Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl"

Transkript

1 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Hannah Hall, tel Övrigt: För att få maximala 0 poäng på en uppgift krävs att antaganden och motiveringar noga anges samt att lösningen även i övrigt är så utförlig att den utan svårighet kan följas. För betyget Godkänd krävs minst 40 poäng, för betyget Väl Godkänd krävs minst 60 poäng. Uppgift En gymnasieskola har fått Internetuppkoppling. Efter detta har datorlärarna registrerat dåliga resultat på prov och misstänker att det kan bero på att eleverna lägger ned mycket mer tid på Internet än de borde göra. Därför väljs slumpvis 3 elever ut och det registreras hur mycket tid dessa använder på Internet per vecka. Tiden mått i minuter står på x-raden: Elev nr x y a) Rita en boxplot för x-värden i tabellen. b) Räkna ut den genomsnittliga tiden x på Internet per vecka för urvalet som består av de 3 eleverna. Räkna också ut standardavvikelsen s för samma urval. Skolan har också fått problem med lagringskapaciteten på nätverksservrarna och det antas bero på att de elever som använder mest tid på Internet hämtar flest filar och använder mest diskutrymme på servrarna. Varje elevs användning av diskutrymme (mätt i antal megabyte) står på y-raden i tabellen. c) Gör ett spridningsdiagram där du anger tid på Internet längs x-axlen och diskutrymme längs y-axeln.

2 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Uppgift Fortsätt med informationen från uppgift. a) Låt μ vara förväntad tid per vecka som används på Internet för en godtycklig elev på skolan. Sök ett 90 procents konfidensintervall för μ. b) Vilka antaganden måste du göra för att kunna ta fram ett konfidensintervall för μ? (Relatera tillbaka till det du tog fram i uppgift ). c) Verkar det föreligga ett linjärt samband mellan x och y? Motivera svaret. (Relatera tillbaka till det du tog fram i uppgift ). d) Använd minsta-kvadrat-metoden för att estimera regressionslinjen Y ' a + bx. Räkne hjälp: 3 3 xi 6350 yi 830 y x i i 05 3 Uppgift 3 Vi tänker oss att SAS har 5 avgångar från Malmö till Stockholm medan Malmö Aviation har 0 avgångar. En vinterdag med oväder blev avgångarna från Malmö försenade. Sannolikheten för att ett slumpist SAS-flygplan skulle vara försenat var 0., medan motsvarande sannolikhet för Malmö Aviation var 0.3. Vi definierar följande händelser: S ett slumpvis valt flygplan är ett SAS-plan B ett slumpvis valt flygplan är ett MA-plan F ett slumpvis valt flygplan är försenat a) Ange sannolikheterna S), B), P F S och P F B b) Sök sannolikheten för att ett slumpvis vald plan är försenat. c) Vilken är sannolikheten för att ett slumpvis valt plan som är försenat är ett SAS-plan? d) Vilken är sannolikheten för att ett slumpvis valt plan som är i tid är ett SAS-plan? Uppgift 4 En bra fotbollsspelare skickar många passningar till medspelarna under en fotbollsmatch. Ibland blir det felpassningar. Vi låter X vara antalet felpassningar under en match. Vi kan betrakta X som en slumpvariabel med sannolikhetsfördelningen: x Xx) 0,05 0,5 0,30 0,5 0,5 0,0 a) Bestäm och skissa fördelningsfuntionen F(x) för X. b) Beräkna E(X) och Var(X).

3 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Låt X och X representera antalet felpassningar i två på varandra följande fotbollsmatcher. Antag att X och X är oberoende. c) Vad är sannolikheten för att spelaren inte gör några felpassningar under de två matcherna? d) Hur sannolikt är det att han gör exakt två felpassningar sammanlagt i de två matcherna? Uppgift 5 Vi tänker oss att en arbetssökande student skickar ut en lika väl formulerad platsansökan till 5 aktuella arbetsgivare. Vi räknar med att sannolikheten för att bli kallad till intervju är lika, π 0,, för varje ansökan som studenten skickar. Studenten betraktar det som ett delmål att bli kallad till intervju. a) Varför kan studentens platsansökan betraktas som ett binomialt försök? b) Hur stor är sannolikheten för att studenten blir kallad till: i. Minst en intervju ii. Fler än fyra intervju iii. Två, tre eller fyra intervjuer c) Till hur många intervjuer kan studenten förvänta sig att bli kallad? Sök också ett uttryck för hur detta tal varierar. En annan student skriver lite bättre ansökningar och har lite bättre kontakter så sannolikheten för att bli kallad till intervju är 0,5 för varje ansökan. Denna student skickar in tre ansökningar. d) Vad är sannolikheten för att denne student blir kallad till minst en intervju? Uppgift 6 Längden på graviditeter, X dagar, antas vara normalfördelad med väntevärde μ 66 dagar och standardavvikelsen σ 6. En graviditet som inte avviker mer än 4 dagar från förväntad längd sägs vara av normal längd. a) Vad är sannolikheten för att en graviditet har normal längd? Följande deluppgifter gäller fyra gravida väninnor. Längden på deras graviditeter betecknas X, X, X 3, X 4 och antas vara oberoende och normalfördelade med samma väntevärde och standardavvikelse som ovan. b) Vad är sannolikheten för att den genomsnittliga längden av de fyra graviditeterna ska vara av normal längd? c) Vad är sannolikheten för att alla fyras graviditeter blir av normal längd? d) Vad är sannolikheten för att åtminstone en av dem fyra ska föda för tidigt?

4 Karlstads Universitet Avdelningen för Nationalekonomi och Statistik e) En av väninnornas graviditet har redan varit i 5 ( 66-4) dagar. Sök den betingade sannolikheten för att hennes graviditet blir av normal längd under förutsättning att den redan har pågått i 5 dagar. Uppgift 7 a) Formulera Centrala gränsvärdessatsen med hjälp av följande diagram. b) Hur hjälper oss Centrala gränsvärdessatsen när vi drar slutsatser om en population (dvs. gör inferens)? c) Förklara skillnaden mellan praktiskt signifikans kontra statistisk signifikans. d) Vilket konfidensintervall är bredast, ett med en 99 % konfidensgrad eller ett med en 90 % konfidensgrad (allt annat lika)? Motivera. Uppgift 8 Sant eller falsk? a) Det är alltid så att Typ II fel) Typ I fel). b) Om vi förkastar H0: μ 0 vid ett test med α 0, 0, då ska vi också förkasta den i ett test med α 0, 05. c) Ett test får p-värdet 0,043 med H 0 : μ 0 mot H : μ 0. Om vi skulle göra ett 95% konfidensintervall för μ istället skulle vi få att 0 fanns inom intervallet. d) Ett 95% konfidensintervall för μ ger [96,0]. Då gäller det att ett hypotestest, med samma data, av H 0 : μ 00 mot H : μ 00 ger ett p-värdet > 0,05. e) För en bestämd signifikansnivå α, gäller att sannolikheten för Typ II felet ökar när urvalets storlek ökar.

5 Hannahs Lösningar till tentan: Torsdag 5 juni 008 Uppgift a) 3p Boxplot n 3 Ordna data: 0, 0, 45, 45, 60, 90, 0, 0, 50, 80, 80, 40, 70 Från vår data: Ordnings tal för Q : Q 45 Ordnings tal för Q : Q 0 Ordnings tal för Q3 : Q3 80 n ,5 : e 4 4 n : e n ( ) 3( ) 0,5 : e 4 4 Extrema observationer: Outlier > Q3 +.5(Q3-Q) 80+,5(80-45) 38,5 Outlier < Q3 -.5(Q3-Q) -,5 Vi har inga extrema observationer i vår data, då är: MIN 0 MAX 70 Statistics x N Mean Median Std. Deviation Variance Range Minimum Maximum Percentiles Valid Missing ,38 0,00 86,5 7439, ,00 0,00 80,00

6 Kommentera fördelningen med egna ord. b) 4p Genomsnittliga tiden x på Internet per vecka, från stickprovet 500 x x 5,3846 n 3 Standardavvikelsen s, från stickprovet s ( x x) n x ( x) n n ,5 c) 3p Spridningsdiagram 0 5 Y 0 5 R Sq Linear 0, X Kommentera fördelningen och sambandet med egna ord.

7 Uppgift a) 3p μ : förväntad tid per vecka som används på Internet för en godtycklig elev på skolan s 90 procents konfidensintervall för μ : x ± t n t vid n- frihetsgrader, och ett 90% konfidensintervall t, ,5 ±, ,385 ± 4,58 [ 7,804;57, 966] Med 90% säkerhet ligger genomsnittstid spenderat på Internet mellan 7 och 58 minuter. (Notera bredden på intervallet hur användbar är intervallet?) b) 3p I detta exempel, för att kunna beräkna ett KI för μ måste vi anta att X är normalfördelad, detta eftersom vi har ett litet urval och kan inte utnyttja CGS. Eftersom X antas vara NF, då är stickprovsmedelvärde X också NF. Utifrån boxploten vid upp se vi inget tecken på att X skiljer sig från en NF; medelvärdet och medianen ligger nära varandra i stickprovet, fördelningen se ungefär symmetrisk, det finns inga extrema observationer. Men det är svårt att vara helt säker eftersom stickprovet är så lite. Det känns rimlig att tid på Internet är normalfördelad, men vi får anta att det finns inga extrema studenter som spenderar extremt mycket tid framför Internet. Det är kanske rimligt att anta detta eftersom dem är på skolan, om dem hade varit hemma det hade varit en annan fråga. c) p Spridningsdiagrammet tyder på en positiv linjär samband. r0,89 nxy x y r ( n x ( x) )( ny ( y) ) r ( )( ) r 0, r 0,8875 0,7877 3

8 d) p Vi söker Y ' a + bx. 3 3 b 3 xi 6350 yi 830 y x i i 05 x i n xy 3 y i x ( x) n x 3(05) b 3(6350) b b0,0684 a y bx a 0,0684, Y ' a + bx Y ', + 0, 07 X y 3 4

9 Uppgift 3 S ett slumpvis valt flygplan är ett SAS-plan B ett slumpvis valt flygplan är ett MA-plan F ett slumpvis valt flygplan är försenat Rita ett träddiagram med alla möjliga händelserna. a) p S)5/50,6, B)0/50,4, b) p Enligt lag om total sannolikhet vet vi att P ( F) S) P F S + B) P F B 0,4 P F S 0, och P F B 0,3 c) 3p Enligt Bayessats vet vi att P S F SF) S) P F S 0,(0,6) 0, 50 F) F) 0,4 d) 3p Enligt Bayessats vet vi att SF ) S) P F P S F F ) F ) S S)( P F F) S 0,6( 0,) 0,4 0,63 5

10 Uppgift 4 a) p Fördelningsfunktionen F(x) X x) ges i tabellen: x X x) 0,05 0,0 0,50 0,75 0,90,00,00 0,80 0,60 Fx 0,40 0,0 0, X b) 4p E( X ) x X x) 0(0,05) + (0,5) (0,0),6 Var( X ) x X x) E( x) [ 0 (0,05) + (0,5) (0,0)],6 8,5,6, 74 c) p noll fel) P X 0ochX 0) X 0) X 0) 0, 005 ( d) p två fel) P ( X 0ochX ) + P ( X ochx ) + P ( X ochx 0) 0,05(0,3) + 0,5(0,5) + 0,3(0,05) 0,055 6

11 Uppgift 5 a) 3p X räknar antal intervjuer som studenten blir kallad till X är Binomial eftersom: oberoende försök (kommentera), två möjliga utfall, med samma sannolikhet π 0, X ~ Bin( n 5, π 0,) b) 3p Från tabellen P ( X ) X 0) 0,8 5 0,9648 P ( X > 4) X 4) 0,8358 0,64 P ( X 4) X 4) X ) 0,8358 0,67 0,6687 c) p E ( X ) np 5(0,) 3,0 Var ( X ) np( p) 5(0,)(0,8),4 d) p Y är antal intervjuer av tre försök för en annan person. Y ~ Bin( n 3, p 0,5) P ( Y ) 0,

12 Uppgift 6 X ~ N (66,6) a) p P ( 5 < X < 80) Z < 0,88) Z < 0,88) 0,806 0,894 0,6 b) p X är NF, då är X också NF X ~ N (66,6 / 4 8) P ( 5 < X < 80) Z <,75) Z <,75) 0,9599 0,040 0,998 c) p 4 4 alla fyra av normal längd) normal) 0,6 0, 489 d) p en för tidig födsel) P ( X < 5) Z < 0,88) 0, 894 minst en av fyra för tidig) -ingen för tidig) ( 0,894) 0, 568 e) p normal givit ej för tidigt) normal) 0,6 0, 7663 ejförtidig) 0,894 8

13 Uppgift 7 a) 3p Sid. 75 i boken Kommentera med egna ord. b) 3p Vi kan skatta population parametrar genom att använda oss av ett slumpmässigt urval. Men vi måste kunna säga någonting om hur säker vi är att vår skattning speglar det sanna värdet i populationen (den som vi egentligen vill ta reda på). Med hjälp av CGS kan vi säga hur säker vi är i vår skattning eftersom när n är tillräckligt stor då, enligt CGS, är fördelningen för stickprovsmedelvärdet approx normal. Då kan vi göra beräkningar, som ett konfidensintervall, och ange ett intervall där det är sannolikt att populationsvärde ligger. c) p Om man har tillräckligt många observationer så kan man hitta en signifikant skillnad. Denna skillnad behöver inte ha någon praktiskt betydelse dock! Hitta på egna exempel. d) p Ett 99% konfidensintervall är säkrare än ett 90%, dvs. det är bredare. När vi beräkna ett intervall gör vi : skattning ± felmarginal σ Tex. Konfidensintervall för μ : x ± z n Bredden beror på felmarginals storlek. Om vi antar, tex, att vår skattning är normalfördelad (tex. enligt CGS) och om populationsstandardavvikelse är känd, z värdet vid ett 99% konfidensintervall är,576, motsvarande vid ett 90% intervall är,645. Det gör att felmarginalen blir större, och intervallet breddare. Även om populationsstandardavvikelse är okänd och vi använder oss av t-fördelningen skulle vi få ett större t-värde. s Tex. konfidensintervall för μ : x ± t n Uppgift 8 p vardera a) Falsk b) Sant c) Falsk d) Sant e) Falsk 9

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 27 mars 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 7 mars 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 4 april 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Tentamen i Statistik, STA A13 (4 poäng) Lördag 11 november 2006, Kl

Tentamen i Statistik, STA A13 (4 poäng) Lördag 11 november 2006, Kl Tentamen i Statistik, STA A13 ( poäng) Lördag 11 november 00, Kl 09.00-13.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl

TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl ; Örebro universitet Handelshögskolan, statistik Statistik A, Grundläggande statistik TENTAMEN FREDAGEN DEN 23 MARS 2012, Kl 08.15-13.15 Hjälpmedel: Miniräknare, ett A4-papper med egna anteckningar, tabell-

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng. UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med

Läs mer

Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling lånas i tentamenslokalen.

Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling lånas i tentamenslokalen. Grundläggande statistik med regressionsanalys Ladokkod: TT131A 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-28 Tid: 14-18 Hjälpmedel: Miniräknare

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson,

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, 5--9 Lösningförslag skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen : Sannolikhetsteori

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Tentamentsskrivning: Matematisk statistik TMA Tentamentsskrivning i Matematisk statistik TMA321, 4.5 hp.

Tentamentsskrivning: Matematisk statistik TMA Tentamentsskrivning i Matematisk statistik TMA321, 4.5 hp. Tentamentsskrivning: Matematisk statistik TMA32 Tentamentsskrivning i Matematisk statistik TMA32, 4.5 hp. Tid: Onsdag den 2 jan, 20 kl 4:00-8:00 Examinator och jour: Erik Broman, tel. 772-354, mob. 073

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Omtentamen i Statistik A1, 2013 08 15 Skrivtid: 3 timmar (08:00 11:00) Ansvarig lärare: Åsa Johansson poäng = 45 p Betyg (U/G/VG):

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-01-15 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: A Jonsson, J Martinsson,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer