Stokastiska processer med diskret tid

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Stokastiska processer med diskret tid"

Transkript

1 Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna kan vara diskreta eller kontinuerliga. Man pratar då om diskreta- respektive kontinuerliga stokastiska processer. Om tiden räknas upp av en en mängd som 1, 2,... säges tiden vara diskret. Det motsvarar att man träffar på de stokastiska variablerna vid bestämda tidpunkter där en viss tid har förflutit emellan. Tidpunkterna kan vara sekunder, minuter, timmar, dagar, veckor, månader eller år. I alla stokastiska processer med diskret tid finns det ett beroende mellan de ingående variablerna X 1, X 2,....

2 Stokastiska processer med kontinuerlig tid När tiden är kontinuerlig så har man all tid mellan alla tidpunkter hur nära de än är varandra! Man har så att säga all tid! Då säger man att man har en familj av stokastiska variabler {X (t), t T }. De stokastiska variablerna i familjen kan återigen vara diskreta eller kontinuerliga. Man pratar då om diskreta- respektive kontinuerliga stokastiska processer i kontinuerlig tid. Kontinuerlig tid motsvarar att man mäter hela tiden utan upphåll. Vi påminner: i alla stokastiska processer med kontinuerlig tid finns det ett beroende mellan två variabler X ti och X tj.

3 Realisering Om varje stokastisk variabel i en stokastisk process spottar ur sig ett tal så säger man att alla dessa tal tillsammans utgör en realisering. Även trajektoria.

4 Typologi för våra stokastiska processer Process\Tid Diskret Kontinuerlig Diskret Markovkedjor, slumpvandring Kontinuerlig ARIMA Brownsk rörelse

5 Diskret process i diskret tid

6 Diskret process i diskret tid

7 Kontinuerlig process i diskret tid

8 Kontinuerlig process i kontinuerlig tid

9 Tidsserier, korrelation och stokastiska processer Låt oss säga att vi har en tidsserie x 1, x 2,..., x n. Eftersom dessa mätvärden har observerats i ekvidistanta tidpunkter, så skulle en modell för denna tidsserie vara en stokastiska process i diskret tid. Då mätvärdena inte nödvändigtvis är heltal, så är det vettigt att anta att varje observation är gjord på en kontinuerlig stokastisk variabel. Vi söker alltså en kontinuerlig stokastisk process i diskret tid som sannolikhetsmodell för tidsserien x 1, x 2,..., x n. Det finns alltid korrelation mellan observationerna i en tidsserie. De ingående stokastiska variablerna X 1, X 2,... är således beroende.

10 Korrelation och realiseringar Vi söker stokastiska processer som har intressanta realiseringar i den meningen att de ser ut som verklighetens tidsserier. Vi kan då tänka att vi har en maskin som kan trolla fram den tidsserie vi är intresserade av. Det visar sig att ARIMA-modellerna kan ge realistiska realiseringar. Andra krav är att modellerna ska vara hanterbara, d v s inte för komplicerade.

11 Simulering och slumptalsgeneratorer På många miniräknare finns en knapp som heter ungefär RAN#. När jag tryckte på min CASIO fx-82lb fick jag på skärmen. Detta är ett s k slumpmässigt tal. Slumptal genereras (räknas fram) med hjälp av slumptalsgeneratorer som är rekursiva formler av typen x n+1 = ax n + b mod m, där a, b och m är givna naturliga tal. Man behöver alltid ett första värde x 0, det s k startvärdet eller fröet. Man väljer talen a, b och m på ett klokt sätt för att metoden skall fungera.

12 Simulering och slumptalsgeneratorer För att få tal mellan 0 och 1 används uttrycket x n m. Slumptalen mellan 0 och 1 uppfattas som observationer på en kontinuerlig stokastisk variabel X som är likformigt fördelad över intervallet [0.1]. Genom t ex Box-Müllers metod kan man förvandla ett likformigt slumptal till ett slumptal på normalfördelningen med väntevärde noll och varians ett. Man säger att man har simulerat ett tal på standard normalfördelningen.

