Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013"

Transkript

1 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari / 1

2 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process i diskret tid Markovkedja - Diskret process i diskret tid Slumpvandring - Diskret process i diskret tid Vi ska se hur man utifrån slumpvandringsprocessen slutligen definierar en Brownsk Rörelse - en kontinuerlig process i kontinuerlig tid. 2 / 28

3 Slumpvandringsmodellen Vi har hittills modellerat en slumpvandring som: Y t = Y t 1 + a t (1) Värdet idag är lika med gårdagens värde plus en felterm. Som vi såg under föreläsning 7, kan man utveckla (1) så att: Y t = Y 0 + n t=1 där a t N(0, σ 2 a), dvs stokastiska feltermer som är vitt brus. Obs! I fortsättningen kommer vi att beteckna alla tidsserier med X t och inte Y t, precis som i kompendiet. a t 3 / 28

4 Slumpvandring - definition Generellt definieras en slumpvandring som en stokastisk process X 1, X 2,..., X n : n X t = där vi antar att startvärdet för processen X 0 = 0 och där W 1, W 2,..., W t är oberoende stokastiska variabler med samma föredelning. Denna definition överensstämmer med (1) då vi sätter W t = a t och X 0 = 0. t=1 W t 4 / 28

5 Slumpvandring - definition Enligt definitionen för slumpvandringen gäller att: Värdet för processen W t = w t vid tidpunkt t är lika med den kumulativa summan av alla w t Utfallet på W t vid tidpunkten t = n följer markovvillkoret. Dvs, tidigare utfall w 1, w 2,..., w n 2 påverkar inte w n. W t kan därför modelleras som en markovkedja. 5 / 28

6 Slumpvandring - simulering av 50 observationer Diagrammet visar en simulering av en slumpvandring X t = n t=1 W t där W t N(0, 1) och t = 1, 2,..., / 28

7 Slumpvandring - simulering av 50 observationer Diagram över 50 simuleringar av en slumpvandring X t, där t = 50 observationer. Varje simulering ger upphov till en unik realisering. Gemensamt är att de utgår ifrån X 0 = 0. 7 / 28

8 Slumpvandring Som man kan se i diagrammet så är värdet av ungefär hälften av alla realiseringar > X 0 och hälften < X 0 vid varje t. Detta kan generaliseras: Sannolikheten att röra sig upp och ned i processen vid varje t är 50% oavsett X 0. X 0 är endast en referenspunkt (eller förskjutningen) för processen. T.ex. är P(X t = 2 X 0 = 0) detsamma som P(X t = 4 X 0 = 2) 8 / 28

9 Enkel slumpvandring Ett specialfall av en slumpvandring är då W t antingen går upp ett steg eller ned ett steg vid en specifik (diskret) tidpunkt t = n. Detta kallas en enkel slumpvandring och W t antar i detta fall endast värdena ±1 med sannolikheterna: P(W t = 1) = p P(W t = 1) = 1 p = q Vad som är viktigt att komma ihåg är att slumpvandringen X t i sig inte varierar mellan dessa två värden. 9 / 28

10 Exempel på enkel slumpvandring Pär och Pål spelar ett hasardspel mot varandra 10 gånger. Om Pär vinner betalar Pål honom en krona och om Pål vinner betalar Pär honom en krona. Hasardspelet är rättvist då sannolikheterna för vinst vid varje spelomgång är: P(Pär vinner) = P(Pål vinner) = 1 2 Eftersom W t = { 1, 1} vid varje t så kan Pärs totala kapital X t modelleras med en enkel slumpvandring. 10 / 28

11 Exempel på enkel slumpvandring Tabellen visar utfallen W t samt totalt kapital X t för spelets 10 omgångar. Spelomgång Utfall Totalt kapital för Pär / 28

12 Exempel på enkel slumpvandring Totalt kapital för Pär: Enkel slumpvandring Y Time 12 / 28

13 Exempel på enkel slumpvandring Utfallsrummet för X efter 10 omgångar är: X 10 = { 10, 8,..., 8, 10} Men varje utfall inträffar inte med samma sannolikhet: Utfallet för W t vid varje t antar antingen 1 eller -1. Utfallen inträffar med en fast sannolikhet p = 1/2. Det slumpmässiga försöket upprepas n = 10 gånger. Sannolikhetsfördelningen för en enkel slumpvandring under dessa förutsättningar är binomial(n, p). 13 / 28

14 Exempel på enkel slumpvandring Täthetsfunktionen för binomialfördelningen skrivs generellt: ( ) n P(X = x) = p x q n x x Om vi definierar W som antalet gånger Pär vinner en omgång av spelet, kan vi beräkna sannolikheten att Pär vinner precis 2 kronor som: ( ) 10 P(X 10 = 2) =P(W = 6) = = / 28

15 Brownsk Rörelse Om vi för en slumpvandring: Tar kortare och kortare steg av längden 1/ n Minskar tidsintervallen för mätningarna med 1/n tidsenheter kommer slumpvandringen att konvergera mot en stokastisk process som kallas Brownsk Rörelse. I fortsättningen kommer en Brownsk Rörelse att betecknas X (t). 15 / 28

16 Brownsk Rörelse En Brownsk Rörelse är en stokastisk process som har fått sitt namn efter Robert Brown baserat på hans studier av pollen. Brown observerade i mikroskop att pollenpartiklar i vatten rörde sig slumpmässigt trots att dessa uppenbarligen inte var vid liv. Han kunde dock inte förklara orsaken till den slumpmässiga rörelsen. Senare visade Einstein att ett stort antal molekyler (ej synliga i Browns mikroskop) i vätskor och i luft ständigt kolliderar med större partiklar, t.ex. ett pollenkorn. Dessa kollisioner gjorde så att pollenkornen i Browns experiment såg ut att röra sig slumpmässigt. 16 / 28

17 Brownsk Rörelse Eftersom pollenkornen hela tiden förflyttar sig slumpmässigt, t.ex. antingen höger eller vänster, kan rörelserna modelleras som en kontinuerlig enkel slumpvandring, dvs en Brownsk Rörelse. Trots att fenomenet först observerades i naturen, har man på senare tid upptäckt att en mängd ekonomiska och finansiella tidsserier kan modelleras som en Brownsk rörelse. Anledningen är att det på en marknad hela tiden görs kontinuerliga transaktioner vilket förändrar marknadens värde. 17 / 28

18 Brownsk Rörelse - definition En Brownsk rörelse (utan drift) definieras som en process X (t) där: 1 X (0) = 0 2 E(X (t)) = 0 för alla t 3 V (X (t)) = tσ 2 för alla t 4 X (t) är normalfördelade stokastiska variabler X (t) N(0, tσ 2 ) 5 X (t) har oberoende ökningar, dvs. för tidpunkter t 1 t 2 t 3 t 4 gäller oberoende mellan: X (t 2 ) X (t 1 ) och X (t 4 ) X (t 3 ) Processens ökningar kan inte förutspås. Utfallen för en process upp till en viss tidpunkt säger inget om processens fortsatta rörelser. 18 / 28

19 Brownsk Rörelse med drift - definition På liknande sätt har en Brownsk rörelse X (t) med driftterm δ egenskaperna E(X (t)) = tδ för alla t V (X (t)) = tσ 2 för alla t Som för en vanlig Brownsk rörelse så är X (t) normalfördelade stokastiska variabler, nu med fördelningen X (t) N(tδ, tσ 2 ). Dessutom har X (t) oberoende ökningar. 19 / 28

20 Egenskaper för en Brownsk Rörelse Förutom att kunna bestämma väntevärde och varians för ett utfall på den Brownsk Rörelse, kan man även bevisa: Cov(X (t), X (s)) = sσ 2 om s < t Att kovariansen kan definieras på detta sätt gör så att vi lätt kan beräkna egenskaper för linjära kombinationer av X (t) och X (t), t.ex: E(X (t) X (s)) = 0 V (X (t) X (s)) = (t s)σ 2 X (t) X (s) N(0, (t s)σ 2 ) Detta givet att s < t. 20 / 28

21 Att standardisera en Brownsk Rörelse Då en Brownsk rörelse med och utan drift följer en normalfördelning, kan vi beräkna sannolikheter för olika utfall i processen vid specifika tidpunkter. Säg att vi vill hitta sannolikheten att en Brownsk rörelse utan drift i tidpunkt t = n är mindre än ett tal c. Som tidigare är X (0) = 0. Vi söker alltså P(X (n) < c X (0) = 0). Eftersom X (t) N(0, tσ 2 ) är X (t) 0 tσ N(0, 1) Vi kallar X (t) 0 tσ = B(1) så att B(1) N(0, 1). Att standardisera en normalfördelad stokastisk variabel på detta sätt är ett generellt resultat (se s.209 i NCT). 21 / 28

22 Att standardisera en Brownsk Rörelse Givet X (0) = 0 beräknar vi P(X (n) < c) som: ( X (n) 0 P < c 0 ) = P nσ 2 nσ 2 ( B(1) < c ) nσ 2 Om vi skulle veta värdena på c, t och σ skulle vi kunna beräkna sannolikheten. Sätt c = 6, t = 4 och σ = 2: ( X (4) 0 P < c 0 ) ( =P B(1) < 6 ) tσ 2 tσ ( =P B(1) < 6 ) 16 =P(B(1) < 1.5) I tabellen för standard-normalfördelningen tittar vi efter sannolikheten: P(Z < 1.5) = 6.68% 22 / 28

23 Att standardisera en Brownsk Rörelse Om man har en Brownsk rörelse utan drift men med ett annat startvärde än X (0) = 0 kommer processens fördelning att vara: X (t) N((X (0) + 0), tσ 2 ) Skulle vi sätta t.ex X (0) = 2 skulle X (t) N(2, tσ 2 ) Vi söker P(X (n) < c X (2) = 2). 23 / 28

24 Att standardisera en Brownsk Rörelse Givet c = 6, t = 4 och σ = 2 beräknas sannolikheten som: ( X (4) 2 P < c 2 ) ( =P B(1) < 8 ) tσ 2 tσ ( =P B(1) < 8 ) 16 =P(B(1) < 2) =P(Z < 2) = 2.28% 24 / 28

25 Egenskaper för en Brownsk Rörelse Eftersom variansen ökar med tiden, kommer sannolikheten att observera t.ex. P(X (n) < c) bli större då t ökar. Detta är naturligt då antalet realiseringar för processen hela tiden ökar. På så sätt kan X (n) hela tiden anta mer extrema värden. Sätter vi c = 50 kan vi se detta tydligt i diagram 1 på nästa slide. 25 / 28

26 Egenskaper för en Brownsk Rörelse Vi kan se ett exempel på samma tidsserie X (t) men med två olika startvärden, X (0) = 0 och X (0) = 50: Y0=0 Y0=50 y y Time Time Vi kan se att sannolikheter för utfall på processen beror på startvärdet. 26 / 28

27 Att standardisera en Brownsk Rörelse med drift Vi kan också beräkna sannolikheter för en Brownsk Rörelse med driftterm δ. Vi söker P(X (t) < 2). Processens fördelning är X (t) N(tδ, tσ 2 ). Givet δ = 1, t = 4 och σ = 2 samt startvärdet X (0) = 0 får vi att: ( ) ( X (4) tδ 2 tδ P < =P B(1) < 6 ) tσ 2 tσ ( =P B(1) < 6 ) 16 =P(B(1) < 1.5) =P(Z < 1.5) = 6.68% 27 / 28

28 Beräkna moment för en Brownsk Rörelse Vi kan också beräkna momenten för en Brownsk Rörelse om vi vet parametrarnas värden. Beräkna följande för den Brownska Rörelsen med drift på förra sliden: E(X (7)) V (X (7)) Cov(X (7), X (9)) 28 / 28

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Föreläsning 6, Repetition Sannolikhetslära

Föreläsning 6, Repetition Sannolikhetslära Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Hur måttsätta osäkerheter?

Hur måttsätta osäkerheter? Geotekniska osäkerheter och deras hantering Hur måttsätta osäkerheter? Lars Olsson Geostatistik AB 11-04-07 Hur måttsätta osäkerheter _LO 1 Sannolikheter Vi måste kunna sätta mått på osäkerheterna för

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Slumpvariabler och sannolikhetsfördelningar

Slumpvariabler och sannolikhetsfördelningar och sannolikhetsfördelningar Föreläsning 4 Sannolikhet och Statistik 5 hp Fredrik Jonsson April 2010 Översikt 1. Verklighetsanknutna exempel. Definition relativt utfallsrum. 2. Sannolikhetsfördelningar

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

Föreläsning 2, Matematisk statistik för M

Föreläsning 2, Matematisk statistik för M Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret

Läs mer

Bengt Ringnér. October 30, 2006

Bengt Ringnér. October 30, 2006 Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

ARIMA del 2. Patrik Zetterberg. 19 december 2012

ARIMA del 2. Patrik Zetterberg. 19 december 2012 Föreläsning 8 ARIMA del 2 Patrik Zetterberg 19 december 2012 1 / 28 Undersöker funktionerna ρ k och ρ kk Hittills har vi bara sett hur autokorrelationen och partiella autokorrelationen ser ut matematiskt

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Statistiska begrepp och metoder som används i Successivprincipen

Statistiska begrepp och metoder som används i Successivprincipen Statistiska begrepp och metoder som används i Successivprincipen Generellt har statistiska procedurer antingen varit överförenklade eller opraktiska för projektteamen. Resultatet blir inte trovärdigt i

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

Satsen om total sannolikhet och Bayes sats

Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) = Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4. Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011 Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer