Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl"

Transkript

1 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Hannah Hall, tel Övrigt: För att få maximala 0 poäng på en uppgift krävs att antaganden och motiveringar noga anges samt att lösningen även i övrigt är så utförlig att den utan svårighet kan följas. För betyget Godkänd krävs minst 40 poäng, för betyget Väl Godkänd krävs minst 60 poäng. Uppgift En gymnasieskola har fått Internetuppkoppling. Efter detta har datorlärarna registrerat dåliga resultat på prov och misstänker att det kan bero på att eleverna lägger ned mycket mer tid på Internet än de borde göra. Därför väljs slumpvis 3 elever ut och det registreras hur mycket tid dessa använder på Internet per vecka. Tiden mått i minuter står på x-raden: Elev nr x y a) Rita en boxplot för x-värden i tabellen. b) Räkna ut den genomsnittliga tiden x på Internet per vecka för urvalet som består av de 3 eleverna. Räkna också ut standardavvikelsen s för samma urval. Skolan har också fått problem med lagringskapaciteten på nätverksservrarna och det antas bero på att de elever som använder mest tid på Internet hämtar flest filar och använder mest diskutrymme på servrarna. Varje elevs användning av diskutrymme (mätt i antal megabyte) står på y-raden i tabellen. c) Gör ett spridningsdiagram där du anger tid på Internet längs x-axlen och diskutrymme längs y-axeln.

2 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Uppgift Fortsätt med informationen från uppgift. a) Låt μ vara förväntad tid per vecka som används på Internet för en godtycklig elev på skolan. Sök ett 90 procents konfidensintervall för μ. b) Vilka antaganden måste du göra för att kunna ta fram ett konfidensintervall för μ? (Relatera tillbaka till det du tog fram i uppgift ). c) Verkar det föreligga ett linjärt samband mellan x och y? Motivera svaret. (Relatera tillbaka till det du tog fram i uppgift ). d) Använd minsta-kvadrat-metoden för att estimera regressionslinjen Y ' a + bx. Räkne hjälp: 3 3 xi 6350 yi 830 y x i i 05 3 Uppgift 3 Vi tänker oss att SAS har 5 avgångar från Malmö till Stockholm medan Malmö Aviation har 0 avgångar. En vinterdag med oväder blev avgångarna från Malmö försenade. Sannolikheten för att ett slumpist SAS-flygplan skulle vara försenat var 0., medan motsvarande sannolikhet för Malmö Aviation var 0.3. Vi definierar följande händelser: S ett slumpvis valt flygplan är ett SAS-plan B ett slumpvis valt flygplan är ett MA-plan F ett slumpvis valt flygplan är försenat a) Ange sannolikheterna S), B), P F S och P F B b) Sök sannolikheten för att ett slumpvis vald plan är försenat. c) Vilken är sannolikheten för att ett slumpvis valt plan som är försenat är ett SAS-plan? d) Vilken är sannolikheten för att ett slumpvis valt plan som är i tid är ett SAS-plan? Uppgift 4 En bra fotbollsspelare skickar många passningar till medspelarna under en fotbollsmatch. Ibland blir det felpassningar. Vi låter X vara antalet felpassningar under en match. Vi kan betrakta X som en slumpvariabel med sannolikhetsfördelningen: x Xx) 0,05 0,5 0,30 0,5 0,5 0,0 a) Bestäm och skissa fördelningsfuntionen F(x) för X. b) Beräkna E(X) och Var(X).

3 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Låt X och X representera antalet felpassningar i två på varandra följande fotbollsmatcher. Antag att X och X är oberoende. c) Vad är sannolikheten för att spelaren inte gör några felpassningar under de två matcherna? d) Hur sannolikt är det att han gör exakt två felpassningar sammanlagt i de två matcherna? Uppgift 5 Vi tänker oss att en arbetssökande student skickar ut en lika väl formulerad platsansökan till 5 aktuella arbetsgivare. Vi räknar med att sannolikheten för att bli kallad till intervju är lika, π 0,, för varje ansökan som studenten skickar. Studenten betraktar det som ett delmål att bli kallad till intervju. a) Varför kan studentens platsansökan betraktas som ett binomialt försök? b) Hur stor är sannolikheten för att studenten blir kallad till: i. Minst en intervju ii. Fler än fyra intervju iii. Två, tre eller fyra intervjuer c) Till hur många intervjuer kan studenten förvänta sig att bli kallad? Sök också ett uttryck för hur detta tal varierar. En annan student skriver lite bättre ansökningar och har lite bättre kontakter så sannolikheten för att bli kallad till intervju är 0,5 för varje ansökan. Denna student skickar in tre ansökningar. d) Vad är sannolikheten för att denne student blir kallad till minst en intervju? Uppgift 6 Längden på graviditeter, X dagar, antas vara normalfördelad med väntevärde μ 66 dagar och standardavvikelsen σ 6. En graviditet som inte avviker mer än 4 dagar från förväntad längd sägs vara av normal längd. a) Vad är sannolikheten för att en graviditet har normal längd? Följande deluppgifter gäller fyra gravida väninnor. Längden på deras graviditeter betecknas X, X, X 3, X 4 och antas vara oberoende och normalfördelade med samma väntevärde och standardavvikelse som ovan. b) Vad är sannolikheten för att den genomsnittliga längden av de fyra graviditeterna ska vara av normal längd? c) Vad är sannolikheten för att alla fyras graviditeter blir av normal längd? d) Vad är sannolikheten för att åtminstone en av dem fyra ska föda för tidigt?

4 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik e) En av väninnornas graviditet har redan varit i 5 ( 66-4) dagar. Sök den betingade sannolikheten för att hennes graviditet blir av normal längd under förutsättning att den redan har pågått i 5 dagar. Uppgift 7 a) Formulera Centrala gränsvärdessatsen med hjälp av följande diagram. b) Hur hjälper oss Centrala gränsvärdessatsen när vi drar slutsatser om en population (dvs. gör inferens)? c) Förklara skillnaden mellan praktiskt signifikans kontra statistisk signifikans. d) Vilket konfidensintervall är bredast, ett med en 99 % konfidensgrad eller ett med en 90 % konfidensgrad (allt annat lika)? Motivera. Uppgift 8 Sant eller falsk? a) Det är alltid så att Typ II fel) Typ I fel). b) Om vi förkastar H0: μ 0 vid ett test med α 0, 0, då ska vi också förkasta den i ett test med α 0, 05. c) Ett test får p-värdet 0,043 med H 0 : μ 0 mot H : μ 0. Om vi skulle göra ett 95% konfidensintervall för μ istället skulle vi få att 0 fanns inom intervallet. d) Ett 95% konfidensintervall för μ ger [96,0]. Då gäller det att ett hypotestest, med samma data, av H 0 : μ 00 mot H : μ 00 ger ett p-värdet > 0,05. e) För en bestämd signifikansnivå α, gäller att sannolikheten för Typ II felet ökar när urvalets storlek ökar.

5 Hannahs Lösningar till tentan: Torsdag 5 juni 008 Uppgift a) 3p Boxplot n 3 Ordna data: 0, 0, 45, 45, 60, 90, 0, 0, 50, 80, 80, 40, 70 Från vår data: Ordnings tal för Q : Q 45 Ordnings tal för Q : Q 0 Ordnings tal för Q3 : Q3 80 n ,5 : e 4 4 n : e n ( ) 3( ) 0,5 : e 4 4 Extrema observationer: Outlier > Q3 +.5(Q3-Q) 80+,5(80-45) 38,5 Outlier < Q3 -.5(Q3-Q) -,5 Vi har inga extrema observationer i vår data, då är: MIN 0 MAX 70 Statistics x N Mean Median Std. Deviation Variance Range Minimum Maximum Percentiles Valid Missing ,38 0,00 86,5 7439, ,00 0,00 80,00

6 Kommentera fördelningen med egna ord. b) 4p Genomsnittliga tiden x på Internet per vecka, från stickprovet 500 x x 5,3846 n 3 Standardavvikelsen s, från stickprovet s ( x x) n x ( x) n n ,5 c) 3p Spridningsdiagram 0 5 Y 0 5 R Sq Linear 0, X Kommentera fördelningen och sambandet med egna ord.

7 Uppgift a) 3p μ : förväntad tid per vecka som används på Internet för en godtycklig elev på skolan s 90 procents konfidensintervall för μ : x ± t n t vid n- frihetsgrader, och ett 90% konfidensintervall t, ,5 ±, ,385 ± 4,58 [ 7,804;57, 966] Med 90% säkerhet ligger genomsnittstid spenderat på Internet mellan 7 och 58 minuter. (Notera bredden på intervallet hur användbar är intervallet?) b) 3p I detta exempel, för att kunna beräkna ett KI för μ måste vi anta att X är normalfördelad, detta eftersom vi har ett litet urval och kan inte utnyttja CGS. Eftersom X antas vara NF, då är stickprovsmedelvärde X också NF. Utifrån boxploten vid upp se vi inget tecken på att X skiljer sig från en NF; medelvärdet och medianen ligger nära varandra i stickprovet, fördelningen se ungefär symmetrisk, det finns inga extrema observationer. Men det är svårt att vara helt säker eftersom stickprovet är så lite. Det känns rimlig att tid på Internet är normalfördelad, men vi får anta att det finns inga extrema studenter som spenderar extremt mycket tid framför Internet. Det är kanske rimligt att anta detta eftersom dem är på skolan, om dem hade varit hemma det hade varit en annan fråga. c) p Spridningsdiagrammet tyder på en positiv linjär samband. r0,89 nxy x y r ( n x ( x) )( ny ( y) ) r ( )( ) r 0, r 0,8875 0,7877 3

8 d) p Vi söker Y ' a + bx. 3 3 b 3 xi 6350 yi 830 y x i i 05 x i n xy 3 y i x ( x) n x 3(05) b 3(6350) b b0,0684 a y bx a 0,0684, Y ' a + bx Y ', + 0, 07 X y 3 4

9 Uppgift 3 S ett slumpvis valt flygplan är ett SAS-plan B ett slumpvis valt flygplan är ett MA-plan F ett slumpvis valt flygplan är försenat Rita ett träddiagram med alla möjliga händelserna. a) p S)5/50,6, B)0/50,4, b) p Enligt lag om total sannolikhet vet vi att P ( F) S) P F S + B) P F B 0,4 P F S 0, och P F B 0,3 c) 3p Enligt Bayessats vet vi att P S F SF) S) P F S 0,(0,6) 0, 50 F) F) 0,4 d) 3p Enligt Bayessats vet vi att SF ) S) P F P S F F ) F ) S S)( P F F) S 0,6( 0,) 0,4 0,63 5

10 Uppgift 4 a) p Fördelningsfunktionen F(x) X x) ges i tabellen: x X x) 0,05 0,0 0,50 0,75 0,90,00,00 0,80 0,60 Fx 0,40 0,0 0, X b) 4p E( X ) x X x) 0(0,05) + (0,5) (0,0),6 Var( X ) x X x) E( x) [ 0 (0,05) + (0,5) (0,0)],6 8,5,6, 74 c) p noll fel) P X 0ochX 0) X 0) X 0) 0, 005 ( d) p två fel) P ( X 0ochX ) + P ( X ochx ) + P ( X ochx 0) 0,05(0,3) + 0,5(0,5) + 0,3(0,05) 0,055 6

11 Uppgift 5 a) 3p X räknar antal intervjuer som studenten blir kallad till X är Binomial eftersom: oberoende försök (kommentera), två möjliga utfall, med samma sannolikhet π 0, X ~ Bin( n 5, π 0,) b) 3p Från tabellen P ( X ) X 0) 0,8 5 0,9648 P ( X > 4) X 4) 0,8358 0,64 P ( X 4) X 4) X ) 0,8358 0,67 0,6687 c) p E ( X ) np 5(0,) 3,0 Var ( X ) np( p) 5(0,)(0,8),4 d) p Y är antal intervjuer av tre försök för en annan person. Y ~ Bin( n 3, p 0,5) P ( Y ) 0,

12 Uppgift 6 X ~ N (66,6) a) p P ( 5 < X < 80) Z < 0,88) Z < 0,88) 0,806 0,894 0,6 b) p X är NF, då är X också NF X ~ N (66,6 / 4 8) P ( 5 < X < 80) Z <,75) Z <,75) 0,9599 0,040 0,998 c) p 4 4 alla fyra av normal längd) normal) 0,6 0, 489 d) p en för tidig födsel) P ( X < 5) Z < 0,88) 0, 894 minst en av fyra för tidig) -ingen för tidig) ( 0,894) 0, 568 e) p normal givit ej för tidigt) normal) 0,6 0, 7663 ejförtidig) 0,894 8

13 Uppgift 7 a) 3p Sid. 75 i boken Kommentera med egna ord. b) 3p Vi kan skatta population parametrar genom att använda oss av ett slumpmässigt urval. Men vi måste kunna säga någonting om hur säker vi är att vår skattning speglar det sanna värdet i populationen (den som vi egentligen vill ta reda på). Med hjälp av CGS kan vi säga hur säker vi är i vår skattning eftersom när n är tillräckligt stor då, enligt CGS, är fördelningen för stickprovsmedelvärdet approx normal. Då kan vi göra beräkningar, som ett konfidensintervall, och ange ett intervall där det är sannolikt att populationsvärde ligger. c) p Om man har tillräckligt många observationer så kan man hitta en signifikant skillnad. Denna skillnad behöver inte ha någon praktiskt betydelse dock! Hitta på egna exempel. d) p Ett 99% konfidensintervall är säkrare än ett 90%, dvs. det är bredare. När vi beräkna ett intervall gör vi : skattning ± felmarginal σ Tex. Konfidensintervall för μ : x ± z n Bredden beror på felmarginals storlek. Om vi antar, tex, att vår skattning är normalfördelad (tex. enligt CGS) och om populationsstandardavvikelse är känd, z värdet vid ett 99% konfidensintervall är,576, motsvarande vid ett 90% intervall är,645. Det gör att felmarginalen blir större, och intervallet breddare. Även om populationsstandardavvikelse är okänd och vi använder oss av t-fördelningen skulle vi få ett större t-värde. s Tex. konfidensintervall för μ : x ± t n Uppgift 8 p vardera a) Falsk b) Sant c) Falsk d) Sant e) Falsk 9

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 7 mars 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Föreläsning 5. Kapitel 6, sid Inferens om en population

Föreläsning 5. Kapitel 6, sid Inferens om en population Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 4 april 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa. Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Tentamen i Statistik, STA A13 (4 poäng) Lördag 11 november 2006, Kl

Tentamen i Statistik, STA A13 (4 poäng) Lördag 11 november 2006, Kl Tentamen i Statistik, STA A13 ( poäng) Lördag 11 november 00, Kl 09.00-13.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola

Läs mer

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl

TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl ; Örebro universitet Handelshögskolan, statistik Statistik A, Grundläggande statistik TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl 08.15-13.15 Hjälpmedel: Miniräknare, ett A4-papper med egna anteckningar, tabell-

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-01 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.

Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik. UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 29 oktober, 2016 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN): Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-03-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng. UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004, TEN 06-06-0 Hjälpmedel: Formler oh tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall vara

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-10-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:

Läs mer