13 Vitt brus Det finns två stokastiska processer som är viktiga för förståelsen av ARIMA-modeller: - Vitt brus (White noise). Det är den enklaste av stokastiska processer. Y t = a t I ett vitt brus saknas mönster (dvs. ingen trend, säsong etc.). Det består av en följd av stokastiska variabler a t, som alla är sinsemellan oberoende (ingen korrelation!) och lika fördelade med väntevärde 0 och konstant varians σ 2. Om det vita bruset dessutom är normalfördelat, har vi vad som kallas Gaussiskt vitt brus. Processen används mycket sällan för prognoser, men är en viktig grundpelare för mer avancerade tidsseriemodeller.

14 Slumpvandring - Slumpvandring (Random Walk). Y t = Y t 1 + a t, där a t är vitt brus. Y t = Y t 1 + a t = (Y t 2 + a t 1 ) + a t = Y t 2 + a t 1 + a t = (Y t 3 + a t 2 ) + a t 1 + a t = Y t 3 + a t 2 + a t 1 + a t. = Y 0 + a 1 + a a t 2 + a t 1 + a t Här ser vi att Y t är en summa av oberoende stokastiska variabler, samt en konstant Y 0.

15 Autoregressiva modeller av olika ordning I modellerna nedan antas a t vara en följd av (gaussiskt) vitt brus. AR(1)-modellen Y t = φ 1 Y t 1 + a t AR(2)-modellen Y t = φ 1 Y t 1 + φ 2 Y t 2 + a t AR(p)-modellen Y t = φ 1 Y t 1 + φ 2 Y t φ p Y t p + a t

16 Glidande medelvärdes-modeller av olika ordning MA(1)-modellen Y t = a t θ 1 a t 1 MA(2)-modellen Y t = a t θ 1 a t 1 θ 2 a t 2 MA(q)-modellen Y t = a t θ 1 a t 1 θ 2 a t 2... θ q a t q

17 ARMA-modeller: I vissa fall används kombinationer av AR, och MA-modeller, t.ex. ARMA(p,q): Y t = φ 1 Y t 1 +φ 2 Y t φ p Y t p +a t θ 1 a t 1 θ 2 a t 2... θ q a t q

18 Stationäritet-struktur på den stokastiska processen ARIMA-modellerna ställer andra krav på tidsserien än tidigare. Det viktigaste kravet nu är stationäritet, vilket innebär att modellen kräver att tidsserien ska ha: (1) Konstant väntevärde (2) Konstant varians σ 2 I allmänhet är inte tidsserier inte stationära utan man måste tillämpa vissa tekniker för att transformera dem så att den transformerade serien blir stationär.

19 Transformera din tidsserie så att den blir stationär! Den vanligaste transformationen är bildandet av (första)differenser, t.ex. z t = y t y t 1 Här har vi tagit första differensen av tidsserien y t. Förhoppningsvis är serien z t nu stationär och redo att analyseras med ARIMA-modeller. Ibland räcker det inte med första differenser för att skapa en stationär serie, vanligt är att man då beräknar ytterligare en första differens på första differenserna. Man säger att man då skapat andra differenserna av tidsserien. z t = (y t y t 1 ) (y t 1 y t 2 ) = y t 2y t 1 + y t 2

20 Effekten av första differensen t y t z t = y t y t *

21 Gör tidsserien stationär.

22 Korrelationen som en funktion av tidsavståndet k Autokorrelationsfunktionen utgörs av de befintliga värdena r 1, r 2,..., vanligtvis beskrivna i lämpligt diagram. Generellt gäller att: (1) om autokorrelationsfunktionen (SAC) avtar snabbt, anses tidsserien vara stationär. (2) om SAC däremot avtar långsamt anses tidsserien vara icke-stationär.

23 Partiella (stickprovs) autokorrelationsfunktionen Ett viktig verktyg för att bestämma bästa ARIMA-modell är att (tillsammans med autokorrelationsfunktionen) studera den partiella (stickprovs) autokorrelationsfunktionen för den stationära serien z b, z b+1,..., z n.. Denna funktionen beskriver korrelationen mellan två tidpunkter på t ex k tidsavstånd då effekten av de mellanliggande variablerna har eliminerats.

24 AR(1) modellens egenskaper Den autoregressiva modellen av ordning 1, AR(1), har följande form z t = φ 1 z t 1 + a t. Konstanten φ 1 är en okänd parameter som måste skattas utifrån stickprovet, och slumptermen a t är vitt brus. Ibland vill man en konstant med i modellen som då skrivs: z t = δ + φ 1 z t 1 + a t Det teoretiska medelvärdet fås genom att vi tar väntevärdet av båda sidor: E(z t ) = δ + φ 1 E (z t 1 ) + E (a t ) (1)

25 AR(1) modellens egenskaper Eftersom z t antas vara stationär gäller att E(z t ) = E (z t 1 ) = µ så att (1) kan skrivas som dvs. µ = δ + φ 1 µ + 0 µ = δ 1 φ 1 För att räkna ut den teoretiska variansen använder vi en annan form på modellen. Låt δ = µ (1 φ 1 ), d v s z t = µ (1 φ 1 ) + φ 1 z t 1 + a t eller (z t µ) = φ 1 (z t 1 µ) + a t (2)

26 AR(1) modellens egenskaper Kvadrera bägge sidor av (2) och tag väntevärdet av resultatet, vilket ger E (z t µ) 2 = φ 2 1E (z t 1 µ) 2 +2φ 1 E [(z t 1 µ) a t ]+E ( a 2 t ) (3) Då z t är stationär, så har vi E (z t µ) 2 = E (z t 1 µ) 2 = V (z t ) Vilket medför att vi kan skriva om (3) som: V (z t ) = φ 2 1V (z t ) σ 2 a dvs. σ2 a V (z t ) = 1 φ 2 1

27 AR(1) modellens egenskaper Vi skriver (igen) AR(1)-processen på formen z t µ = φ 1 (z t 1 µ) + a t, Multiplicera på bägge sidor med (z t k µ), så (z t k µ)(z t µ) = φ 1 (z t k µ)(z t 1 µ) + (z t k µ)a t Om vi tar väntevärdet på varje sida, erhåller vi E [(z t k µ)(z t µ)] = φ 1 E [(z t k µ)(z t 1 µ)] + 0. Kovariansen mellan z t och z t k definieras som Cov(z t k, z t ) = E [(z t k µ)(z t µ)].

28 AR(1) modellens egenskaper Alltså kan vi skriva Cov(z t k, z t ) = φ 1 Cov(z t k, z t 1 ) och eftersom ρ k = Cov(z t k,z t) Var(z t) fås att ρ k = φ 1 ρ k 1. Efter rekursiv utveckling av ρ k 1 fås att den teoretiska autokorrelationsfunktionen för AR(1)-modellen är: ρ k = φ k 1 Det går att visa att den partiella korrelationsfunktionen för AR(1)-processen är: { ρ1 = φ ρ kk = 1 k = 1, 0 om k 2.

29 Villkor för stationäritet Det finns speciella stationäritetsrestriktioner för dessa autoregressiva parametrar: φ 1 < 1 för AR(1)-modellen och φ 1 + φ 2 < 1 φ 2 φ 1 < 1 φ 2 < 1 för AR(2)-modellen

30 Effekten av olika värden på φ 1 Vi vet att AR(1)-modellen är stationär, om 1 < φ 1 < 1. I figuren ser vi hur realiseringarna förändras då φ 1 antar olika värden i detta intervall. (I figuren används istället beteckningen a 1 för φ 1.)

31 Skattning Givet en tidsserie x 1,..., x n önskar vi använda dessa observationer för att skatta parametrarna i någon ARIMA-modell som vi har valt. För en ARIMA-modell måste vi använda datorn. För AR-modeller kan vi tänka på modellen som en regressionsmodell och använda de metoder som vi känner därifrån.

32 Regression genom origo Vi har tidigare studerat modellen Nu ska vi studera en variant Y i = β 0 + β 1 x i + ε i, i = 1, 2,..., n. Y i = β 1 x i + ε i, i = 1, 2,..., n. som vi kan använda för att skatta parametern i en AR(1)-modell utan konstant Y t = φ 1 Y t 1 + a t. Denna regressionsmodell kallas regression genom origo eller enkel lineär regression utan intercept.

33 Regression genom origo Då blir summan av kvadraterna på residualerna istället n SSE(b 1 ) = (y i b 1 x i ) 2. i=1 Vi får endast en normalekvation: n xi 2 = b 1 i=1 n x i y i i=1 som kan lösas för minstakvadratskttningen av β 1 b 1 = n i=1 x iy i n i=1 x 2 i De anpassade värden ges nu av ŷ = b 1 x. Vi använder denna metod i en övning senare i kursen.

34 Prognos Om vi begränsar oss till AR-modeller så har vi skattat AR(p)-modellen x t = ˆγ + ˆφ 1 x t 1 + ˆφ 2 x t ˆφ p x t p. Nu då vi befinner oss i tidpunkten n önskar vi göra prognos för framtida värden. Då använder vi: ˆx t+h = ˆγ+ ˆφ 1ˆx n+h 1 + ˆφ 2ˆx n+h ˆφ pˆx n+h p (h = 1, 2, 3,...)

35 Prognos Prognosfelet e t (h) = x t+h ˆx t+h (h = 1, 2, 3,...) Fallet då h = 1 är intressant för ARCH-modellen och man kan visa att e t (1) = x t+1 ˆx t+1 = ε t+1 för ARIMA-modeller. Prognosfelet är alltså en stokastisk variabel med väntevärde noll och varians Variansen är alltså konstant. V (e t (1)) = V (ε t+1 ) = σ 2 a.

36 Box-Jenkins metod 1. Datapreperation (ev. transformeringar) 2. Modellval (efter studium av div. figurer) 3. Estimering (skattning av parametrar) 4. Verifiera modellen (diagnostik, test) 5. Modellen håller -använd modellen -skapa prognoser = = Modellen håller inte -Prova ny eller modifierad modell

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

ARIMA del 2. Patrik Zetterberg. 19 december 2012

ARIMA del 2. Patrik Zetterberg. 19 december 2012 Föreläsning 8 ARIMA del 2 Patrik Zetterberg 19 december 2012 1 / 28 Undersöker funktionerna ρ k och ρ kk Hittills har vi bara sett hur autokorrelationen och partiella autokorrelationen ser ut matematiskt

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

Något om val mellan olika metoder

Något om val mellan olika metoder Något om val mellan olika metoder Givet är en observerad tidsserie: y 1 y 2 y n Säsonger? Ja Nej Trend? Tidsserieregression Nej ARMA-modeller Enkel exponentiell utjämning Tidsserieregression ARIMA-modeller

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Hemuppgift 3 modellval och estimering

Hemuppgift 3 modellval och estimering Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 3 modellval och estimering 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Analys av egen tidsserie

Analys av egen tidsserie Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Hemuppgift 2 ARMA-modeller

Hemuppgift 2 ARMA-modeller Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 2 ARMA-modeller 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika simuleringar

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Regressions- och Tidsserieanalys - F8

Regressions- och Tidsserieanalys - F8 Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Prognostisering av växelkursindexet KIX En jämförande studie. Forecasting the exchange rate index KIX A comparative study

Prognostisering av växelkursindexet KIX En jämförande studie. Forecasting the exchange rate index KIX A comparative study Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2013:14 Prognostisering av växelkursindexet KIX En jämförande studie Forecasting the exchange rate index KIX A comparative

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Bengt Ringnér. October 30, 2006

Bengt Ringnér. October 30, 2006 Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120) Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Facit till Extra övningsuppgifter

Facit till Extra övningsuppgifter LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Simulering. Introduktion. Exempel: Antag att någon kastar tärning

Simulering. Introduktion. Exempel: Antag att någon kastar tärning Simulering Introduktion Eempel: Antag att någon kastar tärning a) Vad är sannolikheten att på fyra kast få två seor? b) Vad är sannolikheten att på kast få mellan och 5 seor och där summan av de 5 första

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Teknisk not: Lönealgoritmen

Teknisk not: Lönealgoritmen Teknisk not: Lönealgoritmen Konjunkturlönestatistiken, som räknas till den officiella lönestatistiken, har som huvudsyfte att belysa nivån på arbetstagarnas löner i Sverige och hur dessa utvecklas. Konjunkturlönestatistiken

Läs mer

2010-08-30 Fysikexperiment, 7.5 hp 1

2010-08-30 Fysikexperiment, 7.5 hp 1 Presentation av data Medelvärde av grupperade data Slumptal Gränsvärdesfunktioner Normalfördelningsfunktionen Parameterbestämning Minsta kvadratmetoden 010-08-30 Fysikexperiment, 7.5 hp 1 1 Presentation

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer