A L Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel) Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,

Läs mer

Koncentrationsbestämning med hjälp av spädningsteknik och spektrofotometri

Koncentrationsbestämning med hjälp av spädningsteknik och spektrofotometri Umeå universitet Biomedicinska Analytikerprogrammet Koncentrationsbestämning med hjälp av spädningsteknik och spektrofotometri Årskull: Laborationsrapport i Grundläggande laboratorievetenskap, termin 1

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

a) Ange ekvationen för den räta linjen L. (1/0/0)

a) Ange ekvationen för den räta linjen L. (1/0/0) Delprov B: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. Ange det uttryck som ska stå i parentesen för att likheten ska gälla. ( ) ( x 5) = x 5 (1/0/0).

Läs mer

Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som .

Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som . BÖJNING AV EN BALK 1 Inledning Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som σσ = FF AA, (1) där A är stavens

Läs mer

Elektrokemisk bestämning av löslighetsprodukt och ligandtal

Elektrokemisk bestämning av löslighetsprodukt och ligandtal Elektrokemisk bestämning av löslighetsprodukt och ligandtal Jesper Hagberg Simon Pedersen 1 december 011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk Kemi Handledare Carolina

Läs mer

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

Projektarbete Kylska p

Projektarbete Kylska p Projektarbete Kylska p Kursnamn Termodynamik, TMMI44 Grupptillhörighet MI 1A grupp 2 Inlämningsdatum Namn Personummer E-postadress Ebba Andrén 950816 ebban462@student.liu.se Kajsa-Stina Hedback 940816

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Fartbestämning med Dopplerradar

Fartbestämning med Dopplerradar Vågrörelselära, 5 poäng 007 03 14 Uppsala Universitet Projektarbete Fartbestämning med Dopplerradar Per Mattsson, FA Olov Rosén, FA 1 1. Innehållsförteckning. Sammanfattning......3 3. Inledning......3

Läs mer

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16.

Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1. a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Lösningar och kommentarer till uppgifter i 2.2

Lösningar och kommentarer till uppgifter i 2.2 Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren).

Sekant och tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). Derivata Sekant oc tangent Om man drar en rät linje genom två punkter på en kurva får man en sekant. (Den gröna linjen i figuren). I figuren ovan finns även en tangent inritad. Som nästa ska vi titta på

Läs mer

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad UMEÅ UNIVERSITET Tillämpad fysik och elektronik Laborationer i byggnadsakustik Osama Hassan 2010-09-07 Byggnadsakustik: Luftljudisolering Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i

Läs mer

Experimentell metodik

Experimentell metodik 1. Experimentell metodik Institutionen för fysik och astronomi Olof Charlie Karis Svante Svensson Jan Hedman Uppsala universitet 2. Innehållsförteckning 1. OM SAMSPELET MELLAN EXPERIMENT OCH TEORI I FYSIKEN

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g)

Homogen gasjämvikt: FYSIKALISK KEMI. Laboration 2. Dissociation av dikvävetetraoxid. N2O4(g) 2 NO2(g) Linköpings universitet 2013-10-03 IFM / Kemi Fysikalisk kemi Termodynamik FYSIKALISK KEMI Laboration 2 Homogen gasjämvikt: Dissociation av dikvävetetraoxid N2O4(g) 2 NO2(g) Linköpings Universitet Kemi

Läs mer