SF1901: Sannolikhetslära och statistik

Storlek: px
Starta visningen från sidan:

Download "SF1901: Sannolikhetslära och statistik"

Transkript

1 SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski Jan Grandell & Timo Koski () Matematisk statistik / 43

2 Väntevärdet av g(x, Y ) Sats Låt (X, Y ) vara en tvådimensionell s.v. Då gäller { E [g(x, Y )] = g(x, y)f X,Y (x, y)dxdy för (X, Y ) kontinuerlig, k=0 j=0 g(k, j)f X,Y (k, j) för (X, Y ) diskret. Jan Grandell & Timo Koski () Matematisk statistik / 43

3 Väntevärdet av g(x, Y ) = X + Y Sats Låt (X, Y ) vara en tvådimensionell s.v. Då gäller E [X + Y ] = E [X] + E [Y ] Bevis. Låt (X, Y ) vara en kontinuerlig tvådimensionell s.v.. Den föregående satsen visar med g(x, y) = x + y att = = x xf X,Y (x, y)dxdy + (x + y)f X,Y (x, y)dxdy = f X,Y (x, y)dydx + xf X (x)dx + y yf X,Y (x, y)dxdy f X,Y (x, y)dxdy yf Y (y)dy = E [X] + E [Y ] Jan Grandell & Timo Koski () Matematisk statistik / 43

4 Kovarians och korrelationskoefficient Låt (X, Y ) vara en tvådimensionell s.v. där vi är intresserade av sambandet mellan X s och Y s variation. Det kan vara natuligt att betrakta variablerna X µ X och Y µ Y. Vi skiljer på fallen då X och Y samvarierar resp. motverkar varandra, dvs. då ett stort/litet värde på X gör ett stort/litet värde på Y troligt resp. ett stort/litet värde på X gör ett litet/stort värde på Y troligt. Jan Grandell & Timo Koski () Matematisk statistik / 43

5 Kovariansen mellan X och Y Betraktar vi nu variabeln (X µ X )(Y µ Y ), så innebär detta att den i första fallet, eftersom + + = + och = +, att den har en tendens att vara positiv. På motsvarande sätt, eftersom + = och + =, har den i andra fallet en tendens att vara negativ. Det som vi, lite slarvigt, har kallat tendens, kan vi ersätta med väntevärde. Vi leds då till följande definition. Definition Kovariansen mellan X och Y är där µ X = E(X) och µ Y = E(Y ). C(X, Y ) = E[(X µ X )(Y µ Y )], Jan Grandell & Timo Koski () Matematisk statistik / 43

6 Kovariansen mellan X och Y Sats Kovariansen mellan X och Y är där µ X = E(X) och µ Y = E(Y ). Bevis. : C(X, Y ) = E[XY ] µ X µ Y, C(X, Y ) = E[(X µ X )(Y µ Y )] = E[XY X µ Y µ X Y + µ X µ Y ] = E[XY ] E[X µ Y ] E[µ X Y ] µ X µ Y ] = E[XY ] µ Y E[X] µ X E[Y ] µ X µ Y = E[XY ] µ Y µ X µ X µ Y + µ X µ Y = E[XY ] µ Y µ X Jan Grandell & Timo Koski () Matematisk statistik / 43

7 Korrelationskoefficienten mellan X och Y Kovariansen kan sägas ha fel sort. Det verkar rimligt att ett mått på ett så abstrakt begrepp som samvariation skall vara sortfritt. Det vanligaste måttet är korrelationskoefficienten. Definition Korrelationskoefficienten mellan X och Y är ρ = ρ(x, Y ) = C(X, Y ) D(X)D(Y ). Man kan visa att ρ 1, där ρ = ±1 betyder att det finns ett perfekt linjärt samband, dvs. Y = ax + b. Sats Om X och Y är oberoende så är de okorrelerade, dvs. ρ(x, Y ) = 0. Omvändningen gäller ej, dvs. okorrelerade variabler kan vara beroende. Jan Grandell & Timo Koski () Matematisk statistik / 43

8 Exempel Den simultana sannolikhetsfunktionen för stokastiska variablerna X och Y med p X,Y (j, k) X /Y Marginalfördelning för X: p X (0) = = 0.2, p X (1) = = 0.2 p X (2) = = 0.2, p X (3) = = 0.4 Jan Grandell & Timo Koski () Matematisk statistik / 43

9 Exempel (forts.) På samma sätt fås marginalfördelning för Y : p Y (0) = 0.2, p Y (1) = 0.2 p Y (2) = 0.2, p Y (3) = 0.4. X och Y är INTE oberoende, ty, t.ex., p X (0) p Y (0) = = 0.04 = 0.2 = p X,Y (0, 0) Jan Grandell & Timo Koski () Matematisk statistik / 43

10 Exempel (forts.): BETINGADE FÖRDELNINGAR I detta exempel p X Y =k (j) def = p X,Y (j, k), j = 0, 1, 2, 3 p Y (k) p Y X=j (k) def = p X,Y (j, k), k = 0, 1, 2, 3 p X (j) p Y X=2 (0) = p X,Y (2, 0) p X (2) p Y X=2 (1) = p X,Y (2, 1) p X (2) p Y X=2 (2) = p X,Y (2, 2) p X (2) p Y X=2 (3) = p X,Y (2, 3) p X (2) = = 0 = = 1 2 = = 1 2 = = 0 Jan Grandell & Timo Koski () Matematisk statistik / 43

11 Exempel (forts.): BETINGADE FÖRDELNINGAR och p X Y =0 (0) = p X,Y (0, 0) p Y (0) = = 1 p X Y =0 (1) = p X Y =0 (2) = p X Y =0 (3) = 0 Jan Grandell & Timo Koski () Matematisk statistik / 43

12 Exempel (forts.):lts & BETINGADE FÖRDELNINGAR Utifrån definitionerna följer vidare att vi har p X (k) = p Y (j) = 3 3 p Y (j)p X Y =j (k) = p X,Y (k, j). j=0 j=0 3 3 p X (k)p Y X=k (j) = p X,Y (k, j). k=0 k=0 Jan Grandell & Timo Koski () Matematisk statistik / 43

13 Exempel (forts.): E(X) = = 1.8. samt E(Y ) = 1.8. E ( X 2) = = 4.6. V (X) = E ( X 2) E (X) 2 = = 1.36 = V (Y ). Jan Grandell & Timo Koski () Matematisk statistik / 43

14 Exempel (forts.): Kovarians och korrelation Kovariansen E(X Y ) = = 4.5 C(X, Y ) = E(X Y ) E (X) E (Y ) = = 1.26 Korrelationskoefficienten ρ(x, Y ) = C(X, Y ) V (X) V (Y ) = Vad säger detta? = = Jan Grandell & Timo Koski () Matematisk statistik / 43

15 Mer om väntevärden Sats Låt (X, Y ) vara en tvådimensionell s.v. Då gäller (1) E(aX + by ) = ae(x) + be(y ); (2) V (ax + by ) = a 2 V (X) + b 2 V (Y ) + 2abC(X, Y ). Bevis. (1) har visats ovan. Jan Grandell & Timo Koski () Matematisk statistik / 43

16 Mer om väntevärden: Bevis av (2) (2) fås av följande V (ax +by ) = E[(aX +by aµ X bµ Y ) 2 ] = E[(aX aµ X +by bµ Y ) 2 ] = E[a 2 (X µ X ) 2 + b 2 (Y µ Y ) 2 + 2ab(X µ X )(Y µ Y )] = a 2 V (X) + b 2 V (Y ) + 2abC(X, Y ). Jan Grandell & Timo Koski () Matematisk statistik / 43

17 Mer om väntevärden Följdsats Låt X och Y vara två oberoende (okorrelerade räcker) s.v. Då gäller E(X + Y ) = E(X) + E(Y ) V (X + Y ) = V (X) + V (Y ) E(X Y ) = E(X) E(Y ) V (X Y ) = V (X) + V (Y ). Jan Grandell & Timo Koski () Matematisk statistik / 43

18 Mer om väntevärden Detta går att utvidga till godtyckligt många variabler: Sats Låt X 1,..., X n vara oberoende (okorrelerade räcker) s.v. och sätt Y = c 1 X c n X n. Då gäller och E(Y ) = c 1 E(X 1 ) c n E(X n ) V (Y ) = c 2 1V (X 1 ) c 2 nv (X n ) Jan Grandell & Timo Koski () Matematisk statistik / 43

19 Arimetiskt medelvärde X = 1 n n X i i=1 Sats Låt X 1, X 2,..., X n vara oberoende och likafördelade s.v. med väntevärde µ och standardavvikelse σ. Då gäller att E(X) = µ, V (X) = σ2 n och D(X) = σ n. Uttrycket X 1, X 2,..., X n är likafördelade betyder att de stokastiska variablernas fördelningar, dvs. att de stokastiska variablernas statistiska egenskaper, är identiska. Utfallen av variablerna varierar dock. Jan Grandell & Timo Koski () Matematisk statistik / 43

20 Tjebysjovs olikhet Sats (Tjebysjovs olikhet) För varje ε > 0 gäller P( X µ > ε) V (X) ε 2. (Ersätter vi ε med kσ fås formuleringen i Blom m.fl.) Bevis. Detta är den enda riktigt djupa satsen i kursen som vi kan bevisa. Vi nöjer oss med det kontinuerliga fallet. Vi har V (X) = (x µ) 2 f X (x) dx (x µ) 2 f X (x) dx ε 2 x µ >ε x µ >ε f X (x) dx = ε 2 P( X µ > ε). Jan Grandell & Timo Koski () Matematisk statistik / 43

21 Stora talens lag X = 1 n n i=1 X i Sats Stora talens lag För varje ε > 0 gäller Bevis. Enl. Tjebysjovs olikhet gäller P( X µ > ε) 0 då n. då n. P( X µ > ε) V (X) ε 2 = σ2 nε 2 0 Jan Grandell & Timo Koski () Matematisk statistik / 43

22 Normalfördelning Vi gör en mer detaljerad studie av X N(µ, σ) med f X (x) = 1 σ /2σ2 e (x µ)2 2π där µ godtycklig konstant och σ > 0. I figuren för f X (x) har vi µ = 1, σ = 1 Jan Grandell & Timo Koski () Matematisk statistik / 43

23 Normalfördelning (även känd som Gaussfördelning efter C.F. Gauss, ) Jan Grandell & Timo Koski () Matematisk statistik / 43

24 Standardiserad normalfördelning, N(0, 1) Definition En s.v. Z säges vara standardiserad normalfördelad om den är N(0, 1)-fördelad, dvs. om den har täthetsfunktionen ϕ(z) = 1 2π e z2 /2. Dess fördelningsfunktion betecknas med Φ(z), dvs. Φ(z) = z 1 2π e x2 /2 dx. Jan Grandell & Timo Koski () Matematisk statistik / 43

25 Standardiserad normalfördelning, N(0, 1) ϕ(z) = 1 2π e z2 /2. Jan Grandell & Timo Koski () Matematisk statistik / 43

26 Φ(z) Ett problem är att fördelningsfunktionen inte kan ges på en analytisk form. Det är dock lätt att numeriskt beräkna fördelningsfunktionen och vi använder programvara för beräkning av Φ(x). (T.ex. normcdf.m i MATLAB Statistics Toolbox.) I våra tentor använder vi dock en tabell över Φ(x), som återfinns i kursens formelsamling. Jan Grandell & Timo Koski () Matematisk statistik / 43

27 Tabellen för Φ(x) ur kursens formelsamling Jan Grandell & Timo Koski () Matematisk statistik / 43

28 Φ( z) = 1 Φ(z). Vi observerar att ϕ( z) = ϕ(z). Φ(z) är tabulerad i kursens formelsamling endast för z 0. Vi har dock z z Φ( z) = ϕ(x) dx = [y = x] = ϕ( y) dy Sats = z ϕ(y) dy = 1 Φ(z). Φ( z) = 1 Φ(z). Jan Grandell & Timo Koski () Matematisk statistik / 43

29 Z N(0, 1), E(Z), V(Z) Om Z är N(0, 1)-fördelad, så kan man visa att E(Z) = 0 (ty ϕ( z) = ϕ(z)) V (Z) = 1. Jan Grandell & Timo Koski () Matematisk statistik / 43

30 Kvantiler När vi kommer till statistikdelen av kursen behöver vi ofta lösa ekvationer av följande slag: Bestäm z så att vi för givet α har P(Z z) = 1 α; P(Z > z) = 1 α; P( z < Z z) = 1 α. För att lösa sådana ekvationer inför vi α-kvantilen λ α definierad av P(Z > λ α ) = α eller α = 1 Φ(λ α ). Jan Grandell & Timo Koski () Matematisk statistik / 43

31 Kvantiler (forts.) α = 1 Φ(λ α ). Det är då bra att observera att 1 α = 1 Φ(λ 1 α ) α = Φ(λ 1 α ) α = 1 Φ( λ 1 α ), vilket ger λ 1 α = λ α. Jan Grandell & Timo Koski () Matematisk statistik / 43

32 Kursens formelsamling: kvantiler Jan Grandell & Timo Koski () Matematisk statistik / 43

33 Allmän normalfördelning Definition En s.v. X säges vara N(µ, σ)-fördelad, där µ reell och σ > 0, om Z = X µ σ är N(0, 1)-fördelad. Jan Grandell & Timo Koski () Matematisk statistik / 43

34 Allmän normalfördelning Sats Låt X vara N(µ, σ)-fördelad. Då gäller f X (x) = 1 ( ) x µ σ ϕ = 1 σ σ /2σ2 e (x µ)2 2π och ( ) x µ F X (x) = Φ. σ Jan Grandell & Timo Koski () Matematisk statistik / 43

35 Allmän normalfördelning Bevis. Vi har ( X µ F X (x) = P(X x) = P σ ( = P Z x µ ) ( x µ = Φ Derivation ger f X (x) = 1 σ ϕ ( x µ σ σ ). σ x µ ) σ ). Jan Grandell & Timo Koski () Matematisk statistik / 43

36 En viktig regel Beviset ovan innehåller en viktig räkneregel. Om X är N(µ, σ)-fördelad, så gäller det att ( ) x µ F X (x) = P(X x) = Φ. σ Man kan m.a.o. använda tabellen för Φ(x) även för att beräkna F X (x) för X N(µ, σ). Jan Grandell & Timo Koski () Matematisk statistik / 43

37 Allmän normalfördelning Sats Om X är N(µ, σ)-fördelad så gäller E(X) = µ och V (X) = σ 2. Bevis. Vi ska nu se hur listig definitionen är! X = σz + µ E(X) = σe(z) + µ = 0 + µ = µ V (X) = σ 2 V (Z) + 0 = σ 2. Jan Grandell & Timo Koski () Matematisk statistik / 43

38 Täthetsfunktionerna för N(0, 1) och N(1, 1) och N(0, 1) och N(0, 2) (från vänster till höger) Jan Grandell & Timo Koski () Matematisk statistik / 43

39 Allmän normalfördelning Sats Låt X vara N(µ, σ)-fördelad och sätt Y = ax + b. Då gäller det att Y är N(aµ + b, a σ)-fördelad. Bevis. Från definitionen följer att X = µ + σz där Z är N(0, 1)-fördelad. Detta ger Y = ax + b = a(µ + σz) + b = aµ + b + aσz Y (aµ + b) = Z. aσ Om a > 0 följer satsen. Om a < 0 utnyttjar vi att Z och Z har samma fördelning. Jan Grandell & Timo Koski () Matematisk statistik / 43

40 SLUTLIGEN : Hur vet vi att ϕ(z) = 1 2π e z2 /2 är en sannolikhetstäthet? Dvs. varför gäller det att ϕ(z)dz = 1. Svaret ges t.ex. i Eike Petermann: Analytiska metoder II, Studentlitteratur 2002, sid. 235, Ex. 9.14, Anmärkning 9.6 eller bilagan nedan Jan Grandell & Timo Koski () Matematisk statistik / 43

41 Bilaga (ur Eike Petermann: Analytiska metoder II) : ϕ(z)dz = 1. Jan Grandell & Timo Koski () Matematisk statistik / 43

42 Bilaga : ϕ(z)dz = 1. Jan Grandell & Timo Koski () Matematisk statistik / 43

43 Bilaga : ϕ(z)dz = 1. Jan Grandell & Timo Koski () Matematisk statistik / 43

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om

Läs mer

Sannolikhet och statistik XI

Sannolikhet och statistik XI April 219 Betingade väntevärden. Vi ska säga att E[Y X = x] är väntevärdet av den sv som samma förd som Y givet X = x. Definition: Y diskret: E[Y X = x] = y k V Y y k p Y X (y k x), Y kont: E[Y X = x]

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell

Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell Föreläsningsanteckningar i Matematisk Statistik Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas som kursmaterial.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z

Läs mer

Stokastiska vektorer och multivariat normalfördelning

Stokastiska vektorer och multivariat normalfördelning Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Föreläsning 6, FMSF45 Linjärkombinationer

Föreläsning 6, FMSF45 Linjärkombinationer Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Föreläsning 8 för TNIU23 Integraler och statistik

Föreläsning 8 för TNIU23 Integraler och statistik Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

Föreläsning 7: Stokastiska vektorer

Föreläsning 7: Stokastiska vektorer Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Föresläsningsanteckningar Sanno II

Föresläsningsanteckningar Sanno II Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

Bengt Ringnér. October 30, 2006

Bengt Ringnér. October 30, 2006 Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07.

Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Bengt Ringnér September 0, 007 1 Inledning Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt

Läs mer

F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012.

F7 forts. Kap 6. Statistikens grunder, 15p dagtid. Stokastiska variabler. Stokastiska variabler. Lite repetition + lite utveckling av HT 2012. F7 forts. Kap 6 Statistikens grunder, 15p dagtid HT 01 Lite repetition + lite utveckling av Stokastisk variabel Diskreta och kontinuerliga sv Frekvensfunktion (diskr.), Täthetsfunktion (kont.) Fördelningsfunktion

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

2.1 Mikromodul: stokastiska processer

2.1 Mikromodul: stokastiska processer 2. Mikromodul: stokastiska processer 9 2. Mikromodul: stokastiska processer 2.. Stokastiska variabler En stokastiskt variabel X beskrivs av dess täthetsfunktion p X (x), vars viktigaste egenskaper sammanfattas

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Föreläsning 15: Försöksplanering och repetition

Föreläsning 15: Försöksplanering och repetition Föreläsning 15: Försöksplanering och repetition Matematisk statistik Chalmers University of Technology Oktober 19, 2015 Utfall och utfallsrum Slumpmässigt försök Man brukar säga att ett slumpmässigt försök

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Thomas Önskog 28/

Thomas Önskog 28/ Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Matematisk statistik 9 hp Föreläsning 4: Flerdim

Matematisk statistik 9 hp Föreläsning 4: Flerdim Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = /

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = / Föreläsning 5: Matstat AK för I, HT-8 MATEMATISK STATISTIK AK FÖR I HT-8 FÖRELÄSNING 5: KAPITEL 4.6 7: SUMMOR, MAXIMA OCH ANDRA FUNKTIONER AV S.V. KAPITEL 5. : VÄNTEVÄRDEN, LÄGES- OCH SPRIDNINGSMÅTT EXEMPEL

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel

Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Kompendium om flerdimensionella fördelningar för kursen S0008M Sannolikhetslära och statistik

Kompendium om flerdimensionella fördelningar för kursen S0008M Sannolikhetslära och statistik Adam Jonsson och Jesper Martinsson Kompendium om flerdimensionella fördelningar för kursen S0008M Sannolikhetslära och statistik TVM-Matematik, Luleå Tekniska Universitet 8 mars 2016 Kompendiet avser

Läs mer