Formler och tabeller till kursen MSG830

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Formler och tabeller till kursen MSG830"

Transkript

1 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x x n n s = 1 n (x i x) n 1 2 i=1 SEM = s/ n För två händelser A och B är gäller Betingade sannolikheter P (A B) = P (A) + P (B) P (A B) Lagen om total sannolikhet P (A B) = P (A B) P (B) Om utfallsrummet indelas i disjunkta händelser A 1,, A k, vars union är hela utfallsrummet, så gäller för varje händelse B k P (B) = P (B A i )P (A i ) i=1 A och B är oberoende om och endast om P (A B) = P (A)P (B) Stokastiska variabler En diskret stokastisk variabel X kan anta ett ändigt (eller uppräkneligt) antal värden. Sannolikeheten för varje värde bestäms av en sannolikhetsfunktion p p(x) = P (X = x) Väntevärdet av en diskret stokastisk variabel är µ = E[X] = x xp(x) 1

2 och variansen är σ 2 = V [X] = x (x µ) 2 p(x) = E[X 2 ] µ 2 Kontinuerliga stokastiska variabler beskrivs med en täthetsfunktion f(x) 0 för alla x och f(x) = 1 För en kontinuerlig stokastisk variabel X är P (X = x) = 0 för varje x, men P (a X b) = b a f(x) X och Y är oberoende (dvs P (X x Y y) = P (X x)p (Y y) för alla x, y Regler för väntevärden och varians Om a, b är konstanter och X, Y är stokastiska variabler gäller E[X + Y ] = E[X] + E[Y ] E[a + bx] = a + be[x] V [a + bx] = b 2 V [X] om dessutom X och Y är oberoende så gäller E[XY ] = E[X]E[Y ] och V [X + Y ] = V [X] + V [Y ] Binomialfördelning S bin(n, p) ( ) n P (S = k) = p k (1 p) n k för k = 1, 2,, n k Normalfördelning X N(µ, σ) E[S] = np, V [S] = np(1 p) f(x) = 1 σ 2π e (x µ) 2 2σ E[X] = µ, V [X] = σ 2 2

3 Fördelningen med µ = 0 och σ = 1 kallas standard (el standardiserad) normalfördelning Ett stickprov X 1, X 2,, X n där varje X i N(µ, σ) Testa H 0 : µ = µ 0 på signikansnivå α med T = x µ 0 s/ n t n 1 (t-fördelning med n 1 frihetsgrader) Förkasta H 0 om T t α/2,n 1 då H a : µ µ 0 Förkasta H 0 om T t α,n 1 då H a : µ > µ 0 Förkasta H 0 om T t α,n 1 då H a : µ < µ 0 Bilda ett tvåsidigt 100(1 α)% kondensintervall med x ± t α/2,n 1 s/ n Om σ av någon anledning råkar vara känt, ersätt s med σ och använd standard normalfördelning i st f t fördelning. Om X i inte är normalfördelad, men stickprovet stort kan vi anta att T ovan är approximativt standard normalfördelad. Parade data (X 1, Y 1 ), (X 2, Y 2 ),, (X n, Y n ) där varje D i = X i Y i N(δ, σ) Testa H 0 : δ = δ 0 (oftast δ 0 = 0) genom att betrakta alla D i som ett stickprov på dierenser och följ anvisningar för ett stickprov. T = x δ 0 s/ n Två stickprov X 1, X 2,, X m och Y 1, Y 2,, Y m Anta X i N(µ 1, σ) och Y i N(µ 2, σ) Poola de två variansskattningarna s 2 p = (m 1)s2 1 + (n 1)s 2 2 m + n 2 och testa H 0 : µ 1 µ 2 = 0 (oftast 0 = 0) på signikansnivå α med T = x ȳ 0 s p 1/m + 1/n t n+m 2 (t-fördelning med n + m 2 frihetsgrader) Förkasta H 0 om T t α/2,n+m 2 då H a : µ 1 µ 2 0 Förkasta H 0 om T t α,n+m 2 då H a : µ 1 µ 2 > 0 3

4 Förkasta H 0 om T t α,n+m 2 då H a : µ 1 µ 2 < 0 Bilda ett tvåsidigt 100(1 α)% kondensintervall med x ȳ ± t α/2,n 2 s p 1/m + 1/n ANOVA - Fler än två stickprov (k>2) Anta att de olika grupperna är normalfördelade N(µ i, σ), dvs eventuellt olika medelvärden, men samma varians. Man kan då testa H 0 : µ 1 = µ 2 = = µ k mot med H a : någon skillnad mellan medelvärdena F = ˆσ2 B ˆσ 2 W där ˆσ W 2 är den poolade variansen analogt med tvåstickprovsfallet och ˆσ2 B skattning av σ baserad på medelvärdena. är en Förkasta H 0 för stora värden på teststatistikan Test av samband mellan två kategoriska variabler Samla antalen av varje kategoripar i en kontingenstabell med r rader och c kolumner 1 j c 1 n 11 n 1j n 1c n 1. i n i1 n ij n ij n i. r n r1 n rj n rc n r. n.1 n.j n.c n n i. = c n ij och n.j = j=1 Anta att följande sannolikheter gäller för cellerna och marginalerna 1 j c 1 p 11 n 1j p 1c p 1. i p i1 p ij p ij p i. r p r1 p rj p rc p r. p.1 p.j p.c 1 r i=1 n ij 4

5 Testa H 0 : p ij = p i. p.j för alla par i, j (dvs oberoende) med χ 2 = n ij ê ij ê ij som är χ 2 fördelad med (r 1)(c 1) frihetsgrader och där ê ij = ni.n.i n Förkasta H 0 för stora värden på teststatistikan Regression Vid linjär regression med n observationspar (x i, y i ) skattar man en linje mha modellen y = β 0 + β 1 x + ɛ där ɛ N(0, σ) är bruset. Skattningar får man genom ˆβ 1 = (xi x)(y i ȳ) (xi x) 2 ˆβ 0 = ȳ ˆβ 1 x Test av H 0 : β 1 = 0 testas med en teststatistika av typen T = ˆβ 1 se( ˆβ 1 ) som är t fördelad med n 2 frihetsgrader Korrelation Pearsons korrelationskoecient r är ett mått mellan 1 och 1. (xi x)(y i ȳ) r = (xi x) 2 (y i ȳ) 2 som skattar en motsvarande populationsstorhet ρ. Om X och Y är oberoende så är ρ = 0. Man kan testa H 0 : ρ = 0 med T = r n 2 1 r 2 som är t fördelad med n 2 frihetsgrader och identisk med teststatistikan för H 0 : β 1 = 0 från regressionsanalysen. 5

6 A-6 Appendix Tables Table A.3 Standard Normal Curve Areas Φ(z) P(Z z) Standard normal density curve Shaded area = Φ(z) 0 z z (continued)

7 Appendix Tables A-7 Table A.3 Standard Normal Curve Areas (cont.) (z) 5 P(Z # z) z

8 Appendix Tables A-9 Table A.5 Critical Values for t Distributions t density curve Shaded area = 0 t, v

9 Appendix Tables A-11 Table A.7 Critical Values for Chi-Squared Distributions 2 density curve Shaded area = α 0 α, For v. 40, x 2 a,v, va v 1 z 2 a B9v b

10 A-12 Appendix Tables Table A.8 t Curve Tail Areas t curve Area to the right of t 0 t t (continued)

11 Appendix Tables A-13 Table A.8 t Curve Tail Areas (cont.) t curve Area to the right of t 0 t t `( 5z)

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Kalkylator

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Föreläsning 6, Repetition Sannolikhetslära

Föreläsning 6, Repetition Sannolikhetslära Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Frank Miller Dan Hedlin Skrivtid: 09.00-14.00 TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2014-03-21 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade tabeller

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.

Läs mer

F1:A Ekonometri, introduktion

F1:A Ekonometri, introduktion F:A Ekonometri, introduktion Kap -3 Repetition av Sannolikhetsteori och Statistisk inferens Allmänt tänker vi oss ett eperiment med ett antal möjliga utfall. Mängden av alla möjliga utfall betecknas S

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson,

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, 5--9 Lösningförslag skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen : Sannolikhetsteori

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Övningstenta för MSG830

Övningstenta för MSG830 Övningstenta för MSG830 Max 30 p, för godkänt krävs 12 p 1. Vi har två händelser A och B. Om dessa vet vi att A sker med sannolikheten 0.2 och B med sannolikheten 0.5. Sannolikheten att varken A eller

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4. Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 I Punktskattningar I Egenskaper I Väntevärdesriktig I E ektiv I Konsistent

Läs mer

Grundkurs i statistisk teori, del 2

Grundkurs i statistisk teori, del 2 Grundkurs i statistisk teori, del 2 Paul Blomstedt 2010 Reviderad 3.5.2012 Innehåll 1 Inledning 1 1.1 Inledande exempel........................ 2 1.1.1 Statistisk modell..................... 2 1.1.2 Vita

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Formelsamling i matematisk statistik

Formelsamling i matematisk statistik Formelamling i matematik tatitik Sannolikhetteori Sannolikhetaxiom : 0 P (A) :P () = 3: P (A [ B) = P (A) + P (B) om A \ B =? Additionaten Betingad annolikhet P (A [ B) = P (A) + P (B) P (A \ B) P (AjB)

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 15 januari 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006 UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

MSG830 Statistisk analys och experimentplanering - Lösningar

MSG830 Statistisk analys och experimentplanering - Lösningar MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 16 augusti 2016, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT13 Laboration 2: Sannolikhetsteori och simulering Syftet med den här

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt

Läs mer

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120) Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor

Läs mer