Mätning av fokallängd hos okänd lins

Storlek: px
Starta visningen från sidan:

Download "Mätning av fokallängd hos okänd lins"

Transkript

1 Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och göra avbildningar. Förberedelser Om avbildning Du behöver läsa på inför labben så att du kan Lins vad är det? Vad är skillnaden mellan positiv och negativ lins? Definiera en lins fokallängd f Avbildning vad är det? Hitta bildavstånd s om du vet objektsavstånd s och fokallängd f (eller vice versa). Förstoring vad är det? (För objekt och bild på ändligt avstånd.) Räkna ut förstoring för tunn lins, om du vet var objekt, lins och bild ligger. Det är också bra om du har koll på strålkonstruktion i tunn lins. Har ni gått igenom huvudplan i kursen, kommer du att ha nytta av det för att förklara ett systematiskt fel i del 1 av laborationen. Har ni inte gått igenom huvudplan, förväntas du heller inte använda dem, utan kan istället läsa en intuitiv förklaring här i labpeket. Om mätfel Du behöver läsa på om mätfel. Instruktionerna finns i dokumentet Om mätfel i allmänhet som ligger på samma hemsida som labinstruktionerna. Du behöver kunna Beräkna medelvärdet av en serie mätningar. Beräkna absoluta och relativa felet hos detta medelvärde. Använda felpropagation dvs se hur detta fel fortplantar sig, ifall du använder det uppmätta medelvärdet i vidare beräkningar. Om laborationen Du behöver läsa igenom labinstruktionen, så att du kan förbereda dig. Om någon i labgruppen har en bärbar dator, ta med den till labben. Då kan du använda något program för datahantering, såsom Excel eller Calc från Openoffice, till att göra beräkningarna. Har ni ingen bärbar dator, kan ni istället gå till datorsalen RB33 som ligger alldeles intill labsalen. Förbered gärna filer där du kan skriva in dina mätvärden! Utrustning 2 linser, en positiv och en negativ 1 ljuskälla, en s.k. backlight (lysande fyrkantig yta) 1 objekt (genomskinlig plastlinjal) och 1 skärm Skena och ryttare för att kunna montera och flytta linser, ljuskälla, och objekt. Linjal, skjutmått etc. för att mäta avstånd.

2 Laborationen Labben består av tre delar. De två första delarna, som är de mest tidskrävande, går ut på systematisk mätning av fokallängden hos en positiv lins. Du ska använda två olika metoder (del 1 resp. del 2), och kan sedan jämföra resultaten av de två metoderna. Du ska få ned det relativa felet under 0.01 en tuff uppgift som kräver att du mäter noggrant! I laborationens tredje del ska du istället mäta fokallängden hos en negativ lins. Här ska du bara presentera en mätmetod och ge ett ungefärligt värde på fokallängden, utan avancerad felanalys. Del 1 mätning av linsens fokallängd Slutmålet med denna del är att få fram ett värde på linsens fokallängd, med ett maximalt relativt fel på Du ska göra det genom att mäta objektsavståndet s och bildavståndet s många gånger, och använda dessa väden till att beräkna fokallängden f enligt 1 s + 1 s = 1 f. ( 1 ) 1a) Du behöver veta hur stort felet är, för att veta om du mätt tillräckligt noggrant. Först måste du bestämma felet i objekts- och bildavstånden. Vi kan kalla dessa fel s respektive s. Det gör du genom upprepade mätningar (15 st) av s och s för ett fixt avstånd mellan objekt och bild, dvs för ett konstant s + s. Därefter använder du felpropagation för att beräkna relativa felet i f, alltså f f. Detaljerade instruktioner finns nedan. 1b) Du behöver också ett värde på f. För att undvika systematiska fel, ska du inte mäta med samma objekts- och bildavstånd hela tiden. Du ska totalt använda 10 olika avstånd s + s, och göra 3 mätningar av s och s för varje avstånd. Totalt blir det alltså 30 olika mätningar av s och s, som sedan används för att räkna ut f. Detaljerade instriktioner finns nedan Du kan också använda dessa 30 värden till att uppskatta f f. Hur ska du göra? Stämmer detta värde med det f f du beräknade i 1a? Du vet att linsens fokallängd ligger någonstans mellan +60 mm och +150 mm. Uppgift 1a bestämma felet i fokallängd Innan du börjar med mätningarna: tänk ut ett sätt att grovt uppskatta linsens fokallängd. Om du vet ungefär hur lång fokallängd linsen har, blir det lättare att upptäcka felaktigheter i din metod. (Ledning: gör en bild av någonting ljusstarkt. Fast inte av solen, då kan du bränna upp något!) Sätt objekt och bildskärm på ett fixt avstånd från varandra (större än 450 mm). Ordna vettig belysning av objektet. En person sätter in linsen, och justerar dess läge så att ni ser en skarp, förstorad bild av objektet på skärmen. Mät s och s. o Hittar du ingen bild alls? Troligtvis har du linsen för nära objektet då kan bilden antingen bli virtuell, eller reell men väldigt långt bort. o Ser bilden konstig eller förvriden ut? Se till att alla komponenter (ljuskälla, objekt, lins, skärm) sitter på samma höjd. Se till att linsen inte sitter snett. En annan person i gruppen flyttar på linsen så att bilden blir suddig, och ställer sedan på nytt in den för skarp, förstorad bild. (Varför tjatar vi om förstorad bild? Går det att få en förminskad bild?) Mät s och s. Om ni är tre i labgruppen, gör den tredje deltagaren samma sak.

3 Fortsätt tills ni fått fram totalt 15 värden på s respektive s. Samma person ska aldrig ställa in två gånger i rad varför inte? Sedan använder ni mätvärdena för att beräkna s och s. I dokumentet Om mätfel i allmänhet finns flera förslag på hur man kan göra det välj ett bra alternativ. Felet i s och s propagerar när ni beräknar fokallängden enligt f = ss s + s ( 2 ) (från Ekv. 1). Enligt linjär felpropagation blir det relativa felet f f = s s s + s s + s s ( 3 ) s + s s (Du kan lätt visa detta mha instruktionerna i Om mätningar i allmänhet men det krävs ej.) Ta fram ett värde på relativa felet! Är dina värden rimliga? Diskutera resultaten med labhandledaren. Uppgift 1b ta fram ett värde på fokallängden Nu vet du vilket relativt fel du får, om du gör 15 mätningar. Du vet också hur det relativa felet beror av s och s, och du vet att s och s båda är proportionella mot 1 N, där N är antalet mätningar. Uppskatta hur många mätningar du behöver göra, för att få ned relativa felet under Värdet du fick fram kommer att variera, men bör ligga på några tiotals mätningar. Av tidsmässiga och praktiska skäl ska du därför göra totalt 30 mätningar av fokallängden. Du ska använda 10 olika värden på s + s, alla större än 450 mm. För varje värde på s + s ska du göra totalt 3 mätningar av s och s. Använd samma metod som i 1a. Alla i gruppen ska göra minst en mätning vid varje s + s. Med 10 olika värden på s + s blir det totalt 30 mätningar. Använd värdena till att räkna fram ett värde på f. Använd data från uppgift 1b till att räkna fram relativa felet. (Hur då?) Blev värdet samma som relativa felet i 1a? Blev det mindre än 0.01?Varför/varför inte? (Har du väldigt ont om tid kan du hoppa över denna punkt.) Vilka systematiska fel kan förekomma i denna metod? Diskutera resultaten med labhandledaren, och avgör tillsammans om ni behöver göra ytterligare mätningar för att nå önskad nogrannhet.

4 Del 2 mätning av linsens fokallängd Även för denna del är slutmålet att få fram ett värde på linsens fokallängd. Nu behöver du inte göra riktigt lika många mätningar det räcker om relativa felet är mindre än Sedan ska du jämföra värdet på fokallängden med det du mätte upp i uppgift 1, och se om de skiljer sig åt. I så fall kan du misstänka systematiska fel. Förra gången mätte du s och s. Den här gången ska du istället mäta bildavståndet s och förstoringen M. Från Ekv. 1 vet vi att objektsavståndet kan skrivas s = s f s f ( 4 ) Förstoringen kan i sin tur skrivas M = s s = s f f ( 5 ) vilket ger f = s M + 1 Så när du mätt bildavstånd och förstoring kan du beräkna fokallängden. Du ska också ta fram ett uttryck för relativa felet f f som funktion av s och M, med hjälp av felpropagation (se Om mätfel i allmänhet ). ( 6 ) Placera ljuskällan och objektet längst till vänster på skenan. Placera linsen så att dess plana yta är vänd mot objektet och den krökta mot bilden. (Viktigt, även om du inte förstår varför ännu.) Ställ skärmen på ca 1 m avstånd från objektet, och ställ in linsen så att du får en skarp, förstorad bild. Har du gjort allt rätt, ska nu bildavståndet vara betydligt större än objektsavståndet. Mät bildavstånd och förstoring 3 gånger (1 gång per person om ni är tre i labgruppen). Flytta alltid linsen så att bilden blir suddig innan du ställer in den skarpt igen. (Varför?) Upprepa detta för 5 olika s + s mellan 1 och 2 meter. Då får ni totalt 15 mätningar. Beräkna ett värde på f. Beräkna ett värde på f f. I stycket efter Ekv. 6 finns ledning till hur du kan bära dig åt. Jämför värdet på f som du beräknade här, med det som du beräknade i del 1. Ligger de innanför varandras felmarginaler, dvs kan de vara samma värde? Eller verkar de vara olika? Vilka systemtiska fel kan förekomma? Ett systematiskt fel förklaras på nästa sida. Diskutera resultaten med labhandledaren.

5 I figuren ovan skissas brytning i en planokonvex lins. Strålarna ändrar riktning två gånger en gång i första ytan, och en gång i andra. Varifrån ska man då räkna bild- och objektsavstånd? Som linsen är vänd just nu, räknas objektsavståndet från en yta inne i linsen. Just för planokonvex lins med den krökta ytan mot bilden, så räknas dock bildavståndet från linsens sista yta. (Dessa båda ytor yta är främre respektive bakre huvudplanet, för er som läst huvudplan.) Förmodligen har du mätt både objekts- och bild-avstånd från samma yta, och därmed har du fått ett systematiskt fel i mätningarna på del 1. I del 2 använder du bara bildavståndet. Därför blir du av med det systematiska felet, om du mäter bildavståndet från linsens sista yta. Del 3 Målet är att ta fram en metod för att mäta fokallängden på en negativ lins, samt att uppskatta fokallängden hos en given negativ lins. När man ska mäta fokallängden på en negativ lins kan ingen av metoderna i del 1 eller 2 användas direkt, eftersom ett reellt objekt ger en virtuell bild. Du kan alltså inte ställa skärmen i bilden och sedan mäta avstånden. Nu vet du ju fokallängden på den positiva linsen. Fundera ut ett sätt att använda linserna tillsammans, så att du får en reell bild som du kan mäta avståndet till. Därefter kan du räkna fram den negativa linsens fokallängd. Ett bra sätt är att använda bilden från den positiva linsen som virtuellt objekt till den negativa linsen. Gör det! Ni behöver inte bekymra er om felet, bara demonstrera för labhandledaren att ni har en fungerande metod och få fram ett rimligt värde på den negativa linsens fokallängd. Fundera gärna över hur felkänslig mätmetoden kan vara.

6 Om du har labmunta ska du tänka på följande allmänna regler: Ta med dig allt material du vill visa upp i datorutskriven form (utom vissa diagram). Figurer ska vara ritade på dator (i valfritt ritprogram). Tabeller med mätvärden ska vara utskrivna på papper, med tabellhuvud och enheter. Diagram ska vara datorritade, och axlarna ska vara graderade med enheter angivna. Felanalys av mätvärden ska finnas med för alla numeriska svar på frågor (om inte annat explicit sagts i labpeket). Nu har du redan det mesta på dator. Överväg att skriva en kort rapport ett enkelt sätt att få med det viktiga till muntan.... samt på följande specifika instruktioner för lins-labben: Var särskilt noga med dina mätvärdestabeller och med felanalysen. Redovisa hur du fått fram felen i s och s. Redovisa hur du beräknat felet i f (flera tänkbara metoder finns). Skriv en text om vilka systematiska fel som kan finnas i del 1 och 2. Få med dig beteckningen på linsen som använts (A-F). Ta med uppritat stråldiagram som visar hur metoden i del 3 fungerar. Det är OK med handritat, om du ritat tydligt och snyggt. Om du ska skriva labrapport följ instruktioner på kursens hemsida.

