En pendels svängningstid

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "En pendels svängningstid"

Transkript

1 Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket enkelt fall av experimentell problemlösning. Rapporten är därför kortare än den rapport du ska skriva. Rapportdelen ska ha omfattningen sidor. Tänk också på att inte plagiera några formuleringar i texten. En pendels svängningstid En rapport i kursen Fysik (TFYA14) Rapportförfattare: Linnea Lins ( ) Teknisk fysik och elektroteknik (Y) Linköpings universitet, Linköping (Version 1) Uppdatera datum och version vid varje inlämning. Ge rapporten ett filnamn på formen [Linnea_Lins_version_1] Ange dina medlaboranter här. De ska dock inte delta i rapportskrivandet. Medlaboranter: Limone Lifouz ( ) Linus Lindeman ( )

2

3 Sammanfattning En modell för svängningstiden hos en enkel pendel togs fram genom experiment... Rapporten skall inledas med en kort sammanfattning. Sammanfattningen skall ge en snabb inblick i vad rapporten handlar om så att en läsare kan avgöra om rapporten innehåller det som läsaren söker. Resultatet skall finnas kortfattat presenterat här. I den här laborationen krävs att den framtagna modellen med numeriska värden på konstanten skall presenteras.

4

5 Innehållsförteckning 1. INLEDNING EXPERIMENTUPPSTÄLLNING UTFÖRANDE HYPOTES DIMENSIONSANALYS BESTÄMNING AV KONSTANTEN FELANALYS MODELLPRÖVNING DISKUSSION OCH SLUTSATSER BILAGOR MÄTNINGAR FÖR ATT BESTÄMMA KONSTANTEN... 6

6

7 1. Inledning Denna rapport beskriver ett experiment med en enkel pendel. Syftet med experimentet är att öva på experimentell problemlösning. Kapitel 2 innehåller en beskrivning av den experimentella uppställningen och definitioner av de variabler som används. I kapitel 3 beskrivs själva utförandet dvs. den grundhypotes som ställdes upp, en dimensionsanalys samt de experimentella försök som gjordes. Kapitel 4 innehåller en verifiering av modellen med oberoende mätdata samt felanalys. 2. Experimentuppställning I experimentet användes, - Ett snöre där längden l kunde varieras från 0,8 till 1,4 m. - En liten massa m som kunde varieras mellan 0,10 och 0,90 kg.. Skalära variabler kursiveras, vektorer skrivs med fet stil. Försöksuppställnigen skall vara så tydligt beskriven att även de som inte har sett den förstår den och skulle kunna reproducera experimentet. Det gäller även de ingående resonemangen som förs i rapporten. Samtliga variabler skall vara entydigt definierade. Vid försöken fästes massan i snöret. Snöret och massan och fick sedan pendla enligt figur 1. Periodtiden Tp uppmättes med ett stoppur Figurer numreras löpande och har en förklarande text under figuren. Figurer skall refereras till i den löpande texten. etc.. Figur 1. Försöksuppställning Börja numrering från sidan med inledningskapitlet. 1

8 3. Utförande De variabler som skulle kunna påverka svängningstiden listas i tabell 1. Ett inledande experiment visade att svängningstiden ökade med snörets längd Tabell 1. Ingående variabler Storhet Beteckning Enhet Fysikalisk dimension Periodtiden Tp s T Snörets längd L m L Massan m kg M Tyngdaccelerationen g m/s 2 LT -2 Startvinkeln θ max Hypotes Tabeller numreras löpande och har en förklarande text över tabellen. Tabeller skall refereras till i den löpande texten. Proportionaliteten mellan Tp och θ max är oklar. Däremot kan Tp anses vara oberoende av små startvinklar θ max vilket visades med ett enkelt inledande experiment. 3.2 Dimensionsanalys En hypotes formulerades där periodtiden är en funktion av l, m och g och en produkt ansattes T p = Cl x m y g z (1) Där C är en dimensionslös konstant. Ekv (1) ger dimensionsekvationen Ekvationer som hänvisas till i den löpande texten numreras löpande. T = L x M y L z T 2z (2) Exponenterna i ekv (2) ger upphov till ekvationssystemet: T: 1 = 2z z = 1 2 M: 0 = y y = 0 etc L: 0 = x + z x = z = 1 2 2

9 Som en konsekvens fås modellen T p = Cl 1 2 m 0 g 1 2 = C l g (3) 3.3 Bestämning av konstanten För att beräkna C skrevs ekv (3) om till C = T p g l (4) För att bestämma konstanten C varierades l och tiden för 10 svängningar mättes. C beräknades med hjälp av ekv (4). Detta upprepades tre gånger och ett medelvärde togs. Konstanten C mättes för 7 olika snörlängder, mätningarna återfinns i tabell 2, bilaga 7.1. etc... Är det en mindre mängd data kan den finnas med i den löpande texten, vilket med fördel hade fungerat i detta fall utan att förstöra överblicken. Blir det väldigt mycket rådata kan den placeras i en bilaga. Bilagorna skall vara refererade till i texten. All rådata skall finnas redovisad. 3

10 4. Felanalys För att göra en uppskattning av onoggrannheten på konstanten beräknades ett standardfel.. Konstanten är med standardfel Avrunda onoggrannhetsintervallet och mätvärdet med samma antal decimaler. C = 6,25 ± 0,09 5. Modellprövning För att prova modellen gjordes oberoende mätningar på fem nya snörlängder och modellen användes för att göra förutsägelser av svängningstiden. Mätningarna och en jämförelse med modellen återfinns i figur 2. Svängningstid med oberoende mätningar Diagram skall ha rubrik T(s) 1,75 1,55 1,35 1,15 0,95 Modell Mätningar Diagram skall ha en legend. Variabler och enheter skall vara utsatta på axlarna 0,75 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 l (m) Figur 2: Prövning av modellen med oberoende mätningar. Även diagram benämns figurer och numreras löpande med övriga figurer. 4

11 6. Diskussion och slutsatser Den framtagna modellen begränsningar är I diskussionsdelen behandlas modellens giltighet, begränsningar, idealiseringar och eventuella behov av kommande undersökningar och vad som kunde ha förbättrats etc.. 5

12 7. Bilagor 7.1 Mätningar för att bestämma konstanten Tabell 2. Mätningar för att bestämma konstanten C. Enheter skall finnas med i tabellhuvudet. l (m) T1(s) T2(s) T3(s) Tmedel (s) C 0,10 0,62 0,63 0,64 0,63 6,2430 0,20 0,89 0,89 0,90 0,89 6,2597 0,30 1,08 1,09 1,09 1,09 6,2172 0,40 1,28 1,28 1,28 1,28 6,3421 0,50 1,38 1,39 1,40 1,39 6,1601 0,60 1,52 1,53 1,56 1,54 6,2167 0,70 1,66 1,70 1,71 1,69 6,3299 0,80 1,79 1,78 1,79 1,79 6,2697 6

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

HUR SKRIVER MAN EN LABORATIONSRAPPORT OCH VARFÖR?

HUR SKRIVER MAN EN LABORATIONSRAPPORT OCH VARFÖR? HUR SKRIVER MAN EN LABORATIONSRAPPORT OCH VARFÖR? Du kommer med största sannolikhet att skriva rapporter senare i livet (träning!) Om man jobbar som forskare använder man sig av laborationsrapporter när

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

HUR SKRIVER MAN EN LABORATIONSRAPPORT OCH VARFÖR?

HUR SKRIVER MAN EN LABORATIONSRAPPORT OCH VARFÖR? HUR SKRIVER MAN EN LABORATIONSRAPPORT OCH VARFÖR? Du kommer med största sannolikhet att skriva rapporter senare i livet (träning!) Om man jobbar som forskare använder man sig av laborationsrapporter när

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Krafter märkbara men osynliga

Krafter märkbara men osynliga Krafter märkbara men osynliga Arbeta med hypotes och prövning Lärarhandledningen, uppgift 7, sida 231 (elevblad på sida 247), elevboken sida 70. Utvecklar förmåga Genomföra systematiska undersökningar

Läs mer

Elektricitet och magnetism besläktade fenomen

Elektricitet och magnetism besläktade fenomen Elektricitet och magnetism besläktade fenomen En lysande uppgift Lärarhandledningen, uppgift 5, sida 286 (elevblad på sida 308), elevboken sida 91. Systematiska undersökningar. Formulering av enkla frågeställningar,

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Personer. Lisam. Linköpings Universitet Linköping Institutionen för Fysik, Kemi och Biologi Per Sandström Rev. 2

Personer. Lisam. Linköpings Universitet Linköping Institutionen för Fysik, Kemi och Biologi Per Sandström Rev. 2 Linköpings Universitet Linköping 150114 Institutionen för Fysik, Kemi och Biologi Per Sandström Rev. 2 Kursinformation för kurserna: - TFYA81 Oscillationer och Mekaniska Vågor för Y och Yi - TFYA82 Oscillationer

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Frågor och svar om tekniska rapporter

Frågor och svar om tekniska rapporter Frågor och svar om tekniska rapporter Frågorna är ordnade efter rapportens struktur Titelsidan Hur ska titelsidan se ut? Universitet, program, kurs, termin, datum och år. Författarnamn och e-postadresser,

Läs mer

TITEL. Johannes Hedberggymnasiet. Laborantens namn: Medlaboranters namn: Klass: Skola: Påbörjad: Inlämnad:

TITEL. Johannes Hedberggymnasiet. Laborantens namn: Medlaboranters namn: Klass: Skola: Påbörjad: Inlämnad: Johannes Hedberggymnasiet Ha gärna med skolans namn högst upp i vänstra hörnet, det ger framsidan lite guldkant Johannes Hedbergloggan är väldigt snygg att ha uppe i hörnet. Kopiera gärna denna. TITEL

Läs mer

Ljud njutning eller plåga

Ljud njutning eller plåga Ljud njutning eller plåga Ljudets väg till örat Lärarhandledningen, uppgift 4, sida 473 (elevblad på sida 488), elevboken sida 156. Genomföra systematiska undersökningar i fysik. Sambandet mellan fysikaliska

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Skrivanvisningar för laborationsrapporter

Skrivanvisningar för laborationsrapporter Skrivanvisningar för laborationsrapporter 1 Allmänt om laborationsrapporter En laborationsrapport redogör för vad laboranten gjort och kommit fram till under laborationen. Den är en övning i vetenskapligt

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Experimentell metodik

Experimentell metodik 1. Experimentell metodik Institutionen för fysik och astronomi Olof Charlie Karis Svante Svensson Jan Hedman Uppsala universitet 2. Innehållsförteckning 1. OM SAMSPELET MELLAN EXPERIMENT OCH TEORI I FYSIKEN

Läs mer

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör.

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör. Prövning i Fysik 2 Prövningen i Fy 2 omfattar 1: Skriftligt prov Ett skriftligt prov görs på hela kursen. 2: Laborationer I kursen ingår att laborera och att skriva rapporter. Laborationerna görs en torsdag

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND FJÄDERN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

LABORATIONENS NAMN. CHEM-C2200 Kemisk termodynamik

LABORATIONENS NAMN. CHEM-C2200 Kemisk termodynamik CHEM-C2200 Kemisk termodynamik LABORATIONENS NAMN Rapportens författare: Kajsa Kemist, 43210A Arbetspar: Teodor Teknolog, 121212 Assistent: Assar Assistent Datum för laboration Datum för inlämning Datum

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Terminsplanering årskurs 6 Matematik Ärentunaskolan Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

"Densitet, Tryck, Värme, Väder"

Densitet, Tryck, Värme, Väder "Densitet, Tryck, Värme, Väder" Grundskola 7 8 1 Densitet, tryck, värme, väder Skapad 216-11-1 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Mall för pedagogisk planering Björkvallsskolan"

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

A-Ö Ämnet i pdf Ämne - Fysik Fysik är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld. Fysik behandlar allt från växelverkan mellan materiens

Läs mer

Examensarbete, Högskoleingenjör energiteknik, 15 hp Grundnivå

Examensarbete, Högskoleingenjör energiteknik, 15 hp Grundnivå Examensarbete, Högskoleingenjör energiteknik, 15 hp Grundnivå Studenten ska tillämpa kunskaper och färdigheter förvärvade inom utbildningsprogrammet genom att på ett självständigt och vetenskapligt sätt

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Ljus snabbare finns inte

Ljus snabbare finns inte Ljus snabbare finns inte En morgon satt jag och tittade på en daggdroppe i gräset. Den blänkte i solen. Plötsligt märkte jag att droppen ändrade färg när jag flyttade huvudet litet. Kan du förklara det?

Läs mer

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet

Mattekollen. Mattekollen 1. Mattekollen 3. Mattekollen 2. 6 Mål för kapitlet. 156 mattekollen. För att avsluta kapitlet Mattekollen Eleven har redan under sin tidigare skolgång utvecklat vissa kunskaper kring olika matematiska förmågor genom det centrala innehållet. I Mattekollen 1 sätter eleven ord på det han/hon redan

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Fartbestämning med Dopplerradar

Fartbestämning med Dopplerradar Vågrörelselära, 5 poäng 007 03 14 Uppsala Universitet Projektarbete Fartbestämning med Dopplerradar Per Mattsson, FA Olov Rosén, FA 1 1. Innehållsförteckning. Sammanfattning......3 3. Inledning......3

Läs mer

Laborationer i Naturkunskap B och Naturkunskap 2

Laborationer i Naturkunskap B och Naturkunskap 2 Laborationer i Naturkunskap B och Naturkunskap 2 Det laborativa momentet av prövningen i Naturkunskap B och Naturkunskap 2 består av ett antal laborationer som genomförs vid ett laborationstillfälle på

Läs mer

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C

Läs mer

Bestämning av E-modul

Bestämning av E-modul Bestämning av E-modul Tag fram en mätplan och upprätta mätprotokoll, konsultera gärna laborationshandledaren innan mätningarna startar. Dokumentera den experimentella uppställningen. Genomför mätningar.

Läs mer

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

Introduktion till Word och Excel

Introduktion till Word och Excel Introduktion till Word och Excel HT 2006 Detta dokument baseras på Introduktion till datoranvändning för ingenjörsprogrammen skrivet av Stefan Pålsson 2005. Omarbetningen av detta dokument är gjord av

Läs mer

Rapportskrivningsinstruktioner plus Säkerhetsföreskrifter

Rapportskrivningsinstruktioner plus Säkerhetsföreskrifter Linköpings universitet 2013-10-03 IFM Kemi Fysikalisk kemi Termodynamik Rapportskrivningsinstruktioner plus Säkerhetsföreskrifter Skrivinstruktioner för laborationsrapport NKEB02/TFKE17 Att uttrycka sig

Läs mer

Regler för grupparbeten, inlämnings- och laborationsuppgifter

Regler för grupparbeten, inlämnings- och laborationsuppgifter 1 Fastställda av UNRH 2000-12-05 Civilingenjörsprogrammet i riskhanteringsprogrammet Regler för grupparbeten, inlämnings- och laborationsuppgifter Arbete i samband med inlämningsuppgifter och laborationer

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Mats Braskén (Åbo Akademi) och Ray Pörn (Yrkeshögskolan Novia) Accelerationssensorn Accelerationssensorn mäter accelerationen

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

LABKOMPENDIUM Fysik del B1

LABKOMPENDIUM Fysik del B1 LABKOMPENDIUM Fysik del B1 BFL111: Fysik för bastermin BFL122: Fysik B för tekniskt/naturvetenskapligt basår Innehåll Laboration 1: Kretsar och kondensatorer Förberedelseuppgifter 3 Del 1: Plattkondensator

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

TFYA16/TEN :00 13:00

TFYA16/TEN :00 13:00 Link opings Universitet Institutionen f or fysik, kemi och biologi Marcus Ekholm TFYA16/TEN2 Ovningstentamen Mekanik 2015 8:00 13:00 Tentamen best ar av 6 uppgifter som vardera kan ge upp till 4 po ang.

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

Mall för en kortare rapport/uppsats

Mall för en kortare rapport/uppsats Mall för en kortare rapport/uppsats Detta dokument beskriver vad som ska ingå i en kortare vetenskaplig rapport. Du kommer att skriva rapporter på denna form i ett antal kurser under din utbildning, t.ex.

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter! KVANTMEKANIKFRÅGOR, GRIFFITHS Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths. 1 Kapitel

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad UMEÅ UNIVERSITET Tillämpad fysik och elektronik Laborationer i byggnadsakustik Osama Hassan 2010-09-07 Byggnadsakustik: Luftljudisolering Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i

Läs mer

Skapa en rapport med snygg formatering, rubriker, sidnummer och innehållsförteckning

Skapa en rapport med snygg formatering, rubriker, sidnummer och innehållsförteckning Skapa en rapport med snygg formatering, rubriker, sidnummer och sförteckning MS Office Word 2011 för Mac Precis som med målning och tapetsering blir jobbet med rapportskrivning både bra och roligt om man

Läs mer

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM Experimentell problemlösning Bengt Sandell, IFM Reviderad 2012, Mats Eriksson, IFM Innehåll 1. Introduktion... 1 1.1. Fysik - exakt vetenskap... 1 1.2. Hur erhålls en fysikalisk formel?... 1 1.3. Enhetssystem...

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt Ann-Marie Pendrill & David Eager Studsmattematte fritt fall och harmonisk svängningsrörelse Studsmattor finns i många trädgårdar och lekplatser. Under studsandet rör man sig huvudsakligen i vertikalled

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 110326 Sal TER1 Tid 8-12 Kurskod Provkod BFL122 TEN1 Kursnamn/benämning Fysik B för tekniskt basår,

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer