STOCKHOLMS UNIVERSITET FYSIKUM

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "STOCKHOLMS UNIVERSITET FYSIKUM"

Transkript

1 STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 17 december 2008 kl Skrivningen består av två delar A och B. Del A innehåller enkla frågor och beräkningar av översiktskaraktär och du bör inte ägna mer än 1-2 timmar åt dessa innan du går vidare till del B. Del B består av standardproblem av beräkningskaraktär. Svar och lösningar kan ges direkt på problemsidorna i del A i de flesta fall. Lösningar till problemen i del B ges på separata blad som inlämnas hophäftade med dessa sidor. Skriv namn på varje löst blad. Hjälpmedel: PHYSICS HANDBOOK, RÄKNEDOSA, UTDELADE TABELLER OCH FORMELSAMLING. Ej tillåtet: Det är ej tillåtet att använda räknedosornas inbyggda statistiska funktioner (annat än för egen kontroll). Alla beräkningar skall utföras med hjälp av formlerna i formelsamlingen och redovisas, i förekommande fall översiktligt i tabellform, så att dessa går lätt att följa och bifogade tabeller används om så krävs. NAMN: LÖSNINGSFÖRSLAG. Lycka till! /bs

2 Del A (varje uppgift kan ge maximalt 2 p) Uppgift A1. Figuren till höger visar ett skjutmått efter en mätning. a) Läs av värdet som skjutmåttet visar med enhet. b) Ange avläsningsnoggrannheten. Nästa figur visar en belastad dynamometer med skalan förtydligad i vänster marginal (prov finns att tillgå under tentan). c) Läs av utslagets värde med enhet och d) uppskatta osäkerheten i detta värde. Svar A1: a) 16,65 mm (16,6 och 16,7 också OK) b) 0,05 mm (står skrivet på skjutmåttet) c) 1,03 N d) 0,005 N (0,01 också OK) Kommentar: man kan tydligt se skillnaden mellan 1,02 N och 1,04 N (de finare skalstrecken). Avläsningsnoggrannheten är alltså bättre än 0,01 N

3 Uppgift A2. Laborant Grön har presenterat följande tabell i sin rapport som avser uppmätning av ett glasprisma i form av ett rätblock med beräknad volym. Höjden mättes med en linjal graderad i hela mm och bredd och tjocklek mättes med ett skjutmått med avläsningsnoggrannheten 0,1 mm: H (cm) B (mm) T V (cm 2 ) ,30 mm 11, Tabell 1. Mina data. Du kan säkert se en del konstigheter i tabellen. Hur tycker du att tabellen egentligen borde ha sett ut (med motivering om så behövs)? Svar A2: H (mm) B (mm) T (mm) V (cm 2 ) 90 24,0 5,3 11,4 0,3 Tabell 1. Uppmätning av rätblock med beräknad volym. Osäkerheten i volymen har beräknats utifrån mätinstrumentens mätnoggrannhet. Uppgift A3. I den fotoelektriska effekten (en elektron frigörs från en atom genom att en foton, ljuskvanta, träffar en bunden elektron i atomen och därvid ger elektronen energi) antages den frigjorda elektronens kinetiska energi, K, vara en linjär funktion av ljusets frekvens f, K = hf ϕ (1) där h och φ är konstanter. För att kontrollera denna linearitet mäter en student K för N olika värden på f och beräknar korrelationskoefficienten r för resultatet. a) Om studenten gör fem mätningar (N = 5) och finner r = 0,7. Har studenten då ett signifikant stöd för hypotesen (1) ovan? b) Hur stort är stödet om N = 20 och r = 0,5 istället? Svar A3: a) Prob(r > 0,7) = 19%. Sannolikheten för slumpmässiga korrelationer är stor och resultatet ger inget (starkt) stöd för hypotesen b) Prob(r > 0,5) = 2,5%. Sannolikheten för slumpmässiga korrelationer är liten och resultatet ger ett visst stöd för hypotesen.

