RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

Storlek: px
Starta visningen från sidan:

Download "RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt."

Transkript

1 RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker vi hur fort vi går eller springer och jämför hastighet och medelhastighet. Vi funderar också på skillnaden mellan fart och hastighet. Läroplanen FYSIK Ur det centrala innehållet i fysik - Krafter, rörelser och rörelseförändringar i vardagliga situationer och hur kunskaper om detta kan användas, till exempel i frågor om trafiksäkerhet. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Ur kunskapskraven i fysik för åk 7-9: - Eleven kan genomföra undersökningar utifrån givna planeringar och även formulera enkla frågeställningar och planeringar som det går att arbeta systematiskt utifrån. - Eleven kan föra E/C/A underbyggda resonemang där företeelser i vardagslivet och samhället kopplas ihop med krafter, rörelser, hävarmar, ljus, ljud och elektricitet och visar då på E/C/A samband. MATEMATIK Ur det centrala innehållet i matematik - Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. Ur kunskapskraven i matematik för åk 7-9: - Eleven kan lösa olika problem i bekanta situationer på ett E/C/A fungerande sätt genom att välja och använda strategier och metoder med E/C/A anpassning till problemets karaktär samt E/C/A enkla matematiska modeller som kan tillämpas i sammanhanget. Eleven för

2 - E/C/A underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge E/C/A på alternativa tillvägagångssätt. - Eleven kan redogöra för och samtala om tillvägagångssätt på ett E/C/A sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med E/C/A anpassning till syfte och sammanhang. Problemlösning i matematik är att räkna ut medelhastigheten när någon eller något rör sig. Hur gör eleven för att räkna ut medelhastigheten? Förstår eleven att enheten beskriver hur medelhastigheten beräknas? Kan eleven förklara hur hon eller han tänkte för att lösa problemet? Bakgrund När vi förflyttar oss, oavsett på vilket sätt, sker det med en bestämd fart. Till vardags använder vi begreppen fart och hastighet synonymt men i fysiken skiljer man på dem så att fart är hur fort något rör sig på en bestämd sträcka medan hastighet definieras som fart med en viss riktning. Hastighet och fart anges i enheten meter per sekund (m/s) eller kilometer per timme (km/h). Både hastighet och fart är storheter och en storhet är något som har både storlek och en enhet, t ex farten eller hastigheten 10 km/h. Om hastigheten är densamma hela tiden kallas rörelsen för likformig men när man promenerar t ex går det förmodligen inte precis lika fort hela tiden. Går det då inte att mäta med vilken hastighet man promenerar? En person som går en promenad varierar omedvetet sin hastighet men i varje litet ögonblick har förflyttningen en viss bestämd hastighet. Om den personen mätte hastigheten i varje ögonblick och efter promenaden skulle svara på frågan om vilken hastighet han eller hon gick med skulle det bli svårt att ge något entydigt svar. För att kunna svara på frågan behöver personen i så fall räkna ut medelvärdet av alla delhastigheterna och får då medelhastigheten. Ett annat sätt att få fram medelhastigheten är att räkna ut den. Genom att mäta sträckan och dividera med tiden det tog att gå promenaden får man fram medelhastigheten som är den hastighet man i genomsnitt hållit under promenaden och inte hastigheten i varje ögonblick eftersom man ibland gått snabbare och ibland långsammare. I t ex bilar brukar hastighetsmätaren vara indelad i km/h vilket är vanligt när det handlar om högre hastigheter. För att omvandla från m/s till km/h kan man tänka så här; Eftersom det går 1000 m på 1 km dividerar man hastigheten med 1000 och får hastigheten i km/s. På samma sätt går det 60 minuter på 1 timme och 60 sekunder på en minut. Därför multiplicerar man sedan hastigheten i km/s med

3 Ex. Hastigheten 9 m/s / 1000 = 3,6 9 m/s 3,6 = 32,4 km/h En genväg är att multiplicera hastigheten i m/s med 3,6 för att få den i km/h som i exemplet ovan. Sensorn På sensorn sitter en vridbar rund platta och det är den som registrerar rörelsen. Plattan ska vinklas så att den står vinkelrätt mot föremålet som rör sig. Inom 15 cm framför plattan registreras ingen rörelse och maximala avståndet för den är 8 m. Viktigt är att placera den i en sådan miljö att det finns gott om fri yta framför och på sidorna eftersom dessa annars stör mätningen så att inte maximalt avstånd kan utnyttjas. Beroende på vilket avståndsintervall sensorn ska mäta inom ställs switchen på ovansidan antingen på vagn (kort avstånd) eller streckgubbe (längre avstånd). Syfte med experimentet Att förstå skillnaden mellan hastighet och medelhastighet, hur man räknar ut medelhastigheten och omvandling mellan enheter. Begrepp att diskutera Hastighet, medelhastighet, fart, enhet, storhet Experiment Experimentet går ut på att mäta sträckan som en försöksperson föflyttar sig på en viss tid och på att räkna ut medelhastigheten. Utrustning Pasco s AirLink, rörelsesensor, ipad med Sparkvue HD. Utförande Ställ in så att du mäter sträcka och hastighet på y-axeln och tid på x-axeln. Gör en förutsägelse av hur långt du hinner på t ex 4 sekunder. Använd förutsägelseverktyget och gör en kurva. Hur långt tror du att du hinner? Nu ska du försöka röra dig lika lång sträcka som du förutsåg att du skulle göra. Försök röra dig med konstant, det vill säga samma, hastighet hela tiden. Placera rörelsesensorn i midjehöjd på ett bord, 15 cm från kanten. Märk ut en rak linje från sensorn eller utnyttja t ex en skarv i golvet. Det är viktigt att du går alldeles rakt annars kommer sensorn att sluta registrera rörelsen. Ställ dig med ryggen mot bordet.

4 Tryck på startikonen och vänta tills sensorn börjat registrera; när den tickar mäter den var på sträckan du befinner dig. Börja då förflytta dig rakt bort från sensorn. Upprepa experimentet två gånger till och välj den av kurvorna som ligger närmast den kurva du ritade innan du började. Den kurvan ska du använda för att räkna ut din hastighet med. 1. Börja med att ta reda på hur långt du hann i varje sekund. Använd den del av kurvan som är rak. Sträckan läser du av på y-axeln och tiden på x-axeln och för att kunna läsa av drar du ut skalan på axlarna. Hur långt hann du och hur snabbt gick det? Läs av i diagrammet och fyll i tid och sträcka i tabellen här nedanför. 2. Nu vet du hur långt du gick eller sprang efter varje sekund men vilken hastighet höll du? Läs av hastigheten i diagrammet och fyll i värdena i tabellen. 3. Du vill säkert veta vilken genomsnittlig hastighet du höll. Den hastigheten kallas för medelhastighet. Hur räknar du ut medelhastigheten? Räkna ut medelhastigheten och fyll i den sista kolumnen i tabellen. Vilken var din medelhastighet för hela sträckan? Varför skulle du försöka gå med konstant hastighet? Namn Tid (s) Sträcka (m) Hastighet (m/s) Medelhastighet (m/s) 1 2 Mer att göra Räkna ut medelhastigheten i km/h. Länkar Under hastighet på Wikipedia finns en sammanställning över olika hastigheter, t ex för hårtillväxt ( m/s) och människans fartrekord: Apollo 10 ( m/s).

5 Kommentar Kan göras både ute och inne bara det finns något på lämplig höjd att ställa rörelsesensorn på. Inomhus passar det bäst att gå om det inte är en idrottshall eller något liknande med mycket plats. En annan variant är att försöka gå eller springa med konstant hastighet. Fundera på Jämför hur det är att gå eller springa på månen jämfört med på jorden. Är det någon skillnad? Motivera! (Se länkar ovan (Doktor NO: Resa i rymden).) Resultat av ett exempel Den orangea kurvan är en hypotes skapad med ritverktyget. Den blå kurvan är den verkliga sträcka försökspersonen hann. Efter 4 sekunder planade kurvan ut eftersom jag gått hela sträckan och står still.

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

MEKANIK LÄRARHANDLEDNING

MEKANIK LÄRARHANDLEDNING MEKANIK LÄRARHANDLEDNING Eftersom antalet sensorer är begränsat rekommenderas att fler laborationer görs parallellt enligt ett stationssystem. I laboration 1-4 och 9-10 används kraftsensorn och i 5-8 används

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

Trycket beror på ytan

Trycket beror på ytan Inledning Trycket beror på ytan Du har två föremål med samma massa och balanserar dem på varsin handflata. Det ena föremålet har en mycket smalare stödyta än det andra. Förmodligen känns föremålet med

Läs mer

MEKANIKENS GYLLENE REGEL

MEKANIKENS GYLLENE REGEL MEKANIKENS GYLLENE REGEL Inledning Det finns olika sätt att förflytta föremål och om du ska flytta en låda försöker du säkert komma på det enklaste sättet, det som är minst jobbigt för dig. Newton funderade

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Pedagogisk planering till Klassuppgiften Teknikåttan 2016

Pedagogisk planering till Klassuppgiften Teknikåttan 2016 Pedagogisk planering till Klassuppgiften Teknikåttan 2016 Teknikåttans intentioner med årets Klassuppgift är att den ska vara väl förankrad i Lgr 11. Genom att arbeta med Klassuppgiften tror vi att eleverna

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

Ljus snabbare finns inte

Ljus snabbare finns inte Ljus snabbare finns inte En morgon satt jag och tittade på en daggdroppe i gräset. Den blänkte i solen. Plötsligt märkte jag att droppen ändrade färg när jag flyttade huvudet litet. Kan du förklara det?

Läs mer

_ kraven i matematik åk k 6

_ kraven i matematik åk k 6 Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.

Läs mer

Förankring Lgr11. Pedagogisk planering till Klassuppgiften Teknikåttan 2013

Förankring Lgr11. Pedagogisk planering till Klassuppgiften Teknikåttan 2013 Teknikåttans intentioner med årets Klassuppgift är att den ska vara väl förankrad i Lgr 11. Genom att arbeta med Klassuppgiften tror vi att eleverna kommer att ha goda möjligheter att utveckla förmågorna

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Pedagogisk planering till Klassuppgiften Teknikåttan Förankring Lgr11

Pedagogisk planering till Klassuppgiften Teknikåttan Förankring Lgr11 Pedagogisk planering till Klassuppgiften Teknikåttan 2015 Teknikåttans intentioner med årets Klassuppgift är att den ska vara väl förankrad i Lgr 11. Genom att arbeta med Klassuppgiften tror vi att eleverna

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

8E Ma: Aritmetik och bråkbegreppet

8E Ma: Aritmetik och bråkbegreppet 8E Ma: Aritmetik och bråkbegreppet Under veckorna 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

KUNSKAPSKRAV I ÄMNET FYSIK. Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3

KUNSKAPSKRAV I ÄMNET FYSIK. Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 KUNSKAPSKRAV I ÄMNET FYSIK Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 Eleven kan beskriva och ge exempel på enkla samband i naturen utifrån upplevelser och utforskande av närmiljön. I

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Krafter märkbara men osynliga

Krafter märkbara men osynliga Krafter märkbara men osynliga Arbeta med hypotes och prövning Lärarhandledningen, uppgift 7, sida 231 (elevblad på sida 247), elevboken sida 70. Utvecklar förmåga Genomföra systematiska undersökningar

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

4-2 Linjära mått och måttsystem Namn:.

4-2 Linjära mått och måttsystem Namn:. 4-2 Linjära mått och måttsystem Namn:. Inledning I det här kapitlet skall lära dig vad en linje är och vilka egenskaper en linje har. Du kommer även att repetera vilka enheter avstånd mäts i. Varför skall

Läs mer

Förmågor och Kunskapskrav

Förmågor och Kunskapskrav Fysik Årskurs 7 Förmågor och Kunskapskrav Använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som rör energi, teknik, miljö och samhälle F Y S I K Använda fysikens

Läs mer

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri

Läs mer

De förmågor som bedömts inom arbetsområdet är markerade i matrisen. Övriga förmågor är sådana som inte har behandlats den här terminen.

De förmågor som bedömts inom arbetsområdet är markerade i matrisen. Övriga förmågor är sådana som inte har behandlats den här terminen. Akustik och Optik Grundskola 7 9 LGR11 Fy De förmågor som bedömts inom arbetsområdet är markerade i matrisen. Övriga förmågor är sådana som inte har behandlats den här terminen. Förmåga att använda kunskaper

Läs mer

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar.

Föra och följa matematiska resonemang, Berätta för andra hur du tänker och lyssna på andras matematiska tankegångar. Sparsörskolan Lokal pedagogisk planering Klass: 6A Ansvarig lärare: Fanny Olausson och Linda Wahlberg Ämne/område: Ja mfo relse, uppskattning och ma tning av vikt och volym samt avrundning och o verslagsra

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

"Densitet, Tryck, Värme, Väder"

Densitet, Tryck, Värme, Väder "Densitet, Tryck, Värme, Väder" Grundskola 7 8 1 Densitet, tryck, värme, väder Skapad 216-11-1 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Mall för pedagogisk planering Björkvallsskolan"

Läs mer

Rymdutmaningen koppling till Lgr11

Rymdutmaningen koppling till Lgr11 en koppling till Lgr11 När man arbetar med LEGO i undervisningen så är det bara lärarens och elevernas fantasi som sätter gränserna för vilka delar av kursplanerna man arbetar med. Vi listar de delar av

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

Planering Matematik åk 8 Samband, vecka

Planering Matematik åk 8 Samband, vecka Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med

Läs mer

Algebra och Ekvationer År 7

Algebra och Ekvationer År 7 Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Planering Matematik åk 8 Algebra, vecka Centralt innehåll

Planering Matematik åk 8 Algebra, vecka Centralt innehåll Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

ESN lokala kursplan Lgr11 Ämne: Fysik

ESN lokala kursplan Lgr11 Ämne: Fysik ESN lokala kursplan Lgr11 Ämne: Fysik Övergripande Mål: Genom undervisningen i ämnet fysik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att använda kunskaper i fysik för

Läs mer

"Procent och sannolikhet 6D"

Procent och sannolikhet 6D "Procent och sannolikhet 6D" Grundskola 6 1 Procent och sannolikhet planering Skapad 216-11-2 av Daniel Spångberg i Björkvallsskolan, Uppsala Baserad på "Procent och sannolikhet åk 6" från Björkvallsskolan,

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Matematik - Åk 9 Funktioner och algebra Centralt innehåll

Matematik - Åk 9 Funktioner och algebra Centralt innehåll Matematik - Åk 9 Funktioner och algebra Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Tänk dig ett biljardklot på ett biljardbord. Om du knuffar till klotet, så att det sätts i rörelse, vad kallas knuffen då?...

Tänk dig ett biljardklot på ett biljardbord. Om du knuffar till klotet, så att det sätts i rörelse, vad kallas knuffen då?... MÅL med arbetsområdet När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. ge exempel på krafter som påverkar

Läs mer

Lokal pedagogisk plan

Lokal pedagogisk plan Syfte med arbetsområdet: Undervisningen ska ge eleverna möjligheter att använda och utveckla kunskaper och redskap för att formulera egna och granska andras argument i sammanhang där kunskaper i fysik

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

"Läsårs-LPP med kunskapskraven för matematik"

Läsårs-LPP med kunskapskraven för matematik "Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor

Läs mer

Kunskapsprofil Resultat på ämnesprovet

Kunskapsprofil Resultat på ämnesprovet Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Studieplan i Fysik. Elev: Arbetsområde: Ifylld i samråd med förälder: JA NEJ

Studieplan i Fysik. Elev: Arbetsområde: Ifylld i samråd med förälder: JA NEJ Studieplan i Fysik Elev: Arbetsområde: Ifylld i samråd med förälder: JA NEJ Syftet med att fylla i denna studieplan är att du ska reflektera över och bli mer förtrogen med dina förmågor, samt bli medveten

Läs mer

Tummen upp! Matte Kartläggning åk 4

Tummen upp! Matte Kartläggning åk 4 Tryck.nr 47-11063-6 4711063_Omsl_T_Upp_Matte_4.indd Alla sidor 2014-01-27 07.32 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 4 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall.

När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. MÅL med arbetsområdet När du har arbetat med det här ska du kunna: förklara vad som menas med en rörelse genom att ge exempel på hastighet, acceleration och fritt fall. ge exempel på krafter som påverkar

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem.

Tänk nu att c är en flaggstång som man lutar och som dessutom råkar befinna sig i ett koordinatsystem. Detta tänker jag att man redan vet: sin α= b c och cosα=a c och alltså också att för vinkeln. b=c sin α och a=c cos α Hypotenusan gånger antingen sinus eller cosinus Del 1 Tänk nu att c är en flaggstång

Läs mer

Hur varm är du på utsidan?

Hur varm är du på utsidan? Hur varm är du på utsidan? Inledning När det är riktigt varmt eller vi anstränger oss kanske vi svettas och när det är kallt fryser vi. Du har säkert också hört att kroppstemperaturen ska vara ca 37 C

Läs mer

Fysiken i naturen och samhället

Fysiken i naturen och samhället Fysik åk 4-6 - Centralt innehåll Engergins oförstörbarhet och flöde Energikällor och energianvändning Väder och väderfenomen Fysiken i naturen och samhället Fysiken och Fysik åk 4-6 - Centralt innehåll

Läs mer

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Frågeställning: En jeep kan sammanlagt ha 200 liter bensin i tanken samt i lösa dunkar. Jeepen kommer 2,5 km på 1 liter bensin.

Läs mer

Planering för Fysik Elektricitet och magnetism årskurs 7

Planering för Fysik Elektricitet och magnetism årskurs 7 Planering för Fysik Elektricitet och magnetism årskurs 7 Syfte Använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som rör samhälle. genomföra systematiska undersökningar

Läs mer

Elektricitet och magnetism besläktade fenomen

Elektricitet och magnetism besläktade fenomen Elektricitet och magnetism besläktade fenomen En lysande uppgift Lärarhandledningen, uppgift 5, sida 286 (elevblad på sida 308), elevboken sida 91. Systematiska undersökningar. Formulering av enkla frågeställningar,

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Betyget D innebär att kunskapskraven för betyget E och till övervägande del för C är uppfyllda. KUNSKAPSKRAV I ÄMNET KEMI

Betyget D innebär att kunskapskraven för betyget E och till övervägande del för C är uppfyllda. KUNSKAPSKRAV I ÄMNET KEMI KUNSKAPSKRAV I ÄMNET KEMI Kunskapskrav för godtagbara kunskaper i slutet av årskurs 3 Eleven kan beskriva och ge exempel på enkla samband i naturen utifrån upplevelser och utforskande av närmiljön. I samtal

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva

Läs mer

Planering NO 8B, Vecka Ögat/Örat/Ljus/Ljud

Planering NO 8B, Vecka Ögat/Örat/Ljus/Ljud Planering NO 8B, Vecka 6 2016 Ögat/Örat/Ljus/Ljud Centralt innehåll Fysik Aktuella samhällsfrågor som rör fysik. Systematiska undersökningar. Formulering av enkla frågeställningar, planering, utförande

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...

Inledning...5. Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C... Innehåll Inledning...5 Bedömningsanvisningar...5 Allmänna bedömningsanvisningar...5 Bedömningsanvisningar Delprov B...6 Bedömningsanvisningar Delprov C...20 Provbetyg...37 Kopieringsunderlag för resultatsammanställning...38

Läs mer

Varför läser vi? LPP Fysik ht notebook. September 17, 2016

Varför läser vi? LPP Fysik ht notebook. September 17, 2016 LPP i Fysik ht. 2016 Varför läser vi Vad skall vi gå igenom? Vilka är våra mål? Så här ser planen ut Hur skall vi visa att vi når målen? 1 Varför läser vi? Eleverna skall ges förutsättningar att utveckla

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Lokal pedagogisk plan

Lokal pedagogisk plan Syfte med arbetsområdet: Undervisningen ska ge eleverna möjligheter att använda och utveckla kunskaper och redskap för att formulera egna och granska andras argument i sammanhang där kunskaper i fysik

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Inga vanliga medelvärden

Inga vanliga medelvärden Inga vanliga medelvärden Vanligtvis när vi pratar om medelvärden så menar vi det aritmetiska medelvärdet. I en del sammanhang så kan man dock inte räkna med det. Vi går här igenom olika sätt att tänka

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (2009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 2017-06-30 Vid sekretessbedömning

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Resistansen i en tråd

Resistansen i en tråd Resistansen i en tråd Inledning Varför finns det trådar av koppar inuti sladdar? Går det inte lika bra med någon annan tråd? Bakgrund Resistans är detsamma som motstånd och alla material har resistans,

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer