MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

Storlek: px
Starta visningen från sidan:

Download "MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007"

Transkript

1 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel pendel är bestämning av tyngdaccelerationen g. Ett approximativt värde på g kan enkelt bestämmas genom att använda en matematisk pendel och mäta pendelns längd och dess svängningstid. Svängningstiden kan normalt bestämmas med mycket hög noggrannhet medan pendellängden i praktiken visar sig vara mer svårmätt, bland annat på grund av svårigheten att bestämma pendelns tyngdpunkt. Ett sätt att komma från denna svårighet är att använda en fysikalisk pendel och göra om den till en s.k. reversibel pendel. Du skall inför denna laboration gå igenom teorin för reversionspendeln. Du skall genom en systematisk metod nå fram till den reducerade pendellängden och med hjälp av datainsamlingsprogrammet Data Studio bestämma pendelns svängningstid. Du får anledning att applicera två viktiga korrektioner till dina mätningar och utvärdera ytterligare systematiska fel som kan spela in för ett noggrant värde på g. Experimentet redovisas i en kort, skriftlig rapport.

2 2 LABORATION 1: Reversionspendeln 1 Tyngaccelerationen Tyngdaccelerationen är den acceleration g med vilken en kropp i vila (normalt vid havsytans nivå) börjar att falla (i vakuum) p.g.a. tyngdkraften. Denna acceleration ger kroppar i vila en tyngd som skrivs enligt Newton som mg, där m är kroppens massa. I motsats till den allmänna gravitationskonstanten G (som är en universell konstant med samma värde överallt) är tyngdaccelerationen lokalt betingad och varierar med latituden p.g.a. centrifugalkraftens variation och jordens avvikelse från sfärisk form. Andra avvikelser kan förekomma beroende på inhomogeniteter i jordens massfördelning och med avståndet till jordytan. Ett internationellt normalvärde för tyngdaccelerationen g n är 9, m/s 2, dvs tyngden av 1 kg är 9, N. En internationellt antagen formel för tyngdaccelerationen är 1 g = 9, K där korrektionsfaktorn K ges av (ϕ är ortens latitud): K = 1 + 0, sin2 ϕ 1 0, sin 2 ϕ 2 Reversionspendeln Reversionspendeln som används i detta försök består av en styv stålstång med två flyttbara vikter som samtidigt, med sina mot stången vinkelrätt ställda eggar, fungerar som upphängningspunkter. Reversionspendeln användes första gången av kapten Henry Kater (H. Kater, Philos Trans Roy Soc London 108, 33 (1818)). Experimentet med reversionspendeln har ett historiskt intresse så till vida att det från 1906 och fram till 1968 hade status av en standardmetod för bestämning av tyngdaccelerationen i ett internationellt nätverk. Med denna metod är det möjligt att mäta g med en noggrannhet som är bättre än 1 : International Gravity Formula(e) earth.ou.edu/notes/potential/igf.htm.

3 LABORATION 1: Reversionspendeln 3 3 Teori för en fysikalisk pendel A En stel fysikalisk pendel svänger i ett plan kring en axel genom punkten A (se Fig. 1). Friktionen kan försummas. θ är utslagsvinkeln från jämviktsläget. För små amplituder θ 0 är sin θ θ och svängningsperioden T ges av (se Kleppner-Kolenkov, avsnittet om fysisk pendel): T = 2π I mgl där I = Tröghetsmomentet kring Svängningsaxeln. m = Pendelns massa. g = Yyngdaccelerationen. l = Avståndet från masscentrum c.m. Figur 1: En fysikalisk pendel med masscentrum i punkten c.m. och pendellängden l. Med hjälp av parallellaxelteoremet kan uttrycket för T omformas till I cm + ml T = 2π 2 mgl (1) där I cm är tröghetsmomentet för en axel genom masscentrum, parallell med svängningsaxeln. Ekvation 1 är för fixt T en andragradsekvation i pendellängden l: l 2 gt 2 4π 2 l + I cm m = 0 Varje värde på T fås således för två olika avstånd l 1 och l 2, vilket man även ser i grafen (Fig. 2) för ekvation (1) med T som funktion av l. För varje par l 1 och l 2 av rötter till ekvation (1) gäller följande samband: I cm = ml 1 l 2 I cm + ml T(l 1 ) = T(l 2 ) = 2π 2 mgl = 2π L g (2) (3)

4 4 LABORATION 1: Reversionspendeln T T min l 1 l 2 l Figur 2: Svängningstiden T som funktion av l. där L = l 1 + l 2 kallas den reducerade pendellängden. Ekvationen för g lyder alltså g = 4π2 L T 2 (4) En pendel där man systematiskt kan variera l för att finna lägen där svängningstiden kring två parallella axlar på olika avstånd från masscentrum är lika kallas reversionspendel och var länge det instrument man använde för noggrann bestämning av g. 4 Experiment 4.1 Apparatur Den reversionspendel som skall användas i laborationen består av en stålstav med en fast egg A och en rörlig egg B, vilka behålls parallella (Fig. 3). Pendeln hängs upp i en på väggen fastsatt anordning varefter man provar sig fram till det läge på den rörliga axeln som inom mätnoggrannheten ger samma svängningstid kring de båda eggarna, d.v.s. T A = T B. Svängningstiden T mäts med hjälp av signaler från en fotocell som finns uppsatt vid pendelhållaren. Pulserna från fotocellen går till en elektronikmodul från Scientific Workshop (Pasco) som i sin tur sänder data, via serieingången, till en dator

5 LABORATION 1: Reversionspendeln 5 som kör programmet Data Studio (för användningen av Data Studio hänvisas till Appendix A). 4.2 Utförande Den rörliga eggen B flyttas stegvis och T A och T B skall mätas för varje läge. Kontrollera att de båda eggarna är inbördes parallella under varje mätning och mät T B före T A (fundera på varför?). A l A Avståndet L = l A +l B mäts med hjälp av en stålskala försedd med speglar för parallaxfri avläsning. l B Under experimentets gång plottas T B och T A som funktion av L. Detta ger två kurvor som skär varandra (Fig. 4). Skärningspunkten ger den reducerade pendellängden L som skall användas för beräkning av g. Skärningspunkten bestäms genom tre mätserier med sinsemellan ökande noggrannhet: B Reversion- Figur 3: spendel. 1. Bestäm en lämplig utslagsvinkel θ 0 och håll dennna så konstant som möjligt för alla dina mätningar. θ 0 kan bestämmas genom att använda den mm-skala som finns fastlimmad under fotocellen (fotocellen och skalan är centrerad på lodlinjen under den övre hållaren). 2. Bestäm svängningstiderna T B och T A för 8 olika värden på x i intervallet 60 cm till 95 cm. Dra kontinuerliga kurvor genom punkterna och uppskatt skärningspunktens läge. Punkterna redovisas i rapporten som ett diagram med tabell. 3. Välj ut ett intervall om 5 cm med skärningspunkten ungefär i mitten av intervallet. Flytta nu eggen 5 mm i taget inom detta intervall och kurvorna för T B och T A plottas på nytt. Punkterna redovisas i rapporten som ett diagram med tabell. 4. Välj i den nya plotten ut ett intervall om 1 cm med skärningspunkten ungefär i mitten. Flytta eggen 1 mm i taget inom detta intervall med hjälp av mmskalan (mät i minst 5 helst 7 punkter). Denna gång skall du fundera på hur lång tid du skall mäta varje punkt (kan sättas i programmet) för att få minst samma precision i tidmätningen som i längdmätningen. Notera att programmet räknar ut ett medelvärde på perioden med dess standardavvikelse. Efter de två tidmätningarna T B och T A mäts återigen avståndet L denna gång även med ett stickmått med mikrometerskruv med noggrannheten 1/100 mm.

6 6 LABORATION 1: Reversionspendeln 4.3 Bestämning av T 0 och L 0 En tabell (och figur) med värdena från den sista mätserien för T A och T B med medelvrdesfelen och avstånden L med feluppskattning skall finnas med i rapporten. Perioden och den reducerade pendellängden bestäms ur skärningspunkten mellan de båda linjerna efter den tredje mätserien ovan (se Fig. 4). Linjerna kan för den sista mätserien med god approximation antas vara räta och linjernas parametrar med sina fel och korrelationstermer, beräknas med viktad minsta kvadratmetod. I rapporten skall anges ett uttryck för T 0 och L 0 som funktion av de räta linjernas parametrar. I ett Appendix till rapporten skall du ange explicita uttryck för alla de partiella derivatorerna som ingår i felfortplantningsformlerna för T 0 och L 0. De räta linjerna ritas även in i figuren. 0 0 Figur 4: Grafen där de anpassade räta linjernas skärningspunkter anger värdet på T 0 och L Korrektioner Det finns två viktiga korrektioner som man bör göra vid en precisionsbestämning av g med reversionspendel (observera att i rapporten skall ni presentera g både med och utan dessa korrektioner) Korrektion för ändlig amplitud Ekvation (3) gäller exakt endast för oändligt liten amplitud θ 0. Om amplituden under mätserie 3 var θ 0 skall T multipliceras med korrektionsfaktorn (1 θ 2 0/16) innan man använder T för beräkning av g. Redovisa hur detta påverkar värdet på g.

7 LABORATION 1: Reversionspendeln Korrektion för luftens lyftkraft och medsvängning Pendeln påverkas av luftens lyftkraft enligt Arkimedes princip. Den resulterande tyngdkraften på pendeln är (m m )g, där m är pendelns massa och m massan av den undanträngda luftmängden. Pendelns tröga massa påverkas däremot inte. Vidare deltar en viss luftmassa i svängningen. Poisson har visat att man kan korrigera för dessa två effekter genom att multiplicera g (beräknad ur (3)) med korrektionsfaktorn (1+1.6ρ /ρ), där ρ är luftens densitet och ρ pendelmaterialets (stål). Redovisa hur detta påverkar värdet på g Andra korrektion Fundera på vilka andra korrektioner eller systematiska fel som kan komma in i detta försök. Hur påverkar t.ex. luftens temperatur mätningarna. Kan man bortse från en temperaturavvikelse på 5 C (från den nominella mättemperaturen 20 C)? Tyngdaccelerationens värde gäller för den platsen där den mäts. Således skall man inte göra korrektion för höjden över havet eller för jordens rotation. Men du kan enkelt göra några överslagsberäkningar och ta reda på hur stora dessa korrektionen skulle kunna vara Systematiska fel Som nämnts ovan är längdmätningen i allmänhet problematisk. I detta fall använder vi ett mekaniskt system med längdskalor. Den relativa precisionen kan vara hög, sämre är det dock med den absoluta längdskalan (varierar med temperaturen bl.a.). Passbitarna i stickmåtten adderas nominellt till mm (med mikrometerskruven nollställd). Emellertid kan man finna individuella avvikelser på ett par hundradelar av en mm vid jämförelse med ett referensmått. Om vi antar att vi har ett systematiskt fel på 5/100 mm. Hur mycket påverkar detta värdet på g? 5 Redovisning Någon detaljerad beskrivning av experimentets utförande behöver inte göras utom en kort presentation av problemställning och metod. Sammanfattningsvis skall redogörelsen bl.a. innehålla följande punkter: 1. En härledning av ekvationerna (2), (3) och (4). 2. Alla primärvärden i prydliga tabeller.

8 8 LABORATION 1: Reversionspendeln 3. De två figurerna med datapunkter (använd symboler) och kurvor under punkt 1 och 2 under avsnitt Utförande. 4. En figur med datapunkter med felstaplar (ekvivalenta fel) och de anpassade räta linjerna inritade. 5. Härledning av formlerna för L 0 och T 0 och beräkning av den reducerade pendellängden L 0 och motsvarande pendeltid T 0 utifrån de anpassade parametrarna för de räta linjerna och med hänsyn till korrelationstermerna för den räta linjens parametrar. 6. Beräkning av g 0 med fel utifrån L 0 och T 0 med fel (från anpassningen där vi dock kan bortser från korrelationen mellan dessa två parametrar). 7. Korrektionsfaktorer för ändlig amplitud och luftens lyftkraft och medsvängning och respektive korrektioner till g Beräkning av ett korrigerat g (g korr ) utifrån g 0 och korrektionsfaktorerna. Ett totalt fel på värdet på g. 9. Resultat och jämförelse med det beräknade värdet från den internationellt antagna formeln för tyngdaccelerationen. 10. Diskussion. Vilka andra felkällor kan man ha i det här experimentet? Spelar korrektionsfaktorerna någon roll med tanke på den noggrannhet man kan uppnå?

9 LABORATION 1: Reversionspendeln 9 Appendix A Data Studio Se till att datorn är på och fotocellen inkopplad till en av ingångarna på elektronikenheten Scientific Workshop. Starta programmet Data Studio och välj Skapa experiment. Klicka på lämplig ingång och välj sensor (Fotogrind och pendel). Bekanta dig med menyerna i menyraden, speciellt Experiment(x) (Data Studio) och Samplinginställningar (Experimentinställning). Gör en testkörning genom att klicka på Start. Titta på data genom att välja Graf och Tabell. Gå sedan till Experiment(x) och ta bort alla körningar. Välj lämpligt tidsintervall i Samplingsinställningar för dina körningar (notera att du inte behöver räkna antalet svängningar, det gör programmet och beräknar en periodtid som visas i grafen - observera att en kortare samplingstid kan väljas för de två förberedande mätningarna, därefter förlängs samplingstiden för att erhålla tillräcklig precision i tidmätningen). Du är nu klar att ta data.

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

Labbrapport svängande skivor

Labbrapport svängande skivor Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan

Läs mer

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel

Laborationsrapport. Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A. 22 april Ballistisk pendel Laborationsrapport Ballistisk pendel Joseph Lazraq Byström, Julius Jensen och Abbas Jafari Q2A 22 april 2017 1 1 Introduktion Den här laborationen genomförs för att undersöka en pils hastighet innan den

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

Ballistisk pendel laboration Mekanik II

Ballistisk pendel laboration Mekanik II Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda

Läs mer

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb. Tid Vi har inte en entydig definition av tid. Tid knytas ofta till förändringar och rörelse. Vi koncentrerar på hur vi mäter tiden. Vi brukar använda enheten sekund för att mäta tiden. Enheten för tid

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Rotationsrörelse laboration Mekanik II

Rotationsrörelse laboration Mekanik II Rotationsrörelse laboration Mekanik II Utförs av: William Sjöström Oskar Keskitalo Uppsala 2015 04 19 Sida 1 av 10 Sammanfattning För att förändra en kropps rotationshastighet så krävs ett vridmoment,

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 12 11 1 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,3,4)P, r 2 2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper

Läs mer

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem

Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Introduktion. Torsionspendel

Introduktion. Torsionspendel Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen

Läs mer

Tentamen i Mekanik för D, TFYY68

Tentamen i Mekanik för D, TFYY68 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Carl Hemmingsson/Magnus Johansson Tentamen i Mekanik för D, TFYY68 Fredag 2018-08-23 kl. 8.00-13.00 Tillåtna Hjälpmedel: Physics

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520)

Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Lösningsskiss för tentamen Mekanik F del 2 (FFM521/520) Tid och plats: Tisdagen den juni 2014 klockan 08.0-12.0 i M-huset. Lösningsskiss: Christian Forssén Obligatorisk del 1. Ren summering över de fyra

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

Tentamensskrivning i Mekanik - Dynamik, för M.

Tentamensskrivning i Mekanik - Dynamik, för M. Mekanik, LTH Tentamensskrivning i Mekanik - Dynamik, för M. Fredagen den 20 decemer 2013, kl. 14-19 Namn(texta):. Personnr: ÅRSKURS M:... Skrivningen estår av 5 uppgifter. Kontrollera att alla uppgifterna

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 24 januari 2013 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Ljudhastigheten i is är 180 m 55 10 3 s 3,27 103 m/s. Ur diagrammet avläser vi att det tar 1,95

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder

Läs mer

exempel på krafter i idealiserade situationer, som till exempel i Slänggungan / Kättingflygaren eller Himmelskibet.

exempel på krafter i idealiserade situationer, som till exempel i Slänggungan / Kättingflygaren eller Himmelskibet. Figur 1: Slänggungan på Liseberg Med Newton bland gungor och karuseller Ann-Marie.Pendrill@fysik.lu.se I nöjesparkens åkattraktioner är det din egen kropp som upplever krafterna i Newtons lagar, när den

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai

Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai Projekt: Filmat tornfall med modell av tornet Benjamin Tayehanpour, Adrian Kuryatko Mihai Abstrakt Detta dokument avhandlar vad som händer när ett torn faller. Såväl elastiska som stela kroppar behandlas.

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Labboration 2. Abbas Jafari, Julius Jensen och Joseph Byström. 22 april Rotationsrörelse

Labboration 2. Abbas Jafari, Julius Jensen och Joseph Byström. 22 april Rotationsrörelse Labboration 2 Rotationsrörelse Abbas Jafari, Julius Jensen och Joseph Byström 22 april 2017 1 1 Introduktion Rotationsrörelser är mycket vanligt i ingenjörsmässiga sammanhang. En kropp har egenskapen rörelsemängdsmoment

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 2018-01-12 Skrivtid: 15.00 20.00 Totala antalet uppgifter: 5 Jourhavande lärare: Magnus Gustafsson, 0920-491983

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

LABORATION 1 TYNGDACCELERATIONEN

LABORATION 1 TYNGDACCELERATIONEN Fysikum FK3001 - Experimentella metoder FK2002 - Fysikexperiment FK2004 - Experimentell fysik för lärare Laborationsinstruktion (10 augusti 2010) LABORATION 1 TYNGDACCELERATIONEN Mål I denna övning skall

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

Uppgifter 2 Grundläggande akustik (II) & SDOF

Uppgifter 2 Grundläggande akustik (II) & SDOF Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den

Läs mer

LÖSNINGAR TENTAMEN MEKANIK II 1FA102

LÖSNINGAR TENTAMEN MEKANIK II 1FA102 LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Laboration 4 Mekanik baskurs

Laboration 4 Mekanik baskurs Laboration 4 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 015 03 7 Introduktion Denna laboration handlar om två specialfall av kollisioner, inelastiska och elastiska kollisioner. Vi ska

Läs mer

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 2. Friktionskraft och snörkraft

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 2. Friktionskraft och snörkraft INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 2 Krafter och Newtons lagar Friktionskraft och snörkraft Uppsala 2015-09-29 Instruktioner Om laborationen: Innan ni lämnar labbet: Arbeta

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1)

Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1) Termodynamik, våglära och atomfysik (eller rätt och slätt inledande fysikkursen för n1) Svängande stavar och fjädrar höstterminen 2007 Fysiska institutionen kurslaboratoriet LTH Svängande stavar och fjädrar

Läs mer

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.

Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. 1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt

Läs mer

Provlektion till Uppdrag: Matte 9

Provlektion till Uppdrag: Matte 9 Provlektion till Uppdrag: Matte 9 Linjära funktioner En resa i biljettdjungeln I läromedlet Uppdrag: Matte arbetar eleverna med två spår, Uppdrag eller Räkna på. Här kommer ett prov på en lektion där uppdraget

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

Studieplanering till Kurs 2b Grön lärobok

Studieplanering till Kurs 2b Grön lärobok Studieplanering till Kurs 2b Grön lärobok Den här studieplaneringen hjälper dig att hänga med i kursen. Planeringen följer lärobokens uppdelning i kapitel och avsnitt. Ibland får du tips på en inspelad

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.

ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan. Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar

Läs mer

Lösningar/svar till tentamen i F0031T Hydromekanik Datum:

Lösningar/svar till tentamen i F0031T Hydromekanik Datum: Lösningar/svar till tentamen i F003T Hydromekanik Datum: 00-06-04 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Laborationskurs i FYSIK A

Laborationskurs i FYSIK A Laborationskurs i FYSIK A Labbkursen i fysik består av 6 laborationer. Vid varje labbtillfälle (3 stycken) utförs 2 laborationer. Till varje laboration finns förberedande uppgifter. Dessa skall lämnas

Läs mer

Tentamen i Mekanik Statik

Tentamen i Mekanik Statik Tentamen i Mekanik Statik TMME63 2016-06-02, kl 08.00-12.00 Tentamenskod: TEN1 Tentasal: TER1, TER2, TERE Examinator: Peter Schmidt Tentajour: Peter Schmidt, Tel. 28 27 43, (Besöker salarna ca 09.00) Kursadministratör:

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Mats Braskén (Åbo Akademi) och Ray Pörn (Yrkeshögskolan Novia) Accelerationssensorn Accelerationssensorn mäter accelerationen

Läs mer