4 Uppgift A4. I en lösning rör sig små partiklar på ett slumpvis sätt som beskrivs av Browns rörelse. Sannolikhetsfunktionen C att finna partikeln på avståndet r vid tidpunkten t, då den befann sig i origo (r = 0) vid tiden t = 0 beskrivs av funktionen: där D är en diffusionskoefficient. a) Vad har D för dimension? b) Vad har funktionen C för dimension? c) Hur skulle du uttrycka sannolikheten att finna partikeln i intervallet (r, r + dr)? Svar A4: a) Dt skall ha samma dimension som r 2 (argumentet i exponenten måste vara dimensionslös), dvs D har dimensionen m 2 /s. b) Det följer då att Dt har dimensionen m 2 och C får dimensionen m -1. c) Prob(r [r, r + dr]) = C(r,t) dr (som då blir dimensionslöst, jmf normalfördelningsfunktionen). Uppgift A5 C( r, t) = 1 4π Dt En fördelning har medelvärdet 70 mm med standardavvikelsen 14 mm. Skissera motsvarande sannolikhetsfördelning i diagrammet nedan om fördelningen antages vara normalfördelad. Visa gärna på separat blad hur du beräknar några väl valda punkter i grafen. 0 e Svar (utan skiss): Högsta punkten ges av G ( x = 70) = = 0, 028. En lämplig skala på 14 2π y-axeln är då 3cm = 0,01. x-axeln graderas lämpligen från 0 till 140. Värdet på G då x = 70 ± 14 är 0,017. Värdet på G då x = 70 ± 2 14 är 0,003. Fler punkter kan enkelt beräknas vid behov. En jämn kurva dras sedan för att sammanbinda punkterna. e r 2 4Dt

5 Uppgift A6. En tunn lins är gjord av kronglas med följande brytningsindex n (dimensionslöst) för olika våglängder λ hos ljuset (enhet i nm): a) För in mätresultaten i figuren nedan och skissa sambandet mellan 589,3 1,5100 brytningsindex och våglängd. 486,1 1,5157 b) Ersätt X: och Y: i diagrammet med lämplig text. Sätt storhet och 396,8 1,5246 enhet på axlarna. c) Ange dn / dλ med hjälp av diagrammet vid våglängden 633 nm. Såväl belopp som tecken som enhet skall anges. Figur 1. Brytningsindex vs våglängd. λ n 760,8 1, ,3 1,5076 1,53 Linsens brytningsindex för olika våglängder. 1,525 1,52 1,515 1,51 1,505 1, Ljusets våglängd i nm. Svar A6: a) och b) se figuren. c) En tangent till kurvan i punkten 633 nm dras. Lutningen hos tangenten är ca m -1. Andra liknande lutningar kan godkännas.

6 Uppgift A7 En perfekt kvadrat och en perfekt cirkel skall uppmätas med hjälp av ett skjutmått. Kvadraten och cirkeln har lika stor area. Vilken av areorna uppmäts med det minsta relativa felet och hur stort är förhållandet mellan de uppmätta areornas relativa fel? Svar: Eftersom man använder ett skjutmått mäter man cirkelns diameter med samma mätosäkerhet som en av kvadratens sidor. Med enkel felfortplantning får vi: σ k 2σ r σ c 2σ d 2σ r = ; = = Då dessutom areorna skall vara lika får vi sambandet Ak r Ac d d 2r d = 1, 13r. Av detta följer att cirkelns area mäts med högre relativ noggrannhet och π förhållandet mellan det relativa felet hos kvadratens och det relativa felet hos cirkeln blir 2 1,13. π Uppgift A8 Ett okular är sammansatt av två tunna linser, vardera med brännvidden f 1, på inbördes avstånd d = 2f 1 /3. Okularet har då brännvidden f = 2,0 cm. Det gäller att 1 2 d = 2 f f1 f1 a) Beräkna f 1. b) Vid ett felmontage sattes linserna på inbördes avstånd 0,60 f 1 i stället för d = 2f 1 /3. Hur stort blev det systematiska felet i okularets brännvidd? Svar: a) Vi sätter in f = 2 och d = 2f 1 /3 och beräknar f 1 till , 7 cm. c) Då linserna felmonteras blir inte okularets brännvidd 2,0 cm utan 1 2 0,60 2,7 = 2 f fel 2,7 2,7 f fel = 1,9 cm. Systematiska felet i f rätt f fel = 2,0 1,9 = = 0,1 cm för lite. Uppgift A9 Ett år träffades 389 människor i USA av blixten (befolkning personer). a) Uppskatta hur många människor som bör ha träffats av blixten i Sverige (alla andra yttre förhållanden likartade) under samma år (befolkningen i Sverige var personer)? b) Hur stor är den statistiska osäkerheten i detta antal? Svar A9: Vi räknar med ren proportionalitet samt antar att antalet människor som träffas av blixten under ett år är Poissonfördelat: a) / = 12,5 b) ( 389) / = 0,6

7 Uppgift A10 Antag att vi med hjälp av två digitalmultimetrar har mätt spänningen U = 23,95 V över en resistans samt strömmen genom resistansen till I = 1,307 A. Ur manualerna till digitalmultimeter citerar vi följande för de mätområden som använts: Function Range Resolution Accuracy V 40,00 V 0,01 V ± (0,3%+1) I 4,000 A 0,001 A ± (0,5%+5) Accuracy anger procent av mätvärdet plus ett antal enheter i sista siffran. a) Beräkna osäkerheterna i mätvärdena med dessa uppgifter. b) Beräkna ett värde på resistansen med fel (R = U / I ). Svar A10: a) Mätvärdet 23,95 V har osäkerheten 23,95 0,3%+0,01 = 0,08 V. Mätvärdet 1,307 A har osäkerheten 1,037 0,5%+5 0,001 = 0,01 A. b) R = 23,95 / 1,307 = 18,32 med felet 0,18 (18,3 ± 0,2 Ohm).

8 Del B (varje uppgift kan ge högst 4 p) Uppgift B1 Frekvens I diagrammet till höger har laborant Blå mätt en storhet 18 gånger och prickat in sina mätvärden. Den första stapeln med x innebär ett mätvärde mellan 2 och 3, den andra stapeln med x mätvärden mellan 3 och 4, osv. a) Beräkna fördelningens medelvärde. b) Beräkna fördelningens standardavvikelse. c) Beräkna felet i medelvärdet. d) Hur stort är det systematiska felet om det sanna värdet är 9,0? Svar: En uppställning som nedan kan göras. Notera att vi använder mittpunkterna av intervallen x 9 x 8 x 7 x 6 x 5 x x 4 x x 3 x x 2 x x x 1 x x x x värde antal värde antal 2,5 1 2,50 3,004 3,5 5 17,50 2,689 4, ,00 0,711 5,6 2 11,20 3, ,20 0,772 =Standardavvikelsen medelvärde= 4,23 0,182 =medelvärdesfelet Uppgift B2 En stor öppen tank avtappas genom ett horisontellt rör enligt figuren. Vätskan har viskositetskoefficienten η och avtappningsröret har längden b och dess radie är r. Trycket som driver strömningen är (p 2 p 1 ). Hur stor volym rinner ut varje sekund, dvs hur stort är flödet Φ? Ansätt ett produktsamband med en dimensionslös konstant och bestäm härigenom två av de fyra okända exponenterna samt en relation mellan de två övriga. Enheten för viskositet är Pa s. Tryckskillnaden räknas i Pa. 1 Pa = 1 N/m 2. Svar: Ett produktsamband är Φ = konst. ( p 2 p 1 ) x b y r z η t. Vi får följande samband mellan exponenterna x + t = 0, -x +y + z = 3, -2x t = -1 Med lösningen: x = 1, t = -1, z = 3 y.

9 Uppgift B3 Jönssons Livs hade haft 8340 kunder under det senaste året och hans noggranna statistik över sitt kundunderlag visade att antalet besök per dag med mycket hög precision var Poissonfördelat. De dagar antalet kunder hade varit 35 eller fler har han måst arbeta över och missade då Rapport med A-ekonomi på TV. Hur många gånger var Jönsson tvungen att arbeta över det året? Problemet kan lösas genom att approximera Poissonfördelningen med en normalfördelning. Jönssons år har 300 dagar. Svar: Under årets 300 dagar hade Jönsson i medeltal 8340 / 300 = 27,8 kunder per dag. Detta är medelvärdet i en Poissonfördelning med osäkerheten 27,8 = 5,27. Poissonfördelningen kan i detta fall approximeras med en normalfördelning med medelvärdet 27,8 och standardavvikelsen 5,27. Vi vill nu beräkna sannolikheten för att antal kunder överstiger 35, alternativt sannolikheten att Jönsson skall ha < 35 kunder. Parametern t beräknas som t = (35 27,8) / 5,27 = 1,37. Appendix B i Taylor ger sannolikheten 41,47%. Vi förväntar oss att (50 41,47)% = 8,53% av fördelningen har värden över 35. Detta motsvarar 0, = 25,6 dagar per år. Det blir full poäng om man istället räknar på 34 eller 34,5 kunder som gräns. Uppgift B4 Sex studenter mätte längden hos en lång pendel och fick följande värden: 8.2 ± 1.2 m, 7.8 ± 0.9 m, 8.4 ± 0.2 m, 8.6 ± 0.6 m, 9.2 ± 2.5 m, 7.9 ± 1.3 m. Vilken är den bästa kombinerade uppskattningen av pendelns längd? Svar: Ett viktat medelvärde är på sin plats här. En enkel uppställning med kända formler är: L dl 1/dL^2 L/dL^2 8,2 1,2 0,69 5,69 7,8 0,9 1,23 9,63 8,4 0,2 25,00 210,00 8,6 0,6 2,78 23,89 9,2 2,5 0,16 1,47 7,9 1,3 0,59 4,67 summor: 30,46 255,36 medelvärde: 8,38 0,18 Pendelns längd är 8,4 ± 0,2 m (8,38 ± 0,18 m).

10 Uppgift B5 Man vill bestämma hur belysningen (E) varierar med avståndet (r) från en lampa. Man mäter därför belysningen för några olika värden på avståndet. Ansätt funktionssambandet E = k r -n. Gör en oviktad minsta kvadratanpassning till dessa data och bestäm exponenten n och konstanten k. Svar: Vi erhåller ett linjärt samband genom logaritmering: y = ln E = ln k n ln r = K n x En enkel uppställning med kända formler är: Y X X^2 Y^2 X*Y log r/m E/lux (E/lux) ln(r/m) 0, ,64-1,39 1,92 44,07-9,20 0, ,31-1,20 1,45 39,82-7,60 0, ,03-1,05 1,10 36,40-6,33 0, ,79-0,92 0,84 33,56-5,31 0, ,06-0,51 0,26 25,63-2,59 0,8 94 4,54-0,22 0,05 20,64-1,01 summor 34,38-5,29 5,62 200,11-32,04 Delta= 5,76 A 4,14 62,93 B -1,80 Exponenten blir n = -1,80 och konstanten k = e 4,14 = 62,9. Uppgift B6 r / m E / lux 0, , , , , ,8 94 En student på Biologiska institutionen undersöker om det finns något enkelt samband mellan andningsintensiteten (i liter syre per timme och gram kroppsvikt) och kroppsvikten. Tabellen till höger visar på det experimentella sambandet: a) Hur skall studenten bäst påvisa detta samband i grafisk form (gör ett diagram)? b) Ange ett troligt enkelt samband mellan storheterna? Andnings- kroppsvikt intensiteten gram mus råtta kanin hund människa häst Svar: Betraktar vi den högra kolumnen är det naturligt att införa en logaritm för att dra ihop skalan till lämpligt format (log 50 = 1,7 till ln = 5,8). En snabb skiss visar att punkterna ligger på en rät linje om även värdena i den vänstra kolumnen logaritmeras. Vi använder 10-logaritmen här:

11 Y=Andnings- X=kroppsvikt intensiteten i gram log(y) log(x) mus ,20 1,70 råtta ,94 2,70 kanin ,67 3,48 hund ,52 4,00 människa ,30 4,90 häst ,04 5,85 Med följande diagram: 3,3 log(andningsintensitet) 3,1 2,9 2,7 2,5 2,3 2,1 1,9 1,7 1,5 y = -0,2828x + 3, log(kroppsvikt i gram) Detta samband svara mot en potensfunktion: y = m x n, där exponenten n = -0,28 och konstanten m = 10 3,68 = 4786.

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H Tentamensskrivning i Experimentella metoder, 12p, för kandidatprogrammet i fysik, 9/6 2015, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer motiveras.

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H./C.F./C.W. Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, 18/6 013, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

MATEMATIK 5 veckotimmar

MATEMATIK 5 veckotimmar EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

2010-08-30 Fysikexperiment, 7.5 hp 1

2010-08-30 Fysikexperiment, 7.5 hp 1 Presentation av data Medelvärde av grupperade data Slumptal Gränsvärdesfunktioner Normalfördelningsfunktionen Parameterbestämning Minsta kvadratmetoden 010-08-30 Fysikexperiment, 7.5 hp 1 1 Presentation

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 5

Ingenjörsmetodik IT & ME 2010 Föreläsning 5 Ingenjörsmetodik IT & ME 010 Föreläsning 5 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Frågor från

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Hjälpmedel: Kungakrona, bägare, vatten, dynamometer, linjal, våg, snören och skjutmått

Hjälpmedel: Kungakrona, bägare, vatten, dynamometer, linjal, våg, snören och skjutmått Uppgift 1. De flesta vet ju att Archimedes sprang runt naken på de grekiska gatorna ropandes "Heureka!" Vad som ledde till denna extas var naturligtvis en vetenskaplig upptäckt. Meningen med denna uppgift

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

LABORATION 2 UPPTÄCK ETT SAMBAND

LABORATION 2 UPPTÄCK ETT SAMBAND Fysikum FK2002 - Fysikexperiment FK2004 - Exp. fysik för lärare Laborationsinstruktion (28 september 2010) LABORATION 2 UPPTÄCK ETT SAMBAND TÖMNING Mål Idenhärlaborationenskalldubörjamedattställauppenhypotes

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

Experimentella metoder 2014, Räkneövning 4

Experimentella metoder 2014, Räkneövning 4 Experimentella metoder, Räkneövning Problem : På polisstationen i Slottshult är man missnöjd med att polisdistriktet utvidgats till att också omfatta grankommunen Järvsprånget Innan utvidningen hade man

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

i medelvärdet

i medelvärdet 1. Medelvärde, standardavvikelse och felet i medelvärdet Antag att vi har N mätningar x 1,x,...,x N av en och samma storhet x. Under antagandet att alla avvikelser från medelvärdet är statistiska och små

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Fartbestämning med Dopplerradar

Fartbestämning med Dopplerradar Vågrörelselära, 5 poäng 007 03 14 Uppsala Universitet Projektarbete Fartbestämning med Dopplerradar Per Mattsson, FA Olov Rosén, FA 1 1. Innehållsförteckning. Sammanfattning......3 3. Inledning......3

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n1, 9 JANUARI 2004 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och godkänd räknare. Obs. Inga lösblad! Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS E VÅREN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Onsdagen den 18 juni 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Tips 1. Skolverkets svar 14

Tips 1. Skolverkets svar 14 JENSEN vux utbildning Np Mac vt01 1(0) Kursprov Mac Innehåll Förord 1 Tips 1 Kursprov Mac vt01 Del B: Digitala verktyg är inte tillåtna. Endast svar krävs. #1 10...... 3 Del C: Digitala verktyg är inte

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning del 2 i Fysik A för Basåret Tisdagen den 10 april 2012 kl. 9.00-13.00 (Denna tentamen avser andra halvan av Fysik A, kap 2 och 7-9 i Heureka. Fysik A)

Läs mer

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Inledning till OpenOffice Calculator Datorlära 2 FK2005

Inledning till OpenOffice Calculator Datorlära 2 FK2005 Inledning till OpenOffice Calculator Datorlära 2 FK2005 Mål Lära sig att skapa och använda ett räkneblad med OpenOffice Calculator Beräkna medelvärde och standardavvikelsen med räknebladet Producera en

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Blandade problem från maskinteknik

Blandade problem från maskinteknik Blandade problem från maskinteknik Sannolikhetsteori (Kapitel 1-7) M1. Vid tillverkning av en viss maskintyp får man spiralfjädrar från tre olika tillverkare. Varje dag levererar tillverkare A 100 fjädrar,

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

Mäta rakhet Scanning med M7005

Mäta rakhet Scanning med M7005 Matematikföretaget jz M7005.metem.se 141121/150411/150704/SJn Mäta rakhet Scanning med M7005 Mätgivare Detalj Mäta rakhet - Scanning 1 (12) Innehåll 1 Ett exempel... 3 2 Beskrivning... 6 2.1 Scanna in

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-12-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

6-2 Medelvärde och median. Namn:

6-2 Medelvärde och median. Namn: 6-2 Medelvärde och median. Namn: Inledning Du har nu lärt dig en hel del om datainsamling och presentation av data i olika sorters diagram. I det här kapitlet skall du studera hur man kan karaktärisera

Läs mer

Lektion 7. Radioaktivt sönderfall Bakgrundsräkning Vad är en hypotes? χ 2 -test (chi-kvadrattest) Fysikexperiment, 7.

Lektion 7. Radioaktivt sönderfall Bakgrundsräkning Vad är en hypotes? χ 2 -test (chi-kvadrattest) Fysikexperiment, 7. Lektion 7 Radioaktivt sönderfall Bakgrundsräkning Vad är en hypotes? χ 2 -test (chi-kvadrattest) 2010-11-15 Fysikexperiment, 7.5 hp 1 1 Radioaktivt sönderfall För varje specifik isotop gäller att sannolikheten

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Datum 2011-06-01 Tid 4 timmar Kursansvarig Åsa Skagerstrand Tillåtna hjälpmedel Övrig information Resultat:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2014-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Inge

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer