Appendix i instruktionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Appendix i instruktionen"

Transkript

1 Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration Fysikexperiment, 7.5 hp 1 1

2 Linearisering genom logaritmering Ofta förekommer samband av typen: y = f(x) = aÿ x b, där a och b är konstanter som skall bestämmas. För fysikaliska samband är parametern b ofta ett hel- eller halvtal. Sambandet kan lineariseras genom att vi logarimerar funktionen. Vi får i detta fall en ny funktion: log y = log a + bÿ log x. Denna ekvation är linjär i de nya variablerna u = log y och v = log x. Sätt A = log a skrivs den nya funktionen: u = A+b v En viktad linjär anpassning till denna funktion ger oss parametrarna A = log a med felet da, samt b med felet db Fysikexperiment, 7.5 hp 2 Observera att även om felen i variabeln y är konstanta, så är felen i variabeln z = ln y inte konstanta utan förändras med y och lika med dz = dy /y. Vad blir felet i den ursprungliga parametern a? Eftersom A = log a blir a = 10 A. Med derivatan da = log A da som då är identisk med felet i a (enligt felfortplantningsformeln). Här har vi använt 10-logaritmen det skulle gå lika bra (eller enklare eftersom derivatan av a = e A erhålles direkt som da = e A da ) att använda den naturliga logaritmen ln. 2

3 Linjär anpassning Residualplott (Ex. 1) Fysikexperiment, 7.5 hp 3 Det händer ofta att datapunkterna ligger mycket nära den anpassade funktionen. Detta innebär att det är svårt att se hur bra anpassningen är. I det undre diagrammet har skillnaden mellan ett mätvärde och den anpassade räta linjens värde för motsvarande höjdvärde beräknats. Dessa avvikelser skall normalt sprida sig runt 0 och vara N(0,1) fördelade. Fördelen med denna residualplott är att y-skalan expanderar och avvikelserna och felen syns tydligt (i detta fall är emellertid felen stora nog för att synas även i den övre plotten). 3

4 Linjär anpassning Residualplott (Ex. 2) Fysikexperiment, 7.5 hp 4 Här är ett annat exempel. I den övre figuren kan man inte se hur punkterna ligger i förhållande till den anpassade linjen och inte heller felen. I residualplotten är dessa väl synliga och vi ser dessutom att datapunkterna inte ligger på en rät linje i detta fall. Ickelineariteten är mycket liten och syns inte med blotta ögat (notera skillnaden i y-skala) den finns där emellertid och visar på något (icke önskad) egenskap hos antingen mätutrustningen eller den fysikaliska storhet man mäter på. 4

5 Exponentfunktioner I Följande exponentialfunktioner är exempel på ickelinjära funktion i x och vi kan inte direkt använda viktad linjär anpassning. I Q N = I 0 e = 0 Q e = N 0 e µ x tτ µ t (absorption av strålning) (RC-krets) (radioaktivt sönderfall) Fysikexperiment, 7.5 hp 5 Andra exempel på icke-linjära funktioner. De kan dock enkelt lineariseras genom logaritmering och här är det lämpligt att använda den naturliga logaritmen ln. Visa t.ex. att y = a -µ x, där y = ln I och a = ln I 0. 5

6 Dimensionsanalys Mycket ofta finner vi i fysiken samband av typen α y = a b där α, β, γ... kan vara antingen postiva eller negativa. Erfarenhetsmässigt är naturen "snäll"i den bemärkelsen att exponenterna är hel eller halvtal. Låt oss ta ett exempel: Tiden för en pendelrörelse - vi antar att den beror på pendelns längd, massa och tyngdaccelerationen: t = Al α m β g γ där A är en dimensionslös konstant. Fysikalisk storhet Symbol Dimension Enhet tid t T s längd l L m massa m M kg tyngdaccelerationen g L/T 2 m/s 2 γ 1 α β L α + γ β 2γ 1 α + γ β 2γ Vi får sambanden: T = L M = L M T eller s = m kg s 2 T m : 0 = α + γ 1 1 l kg : 0 = β γ =, α = dvs t = A 2 2 g s : 1 = 2γ Fysikexperiment, 7.5 hp 6 β c γ... Förberedande övning inför laboration 2. I vänstra ledet saknas längd och massstorheter- tricker är då att komplettera vänstra ledet med 1 m 0 och 1 kg 0. 6

