Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
|
|
- Helen Cecilia Hansson
- för 10 månader sedan
- Visningar:
Transkript
1 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS, Autumn 2008) 1 Några speciella Sannolikhetsfördelningar Kap. 6 Diskreta Kontinuerliga Kap. 7 & 9 Sannolikhetsfördelningar Sannolikhetsfördelningar Sannolikhetsfördelningar Bernoulli Binomial Hypergeometriska Poisson Likformig Normal Standard Normal Exponential 2
2 Kontinuerliga Sannolikhetsfördelningar En kontinuerlig stokastisk variabel kan anta alla värden inom ett intervall på den reella talaxeln (intervallet kan ha oändlig utsträckning). tjocklek (eng. thickness) av ett föremål tid för att utföra ett uppgift temperatur längd Dessa kan anta vilket värde som helst (inom rimliga intervall) beroende på hur korrekt man vill mäta. Fördelningsfunktionen, F(x) Fördelningsfunktionen, F(x), för ett kontinuerlig stokastisk variabel X ger sannolikheten att X inte är större än x. F(x) = P(X x) Låt a och b vara två möjliga värde av X, så att a < b. Sannolikheten att X ligger mellan a och b är P(a < X < b) = F(b) F(a)
3 Täthetsfunktionen, f(x) Täthetsfunktionen, f(x), för ett kontinuerlig stokastisk variabel är ett funktion med följande egenskaper: 1. f(x) > 0 for alla värde av x 2. Ytan under täthetsfunktionen f(x) över alla möjliga värde av X är like med Sannolikheten att X ligger mellan två värde är just ytan under kurvan av täthetsfunktionen, f(x), mellan de två värdena. 4. Fördelningsfunktionen, F(x 0 ), är ytan under täthetsfunktionen, f(x), mellan den minsta värden och x 0 : F(x = 0 0) f(x)dx xm där x m är den minsta värden av stokastiska variabeln X. x Sannolikhet som yta under f(x) Den färgade (röd) yta under kurvan ger sannolikheten att hitta ett värde på X mellan a och b (sannolikheten att den stokastiska variabeln ligger mellan a och b ) f(x) P ( a x b) = P ( a < x < b) Observera att p(x = a) = 0, P(X = b) = 0. Ytan över en punkt är lika med 0. a b x
4 Väntevärde och varians för kontinuerliga stokastiska variabler Väntevärde: X = E(X) = xmax xf ( x) dx xmin Varians: xmax X = E[(X X) ] = (x X) xmin f ( x) dx Linjära funktioner av stokastiska variabler Låt W = a + bx, där X har väntevärde X och varians X 2, och låt a and b vara konstanter. Då gäller att: Väntevärde för W: = E(a varians för W: W + bx) = a + b X Standardavvikelsen för W: = Var(a + bx) = b W X W = b X
5 Ett speciell fall av linjära funktioner Ett viktigt linjär funktion av X är: = X X X kallas för den Standardiserade stokastisk variabeln och har väntevärde 0 och varians 1. Likformigfördelningen Sannolikehtsfördelningar Kontinuerliga Sannolikehtsfördelningar Likformig Normal Standard Normal Exponentiell
6 Likformigfördelningen Likformigfördelningen är sannolikhetsfördelningen där alla möjliga värden av stokastiska variabeln har samma (lika) sannolikhet. f(x) Ytan under den likformig täthetsfunktionen är 1.0 x min x max x Likformig täthetsfunktionen f(x) = 1, b a 0 a x b annars där f(x) = värdet av täthetsfunktionen för när X = x a = minsta värdet för X b = högsta värdet för X
7 Likformigfördelning: egenskaper För ett stokastisk variabel X som är likformigfördelad mellan a och b (där a < b) gäller: Väntevärde a + b = E( X ) = 2 Varians 2 (b - a) = Var( X ) = 12 2 Likformigfördelning: exempel Om stokastiska variabeln X är likformigfördelad inom intervallet 2 x 6, då gäller att 1 f(x) = 6-2 =.25 for 2 x 6 f(x).25 a + b 2+ 6 = = 2 2 X = x X = (b - a) = 12 (6-2) =
8 Normalfördelningen Sannolikehtsfördelningar Kontinuerliga Sannolikehtsfördelningar Likformig Normal Standard Normal Exponentiell Normalfördelningen Bell Shaped Symmetrisk Medelvärde, median och typvärde är lika Läge bestäms av medelvärdet µ Spridning bestäms av standardavvikelsen σ Teoretisk kan X anta värde inom oändligt intervall: - till + f(x) µ σ Medelvärde = Median = Typvärde x
9 Normalfördelningen (fort.) Normalfördelningen kan användas för att approximera sannolikhetsfördelningar av andra stokastiska variabler. sannolikhetsfördelningen för stickprovsmedelvärde närmar sig normalfördelning när stickprovstorleken ökar Beräkning av sannolikheter är direkt och elegant Används för att modellera flera verkliga datamaterial för beslutunderlag inom många tillämpningsområden. Normalfördelningen (forts.) Genom att variera parametrarna µ och σ får vi olika normalfördelningar
10 Normalfördelningen: form f(x) Ändring av µ flyttar kurvan till höger eller vänster. σ Ändring av σ ökar eller minskar spridningen. µ x En stokastisk variabel X som är normalfördelad med medelvärde 2 2 µ och varians betecknas X ~ N(, ) Normalfördelningen: täthetsfunktionen Täthetsfunktionen för normalfördelning med 2 medelvärde och varians är: f(x) = 1 2 exp σ 1 2 x 2 där e = den matematisk konstanten (approxim ) π = den matematisk konstanten (approxim ) µ = populationsmedelvärdet σ = populations standardavvikelsen x = värde på den kontinuerlig stokastisk variabel, < x <
11 Normalfördelningen: fördelningsfunktionen (Kumulativ)fördelningsfunktionen för normalfördelning med medelvärde och 2 varians är: F(x0) = P(X x0) f(x) P(X x0 ) 0 x 0 x Normalfördelningen: att hitta sannolikheter P(a < X < b) = P(a < X < µ ) + P( µ < = P(X < b) P(X < a) = F(b) F(a) X < b) a µ b x
12 Att hitta sannolikheter (forts.) F(b) = P(X < b) a µ b x F(a) = P(X < a) a µ b x P(a < X < b) = F(b) F(a) a µ b x Standardiserade Normalfördelningen Varje normalfördelning med givet medelvärde och varians kan transformeras till den Standardiserade normalfördelningen,, med medelvärde 0 och varians 1. ~ N(01), f() 1 0 Transformationen av X till görs genom att subtrahera medelvärdet från X och dividera skillnaden med standardavvikelsen: X µ = σ
13 Standardiserade Normalfördelningen: exempel Om X är normalfördelade med medelvärde 100 och standardavvikelse 50, då motsvarar X = 200 till X = = = Detta betyder att X = 200 är två standardavvikelser över medelvärdet. X = 0 är två standardavvikelser under medelvärdet X = 150 är ett standardavvikelser över medelvärdet X = -250 är 1.5 standardavvikelser under medelvärdet Osv. Jämföra X- och -enheter X 2.0 (µ = 100, σ = 50) (µ = 0, σ = 1) Observera att formen på fördelningen har inte ändrats: endast nivån (eng. scale) har ändrats. Vi kan beskriva (uttrycka) problemet i den originella enheter (X) eller i den standardiserade enheter ().
14 Att hitta sannolikheter f(x) a µ b µ P(a < X < b) = P < < σ σ b µ a µ = F F σ σ a µ b x a µ σ 0 b µ σ Sannolikheter som yta under kurvan f(x). Den totala ytan under kurvan är 1.0, och kurvan är symmetrisk, så att hälften är över medelvärdet och hälften under. f(x) P( < X < µ) = 0.5 P(µ < X < ) = µ P( < X < ) = 1.0 X
15 Att läsa sannolikheter från standard normal tabellen (LLL, tabell A3, sid. A13) Standardiserade normal tabellen i LLL ger ytan mellan 0 och ett specificerade -värde. För ett givet -värde a, tabellen visar P(0 < < a ) (ytan under kurvan mellan 0 och a) P(0 < < a) 0 a Att läsa sannolikheter från standard normal tabellen (forts.) Exempel: P(0 < < 2.00) =
16 Att läsa sannolikheter från standard normal tabellen (forts.) För att hitta sannolikheter för negativa -värden, utnyttjar vi faktumet att fördelningen är symetrisk:.9772 Exempel: P( < -2.00) = P( > 2.00) = = Allmän procedur för att hitta sannolikheter För att hitta P(a < X < b) när X är normalfördelad med givet medelvärde µ och standardavvikelse σ: Rita den normala kurvan i X-enheter Transformera X-värdena till -värden Använd tabellen för för att läsa sannolikheterna
17 Hitta sannolikheterna: exempel Anta att X är normalfördelad med medelvärde 8.0 och standardavvikelse 5.0 Vad är P(X < 8.6)? X Hitta sannolikheter: exempel (forts.) X är normalfördelad med medelvärde 8.0 och standardavvikelse 5.0. P(X < 8.6) =? X µ = = = 0.12 σ 5.0 µ = 8 σ = 5 µ = 0 σ = X P(X < 8.6) P( < 0) + P(0 < < 0.12) = P(0 < < 0.12)
18 Hitta sannolikheter: exempel (forts.) Standardiserade Normal Sannolikhetstabellen z P(0 < < z) P(X < 8.6) = P(0 < < 0.12) = = P(0 < < 0.12) = Sannolikheter i övre svansen X är normalfördelad med medelvärde 8.0 och standardavvikelse 5.0 Beräkna P(X > 8.6) X
19 Sannolikheter i övre svansen P(X > 8.6) =? P(X > 8.6) = P( > 0.12) = P( 0.12) = = = Att hitta X-värde för givet sannolikhet 1. Hitta -värdet för den givna sannolikheten 2. Konvertera till X-enheter enligt nedan: X = µ + σ
20 Att hitta X-värde för givet sannolikhet Exempel: X är normalfördelad med medelvärde 8.0 och standardavvikelse 5.0 Hitta X värdet som har endast 20% av alla värden under sig (mindre än).20? 8.0? 0 X Exempel (forts.) 1. Hitta -värdet för den kände sannolikheten: Standardiserade normal sannolikhetstabellen z P(0 < < z) Ett -värde på har 20% av ytan i den undre svansen = ? X
21 Exempel (forts.) 2. Konvertera till X-enheter : X = µ + σ = = ( 0.84) % av värdena i fördelningen med medelvärde 8.0 och standardavvikelse 5.0 är mindre än 3.80 Approximera Binomialfördelning med Normalfördelning Vi minns egenskaper av Binomialfördelning: n oberoende försök Sannolikheten för success i varje försök = P. Stokastisk variabel X: X i =1 om i:e försök är success X i = 0 om i:e försök är failure E(X) = µ = np Var(X) = σ 2 = np(1- P)
22 Approximera Binomialfördelning med Normalfördelning Formen på Binomialfördelningen är approximativt normal om n är stor Hur stor är stor? (n > 20) eller np(1 P) > 9 Då kan vi standardisera från Binomialfördelning till standard normalfördelning enligt = X E(X) Var(X) = X np np(1 P) Approximera Binomialfördelning med Normalfördelning Låt X vara # successes från n oberoende försök med sannolikheten för success = P i varje försök. Om np(1 - P) > 9, kan vi approximera P(a<X<b) med P(a < X < b) = P a np np(1 P) b np np(1 P)
23 Approximera Binomialfördelning med Normalfördelning: Exempel 40% av alla väljare stödjer valsedel A. Vad är sannolikheten att mellan 76 and 80 väljare visar stöd till valsedel A i ett stickprov av n = 200? E(X) = µ = np = 200(0.40) = 80 Var(X) = σ 2 = np(1 P) = 200(0.40)(1 0.40) = 48 ( Obs: np(1 P) = 48 > 9 ) P(76 X 80) P < < = 200(0.4)(1 0.4) = P( 0.58 < < 0) = F(0) F( 0.58) = = (0.4)(1 0.4) Approximera Poissonfördelning med Normalfördelning Kan göras på liknande sätt som i approximation av Binomialfördelning med normalfördelning: Kom ihåg: E(X) = = λ Var(X) = 2 = λ = λ så att (under vissa villkor) Exempel? X - µ = X - λ = λ ~ N (0,1)
24 Exponentiellfördelningen Kontinuerliga Sannolikhetsfördelningar Sannolikhetsfördelningar Likformig Normal Exponentiell Exponentiellfördelningen Används för att modellera tidslängden mellan två förekomster av ett händelse (tid mellan ankomst) Exempel: Tid mellan ankomst av lastbåtar till ett kaj (hamn) Tid mellan transaktioner på ett Bankomat Tid mellan telefon till the växel
25 Exponentiellfördelningen Täthetsfunktionen för ett exponentiellfördelat stokastiskvariabel T (t > 0) är f(t) = e t for t > 0 där λ är genomsnittlig # förekomster (ankomst) per tidsenhet t är tidsenheter till nästa ankomst e = T ~ exp(λ ) Exponentiellfördelningen (forts..) Kumulativ fördelningsfunktionen (sannolikheten att T är lika eller mindre än t): F(t) = 1 e t Väntevärde: E(T) = 1 Varians: Var(T) = 1 2
26 Exponentiellfördelningen: Exempel Kunder anländer till ett servicestation i genomsnitt tempo på 15 kunder per timme. Vad är sannolikheten att tiden mellan två (på varandra efterföljande) kunder är mindre än 3 minuter? λ = 15 per timme 3 minuter är.05 timmar P(T <.05) = 1 e - λ t = 1 e -(15)(.05) = Sannolikheten är 52.76% att tiden mellan anländning av två kunder är mindre än 3 minuter. Fler kontinuerliga fördelningar (som kommer senare under kursens gång) Sannolikehts-fördelningar Kontinuerliga Sannolikehtsfördelningar Student s t-fördelning Chi-Square fördelning F-fördelning Likformig Normal Standard Normal Exponentiell
Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
SF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Våra vanligaste fördelningar
Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
4. Stokastiska variabler
4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013
Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process
Exempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
Hur måttsätta osäkerheter?
Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för
Statistiska metoder för säkerhetsanalys
F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt
Föreläsning 4, Matematisk statistik för M
Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.
Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Tentamen LMA 200 Matematisk statistik,
Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Statistiska begrepp och metoder som används i Successivprincipen
Statistiska begrepp och metoder som används i Successivprincipen Generellt har statistiska procedurer antingen varit överförenklade eller opraktiska för projektteamen. Resultatet blir inte trovärdigt i
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Laboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Välkommen till Matematik 3 för lärare!
Välkommen till Matematik 3 för lärare! Nu: Statistik för lärare + Linjär algebra + datorlabbar Antagen? Registrerad? För er som läser första ämnet nu (MAxx eller FYMA): Hållbar Utveckling med Människan
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
1 Föreläsning V; Kontinuerlig förd.
Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall
Extrauppgifter i matematisk statistik
Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är
Vi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Några extra övningsuppgifter i Statistisk teori
Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,
Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Statistisk analys av komplexa data
Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
TMS136. Föreläsning 5
TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med
1 Stokastiska processer. 2 Poissonprocessen
1 Stokastiska processer En stokastisk process är en stokastisk variabel X(t), som beror på en parameter t, kallad tiden. Tiden kan vara kontinuerlig, eller diskret (i vilket fall man brukar beteckna processen
Problemdel 1: Uppgift 1
STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Väntevärde och varians
TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl
Tentamen i Sannolikhetslära och statistik Kurskod S0008M
Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I
MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
5 Kontinuerliga stokastiska variabler
5 Kontinuerliga stokastiska variabler Ex: X är livslängden av en glödlampa. Utfallsrummet är S = x : x 0}. X kan anta överuppräkneligt oändligt många olika värden. X är en kontinuerlig stokastisk variabel.
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition
Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se
Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens
SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk
Sannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II
Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs
(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska
Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)
Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
Något om sannolikheter, slumpvariabler och slumpmässiga urval
LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
6. Flerdimensionella stokastiska variabler
6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för