LABORATION 1 AVBILDNING OCH FÖRSTORING

LABORATION 1 AVBILDNING OCH FÖRSTORING LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se

Läs mer

Robert Rosén Recept för beräkning av huvudplan Frågeställning: Hur hittar man främre och bakre fokalpunkt, samt huvudplan (både för tjocka linser och system av tunna linser)? Varför skall huvudplan räknas?

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill kunna avbilda genom alla ytor direkt.

Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill kunna avbilda genom alla ytor direkt. Föreläsning 9 0 Huvudplan Önskan: Tänk om alla optiska system vore tunna linser så att alltid gällde! Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX (5) Att läsa före lab: LABORATION 2 MIKROSKOPET Synvinkel, vinkelförstoring, luppen och

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

Förberedelseuppgift inför datorlaborationen

Förberedelseuppgift inför datorlaborationen Förberedelseuppgift inför datorlaborationen Det finns datorprogram som följer strålar genom linssystem. Rätt använda kan de vara extremt kraftfulla verktyg och bespara dig många timmars beräkningar. Datorlaborationen

Läs mer

Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv

Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv 1 Avbildningskvalitet Föreläsning 1-2 Brytning i sfärisk yta Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv Brytningslagen (Snells lag): n sin i = n sin i Paraxial approximation (vid

Läs mer

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt.

Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt. Om förstoringsglaset Du kan göra mycket med bara ett förstoringsglas! I många sammanhang i det dagliga livet förekommer linser. Den vanligast förekommande typen är den konvexa linsen, den kallas också

Läs mer

Optisk bänk En Virtuell Applet Laboration

Optisk bänk En Virtuell Applet Laboration Optisk bänk En Virtuell Applet Laboration Bildkonstruktion med linser. Generell Applet Information: 1. Öppna en internet läsare och öppna Optisk Bänk -sidan (adress). 2. Använd FULL SCREEN. 3. När applet:en

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Vågrörelselära & Kvantfysik, FK2002 29 november 2011

Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Räkneövning 5 Vågrörelselära & Kvantfysik, FK00 9 november 0 Problem 35.9 En dykare som befinner sig på djupet D 3 m under vatten riktar en ljusstråle (med infallsvinkel θ i 30 ) mot vattenytan. På vilket

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX 1 (6) LABORATION 2 MIKROSKOPET Att läsa i kursboken: sid. 189-194 Förberedelseuppgifter:

Läs mer

Tentamen Optik, FYSA11, 2012-05-25

Tentamen Optik, FYSA11, 2012-05-25 Tentamen Otik, FYSA, 0-05-5 Hjälmedel: TEFYMA, ormelsamling, linjal, ickräknare och biogat ormelblad. Glöm inte att beskriva hur du kommer ram till dina svar. Även delvis lösta ugiter kan ge oäng.. Den

Läs mer

Kompletterande instruktioner, tips samt principer för bedömning av Laboration 2 Magnetiska fält (Elektromagnetism 12 hp)

Kompletterande instruktioner, tips samt principer för bedömning av Laboration 2 Magnetiska fält (Elektromagnetism 12 hp) Kompletterande instruktioner, tips samt principer för bedömning av Laboration 2 Magnetiska fält (Elektromagnetism 12 hp) I. Allmänt. 1. Du studerar noggrant labinstruktionen för att förstå den, och löser

Läs mer

Lösningarna inlämnas renskrivna vid laborationens början till handledaren

Lösningarna inlämnas renskrivna vid laborationens början till handledaren Geometrisk optik Förberedelser Läs i vågläraboken om avbildning med linser (sid 227 241), ögat (sid 278 281), färg och färgseende (sid 281 285), glasögon (sid 287 290), kameran (sid 291 299), vinkelförstoring

Läs mer

LABORATION 5 Aberrationer

LABORATION 5 Aberrationer LABORATION 5 Aberrationer Personnuer Nan Laborationen godkänd Datu Assistent Kungliga Tekniska högskolan BIOX 1 (5) LABORATION 5: ABERRATIONER Att läsa i kursboken: sid. 233-248, 257-261, 470-472, 480-485,

Läs mer

Datorlaboration Avbildningskvalitet

Datorlaboration Avbildningskvalitet Datorlaboration Avbildningskvalitet Datorlaborationenen äger rum i datorsal RB33, Roslagstullsbacken 33 (gula huset närmast busshållplatsen utanför Albanova). Den börjar kl 13.00 (utan kvart). Om möjligt

Läs mer

Ett enkelt Kalkylexempel - Fruktaffären

Ett enkelt Kalkylexempel - Fruktaffären Ett enkelt Kalkylexempel - Fruktaffären Öppna en ny arbetsbok genom att gå upp i Arkivmenyn och där välja Nytt ange Arbetsbok. Eller klicka på knappen för ny arbetsbok. Du skall nu göra en kalkyl för ett

Läs mer

Vågrörelselära & Kvantfysik, FK2002 1 december 2011

Vågrörelselära & Kvantfysik, FK2002 1 december 2011 Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f

Läs mer

Introduktion till Word och Excel

Introduktion till Word och Excel Introduktion till Word och Excel HT 2006 Detta dokument baseras på Introduktion till datoranvändning för ingenjörsprogrammen skrivet av Stefan Pålsson 2005. Omarbetningen av detta dokument är gjord av

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Geometrisk optik. Laboration

Geometrisk optik. Laboration ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Geometrisk optik Linser och optiska instrument Avsikten med laborationen är att du ska få träning i att bygga upp avbildande optiska

Läs mer

Geometrisk optik. Laboration FAFF25/FAFA60 Fotonik 2017

Geometrisk optik. Laboration FAFF25/FAFA60 Fotonik 2017 Avsikten med denna laboration är att du ska få träning i att bygga upp avbildande optiska system, såsom enkla kikare och mikroskop, och på så vis få en god förståelse för dessas funktion. Redogörelsen

Läs mer

Mäta rakhet Scanning med M7005

Mäta rakhet Scanning med M7005 Matematikföretaget jz M7005.metem.se 141121/150411/150704/SJn Mäta rakhet Scanning med M7005 Mätgivare Detalj Mäta rakhet - Scanning 1 (12) Innehåll 1 Ett exempel... 3 2 Beskrivning... 6 2.1 Scanna in

Läs mer

FK2005 Datorövning 3

FK2005 Datorövning 3 FK2005 Datorövning 3 Den här övningen vänder sig endast till lärarstudenter (FK2005). Målet är att lära sig hur man gör en minsta kvadrat anpassning med hjälp av OpenOffice Calc. Laboration 2 kräver att

Läs mer

Geometrisk optik. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Geometrisk optik

Geometrisk optik. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Geometrisk optik Geometrisk optik Innehåll Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande 1. Undersökning av tunna positiva linser... 3 2. Undersökning av tunna negativa linser... 3 3. Galileikikaren...

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Figur 6.1 ur Freeman & Hull, Optics

Figur 6.1 ur Freeman & Hull, Optics 1 Föreläsning 12 Kameran Figur 6.1 ur Freeman & Hull, Optics Kameran är ett instrument som till vissa delar fungerar mycket likt ett öga. Kamerans optik, det så kallade kameraobjektivet, motsvarar ögats

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Laser Avståndsmätare. Användarhandbok och användningsguide

Laser Avståndsmätare. Användarhandbok och användningsguide Laser Avståndsmätare Användarhandbok och användningsguide Inledning: Length Master LM 1000 cx mäter avståndet genom att sända ut infraröda strålar mot målet, som omedelbart beräknar avståndet genom att

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Uppgift. Laboration. Sidan 1 av 7

Uppgift. Laboration. Sidan 1 av 7 Sidan 1 av 7 Uppgift Ta med följande utrustning: Screenmaster, Linjal, boken Ljus och Rum och en digitalkamera/telefon med kamera samt (Användarnamn och lösenord till datorerna datorsalen som ska användas)

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2014 Kontakt: olga. b ylund@ysik.su.se Instruktioner ör redogörelse ör laboration 1: Laboration 1 innehåller em experiment. Varje experiment bör presenteras

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

fredag den 11 april 2014 M I N P O O L

fredag den 11 april 2014 M I N P O O L M I N P O O L http://en.wikipedia.org/wiki/file:backyardpool.jpg MIN FÖRSTA KLADD Min första kladd så kladda jag lite och då hade inte jag riktigt förstått uppgiften så jag bara kladda lite runt men det

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Inledning till OpenOffice Calculator Datorlära 2 FK2005

Inledning till OpenOffice Calculator Datorlära 2 FK2005 Inledning till OpenOffice Calculator Datorlära 2 FK2005 Mål Lära sig att skapa och använda ett räkneblad med OpenOffice Calculator Beräkna medelvärde och standardavvikelsen med räknebladet Producera en

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

www.radonelektronik.se Bruksanvisning www.radonelektronik.se 2006-03 - 01

www.radonelektronik.se Bruksanvisning www.radonelektronik.se 2006-03 - 01 www.radonelektronik.se Bruksanvisning www.radonelektronik.se 2006-03 - 01 Beskrivning R1 gör exakt vad som krävs av en radonmätare. Vid en radonhalt på 200 Bq/m 3 tar det endast 4 timmar att uppnå en statistisk

Läs mer

Datorövning 1 Calc i OpenOffice 1

Datorövning 1 Calc i OpenOffice 1 Datorövning 1 Calc i OpenOffice 1 1 OpenOffice Calc Till förmån för de som följer kursen Fysikexperiment för lärare skall vi här gå igenom några få exempel på hur OO Calc (motsvarar MS Excel) kan användas

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

Bruksanvisning. Swema AB Tel: 08-940090 www.swema.se. För support och nedladdning av aktuell programvara kontakta: 2006-05 - 01

Bruksanvisning. Swema AB Tel: 08-940090 www.swema.se. För support och nedladdning av aktuell programvara kontakta: 2006-05 - 01 Bruksanvisning För support och nedladdning av aktuell programvara kontakta: Swema AB Tel: 08-940090 www.swema.se 2006-05 - 01 Beskrivning R1 gör exakt vad som krävs av en radonmätare. Vid en radonhalt

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

LABORATION 1. Syfte: Syftet med laborationen är att

LABORATION 1. Syfte: Syftet med laborationen är att LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa

Läs mer

Laborationsrapport för laboration 2 i ESS010 Elektronik. Olle Ollesson 29 september 2012 Handledare: Sven Svensson

Laborationsrapport för laboration 2 i ESS010 Elektronik. Olle Ollesson   29 september 2012 Handledare: Sven Svensson Laborationsrapport för laboration 2 i ESS010 Elektronik Olle Ollesson E-mail: olle.ollesson@dmail.com 29 september 2012 Handledare: Sven Svensson 1 Innehållsförteckning Sida Laborationens syfte 3 Utrustning

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Elektronik grundkurs Laboration 1 Mätteknik

Elektronik grundkurs Laboration 1 Mätteknik Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna

Läs mer

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.

Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll. Vätespektrum Förberedelser Läs i Tillämpad atomfysik om atomspektroskopi (sid 147-149), empiriska samband (sid 151-154), och Bohrs atommodell (sid 154-165). Läs genom hela laborationsinstruktionen. Gör

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Uppgift 1. OPTIMERA RESURSUTNYTTJANDET.

Uppgift 1. OPTIMERA RESURSUTNYTTJANDET. Labb 3 Infomet I denna laboration kommer vi att lära oss en del finesser i kalkylprogrammet Excel. BAGERI Ett bageri bakar pepparkakor och kubbar. Under olika tider på året efterfrågas olika sorters kakor.

Läs mer

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook. CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Mät resistans med en multimeter

Mät resistans med en multimeter elab003a Mät resistans med en multimeter Namn Datum Handledarens sign Laboration Resistans och hur man mäter resistans Olika ämnen har olika förmåga att leda den elektriska strömmen Om det finns gott om

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

LJ-Teknik Bildskärpa

LJ-Teknik Bildskärpa Bildskärpa - Skärpedjup och fokus - Egen kontroll och fokusjustering - Extern kalibrering Bildskärpa, skärpedjup och fokus Brännpunkt och fokus Medan brännpunkt är en entydig term inom optiken, kan fokus

Läs mer

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013 Zeemaneffekt Projektlaboration, Experimentell kvantfysik, FK5013 Introduktion En del energinivåer i en atom kan ha samma energi, d.v.s. energinivåerna är degenererade. Degenereringen kan brytas genom att

Läs mer

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Intromatte för optikerstudenter

Intromatte för optikerstudenter Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson (2013). Ändringar av Jakob Larsson och Emelie Fogelqvist (2014). Kursmål Efter intromatten vill vi att du inom matematik

Läs mer

Intromatte för optikerstudenter

Intromatte för optikerstudenter Intromatte för optikerstudenter Av Robert Rosén (2012). Ändringar av Daniel Larsson, Jakob Larsson, Emelie Fogelqvist och Simon Winter (2013 2016). Kursmål Efter intromatten vill vi att du inom matematik

Läs mer

Laboration1 Vektorgrafik med Illustrator Innehåll: Filter Text Objekt Knappar Kurvor Ritverktyget Formverktyget Symboler Övertoning Effekt Lager

Laboration1 Vektorgrafik med Illustrator Innehåll: Filter Text Objekt Knappar Kurvor Ritverktyget Formverktyget Symboler Övertoning Effekt Lager Laboration1 Vektorgrafik med Illustrator Innehåll: Filter Text Objekt Knappar Kurvor Ritverktyget Formverktyget Symboler Övertoning Effekt Lager Uppgift 1 Designa en webbknapp Rita en form Håll ned musen

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren

DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren 2000-03-17 specialversion inför kursstart Elektronik och mätteknik 2000 DATORINTRODUKTION Laboration E850-2000 ELEKTRO Personalia: Namn: Kurs:

Läs mer

1. Mätning av gammaspektra

1. Mätning av gammaspektra 1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Assistent: Markku Jääskeläinen Laborationen utfördes: 23 februari 2000

Assistent: Markku Jääskeläinen Laborationen utfördes: 23 februari 2000 Labrapport: Holografi Assistent: Markku Jääskeläinen Laborationen utfördes: 23 februari 2000 28 februari 2000 Sida 1 Inledning Labrapport: Holografi Teorin för holografi utvecklades redan 1948. Först när

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Arbetsplatsoptometri, Optikerprogrammet, KI Sidan 1 av 6

Arbetsplatsoptometri, Optikerprogrammet, KI Sidan 1 av 6 Sidan 1 av 6 Uppgift En arbetsgivare som känner ett stort ansvar för sina anställdas hälsa är orolig för att ett antal av hans anställda har huvudvärk mm. Han ber Dig som konsult och optiker att utvärdera

Läs mer

SK1140, Fotografi för medieteknik, HT14

SK1140, Fotografi för medieteknik, HT14 SK1140, Fotografi för medieteknik, HT14 9 föreläsn. & 3 labbar Kjell Carlsson, föreläsn./kursansvarig kjellc@kth.se Anders Liljeborg, labhandledn. Simon Winter, labhandledn. Vi kommer från Tillämpad fysik,

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

5-2 Likformighet-reguladetri

5-2 Likformighet-reguladetri 5-2 Likformighet-reguladetri Namn:. Inledning Du har nu lärt dig en hel del om avbildningar, kartor och skalor. Nu är du väl rustad för att studera likformighet, och hur man utnyttjar det faktum att med

Läs mer

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt! Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien

Läs mer

NU NÄR DU BEKANTAT DIG MED RAMARNAS EGENSKAPER OCH VET. hur man markerar och ändrar dem, är det dags att titta lite närmare på

NU NÄR DU BEKANTAT DIG MED RAMARNAS EGENSKAPER OCH VET. hur man markerar och ändrar dem, är det dags att titta lite närmare på 6 Arbeta med ramar NU NÄR DU BEKANTAT DIG MED RAMARNAS EGENSKAPER OCH VET hur man markerar och ändrar dem, är det dags att titta lite närmare på hur du kan arbeta med dem i en design. De flesta designers

Läs mer

E-II. Diffraktion på grund av ytspänningsvågor på vatten

E-II. Diffraktion på grund av ytspänningsvågor på vatten Q Sida 1 av 6 Diffraktion på grund av ytspänningsvågor på vatten Inledning Hur vågor bildas och utbreder sig på en vätskeyta är ett viktigt och välstuderat fenomen. Den återförande kraften på den oscillerande

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

Handboken. just nu i trädgården. januari. 42 planera din trädgård Tomtritning Grundplan Analysplan

Handboken. just nu i trädgården. januari. 42 planera din trädgård Tomtritning Grundplan Analysplan just nu i trädgården Trädgårdsarkitekt Karin Janrik och trädgårdsmästare André Strömqvist guidar dig igenom Handboken. januari 42 planera din trädgård Tomtritning Grundplan Analysplan 46 Månadens Kom ihåg

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Vad skall vi gå igenom under denna period?

Vad skall vi gå igenom under denna period? Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD

EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD UTRUSTNING Utöver utrustningen 1), 2) and 3), behöver du: 4) Lins monterad på en fyrkantig hållare. (MÄRKNING C). 5) Rakblad i en

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 Avd. Matematisk statistik SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 0 Allmänna anvisningar Arbeta med handledningen, och skriv rapport, i grupper om två eller tre personer. Närvaro vid laborationstiden

Läs mer

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!

Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt! Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien

Läs mer

Vad är rätt och vad är fel?

Vad är rätt och vad är fel? Vad är rätt och vad är fel? Inledning - Mikael Lilje, Lantmäteriet I vår verksamhet ingår troligen att vi utnyttjar inmätt geografisk information. För att kunna hantera informationen på ett så korrekt

Läs mer

Gungande tvätt. Uppgift. Materiel

Gungande tvätt. Uppgift. Materiel Gungande tvätt Du vill bygga en sensor som känner av när din upphängda tvätt har hunnit torka. Tvätten hänger på galgar och gungar i blåsten. Du ska kolla om du kan använda gungningsperioden för att avgöra

Läs mer

Laboration 1. "kompilera"-ikonen "exekvera"-ikonen

Laboration 1. kompilera-ikonen exekvera-ikonen Programmerade system I1 Syfte Laboration 1. Syftet med denna laboration är dels att göra dej bekant med de verktyg som kan vara aktuella i programmeringsarbetet, dels ge en första inblick i att skriva

Läs mer

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1.

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1. Solar cells 2.0 Inledning Utrustning som används i detta experiment visas i Fig. 2.1. Figure 2.1 Utrustning som används i experiment E2. Utrustningslista (se Fig. 2.1): A, B: Två solceller C: Svart plastlåda

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

antal miljoner 3,0 2,5 2,0 1,5 1,0 0,5

antal miljoner 3,0 2,5 2,0 1,5 1,0 0,5 Tabeller och diagram Mål När eleverna studerat det här kapitlet ska de kunna: hämta fakta ur tabeller läsa av och tolka olika typer av diagram beräkna medelvärde bestämma median göra en enkel undersökning

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Stork Elgolvvärme - KabelKit Installationspaket för el-golvvärme för våtutrymmen och klinker mm.

Stork Elgolvvärme - KabelKit Installationspaket för el-golvvärme för våtutrymmen och klinker mm. Stork Elgolvvärme - KabelKit Installationspaket för el-golvvärme för våtutrymmen och klinker mm. Tillämpning Stork KabelKit passar både renoveringsobjekt och för nybyggnation för alla typer av golv, exempelvis

Läs mer