7 Dimensionsanalys (forts) Ett kapillärrör sänks ner i en vätska. Experimentellt ser man att vätskan stiger i röret (om den väter glaset). Följande storheter bör vara relevanta för effekten: Fysikalisk storhet Symbol Dimension Enhet stighöjden h L m rörets radie r L m ytspänning γ M/T 2 kg/s 2 vätskans densitet ρ M/L 3 kg/m 3 tyngdaccelerationen g L/T 2 m/s 2 kontaktvinkel θ - - Identifiering av exponenterna ger : 1 = a 3c + d a = 1+ 2c 0 = b + c b = c 0 = 2b 2d d = c Vi söker ett samband : h a b c d e = Cr γ ρ g θ Vi har dimensionsambandet : a L = L ( MT ) ( ML ) ( LT 2 b 3 c 2 Vi kan alltså i princip nöja oss med att experimentellt undersöka hur stighöjden h beror av rörets radie r. Man finner att a γ = -1och h = C, (med C = 2cosθ från teorin) rρg ) d Fysikexperiment, 7.5 hp 7 Ett annat exempel. Man finner att alla variabler behöver inte varieras och kan inte heller varieras på ett enkelt sätt (hur skulle man kunna variera g t.ex.?). 7

8 Atombombsexplosion ρ R R ET = k ρ The Trinity explosion, seconds after detonation. The fireball is about 200 meters wide Fysikexperiment, 7.5 hp 8 Ännu ett exempel som är intressant pga av exponentens ovanliga storlek. Visa formeln i figuren. Hur kan man uppskatta energin i en atombombsexplosion? Försök visa sambandet ovan. E är den utlösta energin, T är tiden för eldklotet att nå ut till radien R och rho är luftens densitet (det medium som står emot explosionen). Man kan tänka sig en motsvarande sfärisk utvidgning av energin under markytan, men nu med 1000 gånger högre densitet (rho). Trinity was the first test of technology for a nuclear weapon. It was conducted by the United States on July 16, 1945, at a location 35 miles (56 km) southeast of Socorro, New Mexico, on what is now White Sands Missile Range, headquartered near Alamogordo. Trinity was a test of an implosion-design plutonium bomb. The Fat Man bomb, using the same conceptual design, was dropped on Nagasaki, Japan, a few weeks later. The Trinity detonation was equivalent to the explosion of around 20 kilotons of TNT and is usually considered as the beginning of the Atomic Age. Trotyl eller trinitrotoluen (TNT) är ett explosivt, fast ämne som används som sprängmedel. 1 kg TNT motsvarar ca 4x10 6 J). 20 kton TNT motsvarar då 8x10 13 J (motsvarar medelenergibehovet för ca 1000 medelstor villor i Sverige under ett år). 8

Viktade medelvärden igen statistiska + systematiska fel Korrelationer Icke-linjära funktioner Enheter sammanfattning Dimensionsanalys Residualplottar

Viktade medelvärden igen statistiska + systematiska fel Korrelationer Icke-linjära funktioner Enheter sammanfattning Dimensionsanalys Residualplottar Viktade medelvärden igen statistiska + systematiska fel Korrelationer Icke-linjära funktioner Enheter sammanfattning Dimensionsanalys Residualplottar 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Viktat medelvärde

Läs mer

Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys

Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys Lektion 5 Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys 005-10-04 Fysikexperiment, 5p 1 Pullfördelningen Mätningen av tyngdaccelerationen:

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND FJÄDERN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

y y 1 = k(x x 1 ) f(x) = 3 x

y y 1 = k(x x 1 ) f(x) = 3 x Räta linjen på olika former Här ska vi bara påpeka att förutom k-form, den som vi är mest vana vid y = k y + m finns också allmän form: ax + by + c = 0 där a och b är konstanter, som inte någon står för

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

FK2005 Datorövning 3

FK2005 Datorövning 3 FK2005 Datorövning 3 Den här övningen vänder sig endast till lärarstudenter (FK2005). Målet är att lära sig hur man gör en minsta kvadrat anpassning med hjälp av OpenOffice Calc. Laboration 2 kräver att

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Experimentell metodik

Experimentell metodik 1. Experimentell metodik Institutionen för fysik och astronomi Olof Charlie Karis Svante Svensson Jan Hedman Uppsala universitet 2. Innehållsförteckning 1. OM SAMSPELET MELLAN EXPERIMENT OCH TEORI I FYSIKEN

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt

YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt YTKEMI. Föreläsning 8. Kemiska Principer II. Anders Hagfeldt Under föreläsningarna 8 och 9 kommer vi att gå igenom ett antal koncept som är viktiga i ytkemi och försöka göra en termodynamisk beskrivning

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

M0038M Differentialkalkyl, Lekt 4, H15

M0038M Differentialkalkyl, Lekt 4, H15 M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos

Logaritmer. Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos Logaritmer Joakim Östlund Patrik Lindegrén Andreas Lillqvist Carlos 24 september 2003 Innehåll 1 Introduktion 2 2 Naturliga logaritmer 3 2.1 Talet e................................. 3 2.2 Den naturliga

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 17 december 2008 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Mekanik FK2002m. Kinematik i flera dimensioner

Mekanik FK2002m. Kinematik i flera dimensioner Mekanik FK2002m Föreläsning 3 Kinematik i flera dimensioner 2013-09-04 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 2 Introduktion Nu har vi gått igenom: - Kinematik i en dimension - Vektorer i två

Läs mer

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige Laboration 36: Kärnfysik Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se 8 Maj, 2001 Stockholm, Sverige Assistent: Roberto Liotta Modern fysik (kurskod

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

i medelvärdet

i medelvärdet 1. Medelvärde, standardavvikelse och felet i medelvärdet Antag att vi har N mätningar x 1,x,...,x N av en och samma storhet x. Under antagandet att alla avvikelser från medelvärdet är statistiska och små

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man försöker ställa upp en matematisk modell för något fysikaliskt fenomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Två gränsfall en fallstudie

Två gränsfall en fallstudie 19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

Problem Vågrörelselära & Kvantfysik, FK november Givet:

Problem Vågrörelselära & Kvantfysik, FK november Givet: Räkneövning 3 Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Problem 16.5 Givet: En jordbävning orsakar olika typer av seismiska vågor, bland annat; P- vågor (longitudinella primär-vågor) med våghastighet

Läs mer

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM.

FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM. FÖRELÄSNING 9. YTAKTIVA ÄMNEN OCH SJÄLVASSOCIERANDE SYSTEM. Ytaktiva ämne (surfaktanter) Gibbs ytspänningsekvation (ytkoncentration av ett löst ämne) Bestämning av ytadsorptionsdensitet Bildning av miceller

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

Innehållsförteckning

Innehållsförteckning Innehållsförteckning Inledning 2 Grundläggande fysik 3 SI enheter 3 Area och godstjocklek 4 Tryck 5 Temperatur 7 Densitet 8 Flöde 10 Värmevärde 11 Värmeutvidgning 14 Sträckgränser 15 Allmänna gaslagen

Läs mer

Analys av egen tidsserie

Analys av egen tidsserie Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12 MA003 Tillämpad Matematik I, 7.5hp, 03-08- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 7: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Reynolds tal är ett dimensionslöst tal som beskriver flödesegenskaperna hos en fluid. Ett lågt värde på Reynolds

Läs mer

Vi tittar också på Makehams fördelning som är den mest tillämpade livslängdsmodellen i Sverige. Historia om livslängdstabeller 2

Vi tittar också på Makehams fördelning som är den mest tillämpade livslängdsmodellen i Sverige. Historia om livslängdstabeller 2 Abstract Den här föreläsningen introducerar en stokastisk modell för livslängder. Speciellt definierar vi livslängd, fördelningsfunktion, dödlighetsintensitet och överlevelsefunktion. Vi tittar också på

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Materiens Struktur Räkneövning 5 Lösningar 1. Massorna för de nedan uppräknade A = isobarerna är 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 63,935812u 63,927968u 63,929766u 63,929146u 63,936827u Tabell 1: Tabellen

Läs mer

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling

Läs mer

LUNDS KOMMUN POLHEMSKOLAN

LUNDS KOMMUN POLHEMSKOLAN LUNDS KOMMUN POLHEMSKOLAN TEST I FYSIK FÖR FYSIKPROGRAMMET Namn: Skola: Kommun: Markera rätt alternativ på svarsblanketten (1p/uppgift) 1. Vilka två storheter måste man bestämma för att beräkna medelhastigheten?

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Onsdagen den 18 juni 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras

Läs mer

Ytor och gränsskikt, Lektion 1 Ytspänning, kapillaritet, ytladdning

Ytor och gränsskikt, Lektion 1 Ytspänning, kapillaritet, ytladdning Ytor och gränsskikt, Lektion 1 Ytspänning, kapillaritet, ytladdning Uppgift 1:1 Vid 20 C är ytspänningarna för vatten och n-oktan 72,8 mn/m respektive 21,8 mn/m, och gränsskiktsspänningen 50.8 mn/m. Beräkna:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

Skydiving. En djupdykning i. Projekt i Mekanik. Kursansvarig: Richard Hsieh

Skydiving. En djupdykning i. Projekt i Mekanik. Kursansvarig: Richard Hsieh Kungliga Tekniska Högskolan 010-03-03 Tillämpad fysik Mekanik En djupdykning i Skydiving Projekt i Mekanik Kursansvarig: Richard Hsieh Nathalie Sahlström 890804-0143 Emelie Holm 90073-0049 Sofie Sjödahl

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Tillämpad kvantmekanik Neutronaktivering. Utförd den 30 mars 2012

Tillämpad kvantmekanik Neutronaktivering. Utförd den 30 mars 2012 Tillämpad kvantmekanik Neutronaktivering Utförd den 30 mars 2012 Rapporten färdigställd den 12 april 2012 Innehåll 1 Bakgrund 1 2 Utförande 3 2.1 Efterbehandling.......................... 3 2.1.1 Bestämning

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination

Läs mer

Agrikultur-forstvetenskapliga fakulteten Prov 4: Miljö- och naturresursekonomi Nationalekonomi och matematik

Agrikultur-forstvetenskapliga fakulteten Prov 4: Miljö- och naturresursekonomi Nationalekonomi och matematik Urvalsprovet består av två delar. Del 1 består av essäfrågor i nationalekonomi. Del 1 bedöms med 0 30 poäng. Del innehåller uppgifter i matematik. För del 1 kan den sökande få 0 30 poäng. Minst 0 poäng

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Var försiktig med elektricitet, laserstrålning, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålning, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. 1 Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM

Bengt Sandell, IFM. Reviderad 2012, Mats Eriksson, IFM Experimentell problemlösning Bengt Sandell, IFM Reviderad 2012, Mats Eriksson, IFM Innehåll 1. Introduktion... 1 1.1. Fysik - exakt vetenskap... 1 1.2. Hur erhålls en fysikalisk formel?... 1 1.3. Enhetssystem...

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

Regressionsanalys av lägenhetspriser i Spånga

Regressionsanalys av lägenhetspriser i Spånga Regressionsanalys av lägenhetspriser i Spånga Mahamed Saeid Ali Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2016:11 Matematisk statistik Juni 2016

Läs mer

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design 1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer