Oberoende stokastiska variabler

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Oberoende stokastiska variabler"

Transkript

1 Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen ω (ξ(ω), η(ω)). Denna funktion kallas en tvådimensionell stokastisk variabel. Beteckna dess värdemängd med Ω (ξ,η). Då gäller Ω (ξ,η) Ω ξ Ω η. Låt (x, y) Ω (ξ,η). Då är mängden {ω : ξ(ω) = x, η(ω) = y} en händelse, dvs en delmängd till Ω. Definition 6. Funktionen f : Ω ξ Ω η [, ] : P(ξ = x, η = y), (x, y) Ω (ξ,η), f(x, y) =, i övrigt benämns frekvensfunktionen för den tvådimensionella stokastiska variabeln (ξ, η). Observera att vi definierat frekvensfunktionen i hela mängden Ω ξ Ω η. (I fallet Ω (ξ,η) Ω ξ Ω η innebär denna definition att sannolikheten är noll för den händelse att (ξ, η) antar ett värde i Ω ξ Ω η Ω (ξ,η).) Det är klart att en frekvensfunktion f uppfyller (i) f(x, y) för varje (x, y) Ω ξ Ω η, (ii) x Ω ξ y Ω η f(x, y) =. Vi kan bestämma frekvensfunktionerna f(ξ) och f(η) för ξ resp. η utgående från funktionen f på följande sätt: Låt x Ω ξ. Då gäller {ξ = x} = y Ω η {ξ = x, η = y}. 53

2 Följaktligen På samma sätt ( ) f ξ (x) = P(ξ = x) = P {ξ = x, η = y} y Ω η = y Ω η P(ξ = x, η = y) = y Ω η f(x, y). f η (x) = P(η = y) = x Ω ξ f(x, y). Funktionerna f ξ och f η kallas, i detta sammanhang, de marginala frekvensfunktionerna för variabeln (ξ, η). Omvändningen till det ovan sagda behöver ej gälla, dvs om vi känner till funktionerna f ξ och f η, så kan vi inte i allmänhet konstruera funktionen f. Vi har ändå följande viktiga specialfall Definition 6. Två stokastiska variabler ξ och η säges vara oberoende om f(x, y) = f ξ (x)f η (y), för varje (x, y) Ω ξ Ω η, där f, f ξ och f η är frekvensfunktionerna för (ξ, η), ξ resp. η. Vi har Sats 6.3 Låt ξ och η vara oberoende samt A och B delmängder till Ω ξ resp. Ω η. Då är händelserna {ξ A} och {η B} oberoende. Bevis Betrakta P ( {ξ A} {η B} ) = P ( (ξ, η) A B ) = f(x, y) = (x,y) A B f(x, y) = x A y B = f ξ (x) f η (y) = P(ξ A) P(η B). x A y B 5

3 Anmärkning 6. Allt ovanstående kan lätt generaliseras till det n-dimensionella fallet. T.ex. är ξ,..., ξ n oberoende, om f(x, x,..., x n ) = f ξ (x ) f ξ (x )...f ξn (x n ), där (x, x,..., x n ) Xi= n Ω ξ i samt f och f ξi (i =,,..., n) är frekvensfunktionerna för (ξ, ξ,..., ξ n ) resp. ξ i (i =,,..., n). Exempel 6.5 Betrakta en urna som innehåller fyra kulor numrerade,,3,. Vi drar två kulor ur urnan utan återläggning. Låt ξ vara siffran på den första dragna kulan och η siffran på den andra dragna kulan. Vi har Ω ξ = {,, 3, } och Ω η = {,, 3, }. Vidare η : y ξ : x 3 3 f ξ 3 f η Således är ξ och η beroende, ty t.ex. f(, ) = = f ξ()f η (). Antag nu att vi drar de två kulorna med återläggning. Då gäller Således är ξ och η oberoende. η : y ξ : x f η 3 f ξ Vi skall nu betrakta tvådimensionella stokastiska variabler som har en täthet. Låt ξ och η vara stokastiska variabler med värdemängderna Ω ξ = (a, b ) resp. Ω η = (a, b ). Den tvådimensionella variabeln (ξ, η) har då en värdemängd Ω (ξ,η) som är en delmängd till Ω ξ Ω η. 55

4 Antag att det existerar en funktion f sådan att P ( (ξ, η) A ) = A f(x, y)dxdy, där A är en mängd i Ω ξ Ω η som är en union av ett ändligt (eller högst numrerbart) antal rektanglar R i ur Ω ξ Ω η, dvs A = n i= R i (eller A = i= R i). Funktionen f kallas frekvensfunktionen för (ξ, η) och den uppfyller (i) f(x, y) för (x, y) Ω ξ Ω η (ii) Ω ξ Ω η f(x, y)dxdy = b a b a f(x, y)dxdy =. Exempel 6.6 Låt Ω ξ = Ω η = [, ). A = i= R i Ω η R 5 R R n R R R 3 R 6 Ω ξ Utgående från frekvensfunktionen för (ξ, η) kan vi bestämma frekvensfunktionerna för ξ och η. Vi har f ξ (x) = f η (y) = b a b a f(x, y)dy, f(x, y)dx. 56

5 Definition 6.7 Två stokastiska variabler ξ och η säges vara oberoende om f(x, y) = f ξ (x) f η (y), för varje (x, y) Ω ξ Ω η. Anmärkning 6.8 Se Anmärkning 6.. Exempel 6.9 Låt (ξ, η) ha frekvensfunktionen Vi bestämmer konstanten c: f(x, y) = c e αx βy, x, y, α >, β >. Vidare c f(x, y) dxdy = e αx dx e βy dy = f ξ (x) = αβ f η (y) = αβ c αβ c e αx βy dxdy = = c = αβ e αx βy dy = αe αx, e αx βy dx = βe αy. Följaktligen f(x, y) = f ξ (x) f η (y) och variablerna ξ och η är således oberoende. Nedan ges ett antal satser om tvådimensionella stokastiska variabler. Sats 6. Låt ξ och η vara oberoende stokastiska variabler samt g och h reellvärda funktioner med Ω ξ resp. Ω η som definitionsmängder. a) Om Ω är ändligt (eller högst numrerbart), så är även variablerna g(ξ) och h(η) oberoende. b) Om ξ och η har tätheter samt g och h är kontinuerliga, så är även variablerna g(ξ) och h(η) oberoende. Sats 6. Låt (ξ, η) vara en tvådimensionell stokastisk variabel med frekvensfunktionen f. Om väntevärdet för den sammansatta stokastiska variabeln ϕ(ξ, η) existerar, så gäller E ( ϕ(ξ, η) ) = x Ω ξ Ω ξ y Ω η ϕ(x, y) f(x, y) Ω η (x, y) f(x, y) dxdy. I det fall då Ω är högst numrerbart kan denna sats bevisas på samma sätt som Sats.. 57

6 Sats 6. a) E(ξ + η) = E(ξ) + E(η). b) Om ξ och η är oberoende, så är E(ξη) = E(ξ) E(η). Bevis a) Betrakta det fall då Ω är högst numrerbart. Det andra fallet bevisas analogt. E(ξ + η) = (x + y) f(x, y) x Ω ξ y Ω η = xf(x, y) + yf(x, y) x Ω ξ y Ω η x Ω ξ y Ω η = x f(x, y) + y f(x, y) x Ω ξ y Ω η y Ω η x Ω ξ = xf ξ (x, y) + yf η (x, y) = E(ξ) + E(η) x Ω ξ y Ω η b) Betrakta det fall då (ξ, η) har tätheten f. Det andra fallet bevisas analogt. Sätt Ω ξ = (a, b ) och Ω η = (a, b ). E(ξη) = = b b a b a a xf ξ (x) dx = E(ξ) E(η). xy f(x, y) dxdy b a yf η (y) dy (ty ξ och η är oberoende) Sats 6.3 V(ξ + η) = V(ξ) + V(η) + Kov(ξ, η), där Kov(ξ, η) = E{ ( ξ E(ξ) )( η E(η) ) }. Bevis V(ξ + η) = E{ ( ξ + η ( E(ξ) + E(η) )) } = E{ ( ξ E(ξ) + η E(η) ) } = E{ ( ξ E(ξ) ) } + E{ ( η E(η) ) } + E{ ( ξ E(ξ) )( η E(η) ) } = V(ξ) + V(η) + Kov(ξ, η). 58

7 Sats 6. Om ξ och η är oberoende så är V(ξ + η) = V(ξ) + V(η). Bevis Betrakta Kov(ξ, η) = E{ ( ξ E(ξ) )( η E(η) ) } = E(ξη) = E(ξ) E(η) = enligt Sats 6. b). Påståendet följer nu ur Sats 6.3. Anmärkning 6.5 Dessa satser kan lätt generaliseras till det n-dimensionella fallet. Låt t.ex. ξ, ξ,..., ξ n vara n stycken stokastiska variabler. Då gäller Om ξ,..., ξ n är oberoende, så är E(ξ ξ n ) = E(ξ ) E(ξ n ) n n n V(ξ ξ n ) = V(ξ i ) + Kov(ξ i, ξ j ). i= i= j= i j E(ξ... ξ n ) = E(ξ )E(ξ )... E(ξ n ) V(ξ ξ n ) = V(ξ ) V(ξ n ). Exempel 6.6 Låt ξ och η vara oberoende med väntevärdena E(ξ) och E(η) samt varianserna V(ξ) och V(η). Bilda ζ = ξ η. Vi har E(ζ) = E(ξ η) = E(ξ) E(η), V(ζ) = V(ξ η) = V(ξ) + V( η) ty enligt Sats 6. är även ξ och η oberoende. Följaktligen V(ζ) = V(ξ) + ( ) V(η) = V(ξ) + V(η). Exempel 6.7 Vid kast med två symmetriska tärningar betraktas tärningarnas värden som stokastiska variabler. Vi har E(ξ, ξ ) = x Ω ξ = = xy f(x, y) x Ω η 6 6 ( i j ty f(x, y) = ) i= j= 6 i i= =, 5 6 j= j =

8 Å andra sidan är ξ och ξ oberoende och således E(ξ, ξ ) = E(ξ )E(ξ ) = =, 5, (Se Exempel.9). Vidare V(ξ, ξ ) = E ( (ξ, ξ ) ) ( E(ξ, ξ ) ) = E(ξ ) E(ξ ) ( E(ξ ) ) ( E(ξ ) ). Enligt Exempel.5 Följaktligen V(ξ ) = 6 = 35, E(ξ ) = E(ξ ) = V(ξ ) + ( E(ξ ) ) = 35 + = 8 V(ξ, ξ ) = 8 8 Betrakta nu variabeln η = ξ ξ. Då är ( 7 ) ( ) 7 8. ( ) 7 ( ) E(η) = E(ξ ) E ξ ty ξ och ξ är oberoende, ( ) E ξ = 6 i= i 6 = 7 E(η) = 3, 5, 83, 9, 83 Det är klart att ζ = ξ ξ och η = ξ ξ inte är oberoende. Vi har E(ζη) = E(ξ ) = 8 E(ζ) E(η) 7, 5. 5, 7, 6

9 Exempel 6.8 Vi bestämmer kovariansen för variablerna ξ och η i Exempel 6.5 då dragningen sker utan återläggning. Kov(ξ, η) = E ( (ξ E(ξ))(η E(η)) ) = E(ξη) E(ξ) E(η). E(ξ) = 5, E(η) = 5 E(ξ η ) = xy f(x, y) = y Ω η x Ω ξ = Kov(ξ, η) = 7 5 = 5. i i= j j= i j ( ( ) + ( ) + 3 ( + + ) + ( + + 3) ) = 7 Tjebysjevs olikhet och de stora talens lag Sats 6.9 (Tjebysjevs olikhet) Låt ξ vara en stokastisk variabel med väntevärde µ och varians σ. Då gäller för varje t > att P( ξ µ tσ) t. Bevis Vi bevisar satsen i det fall då ξ har en täthet f. Låt Ω ξ = (a, b) och betrakta σ = = b a (x µ) f(x) dx (x µ) f(x) dx, ty vi kan sätta f(x) för x < a och x > b. Låt t >. Då gäller σ = = µ tσ µ tσ (x µ) f(x) dx (x µ) f(x) dx + (x µ) f(x) dx + µ+tσ µ tσ µ+tσ (x µ) f(x) dx + (x µ) f(x) dx µ+tσ (x µ) f(x) dx, 6

10 ty µ+tσ µ tσ (x µ) f(x) dx >. Men µ tσ µ+tσ (x µ) f(x) dx (x µ) f(x) dx µ tσ (µ tσ µ) f(x) dx µ tσ = t σ f(x) dx, µ+tσ = t σ (µ + tσ µ) f(x) dx µ+tσ f(x) dx. Följaktligen ( µ tσ ) σ t σ f(x) dx + f(x) dx µ+tσ σ t σ ( P(ξ µ tσ) + P(ξ µ + tσ) ) σ t σ P( ξ µ tσ) P( ξ µ tσ) t. Observera att olikheten gäller för varje sannolikhetsfördelning, och är således vanligtvis mycket grov. (T.ex. då t = säger satsen endast att P( ξ µ σ) vilket är en trivialitet.) Sats 6. (De stora talens lag) Låt ξ, ξ,... vara oberoende stokastiska variabler med samma sannolikhetsfördelning (dvs de är identiskt fördelade) med väntevärdet µ och variansen σ. Låt ξ n = n n i= ξ i vara medelvärdet av de stokastiska variablerna. Då gäller för varje ε > att lim P( ξ n µ > ε) =. n Bevis Vi har E( ξ n ) = n n i= E(ξ i) = µ och V( ξ n ) = n n i= V(ξ i) = σ n, ty variablerna antas vara oberoende. Enligt Sats 6.9 gäller för varje t > att ( σ ) P ξ n µ > t n t. 6

11 σ Välj t så att t n = ε, dvs t = ε n. Följaktligen gäller för varje n σ P( ξ n µ ε) σ ε n. Men den högra sidan av denna olikhet går mot noll då n, dvs lim P( ξ σ n µ ε) lim n n ε n =. Exempel 6. Låt ξ, ξ,... vara oberoende och binomialfördelade med parametrarna n och p. Bestäm ett värde på m, så att sannolikheten att ξ m = m m i= ξ i avviker från np med mer än, är mindre än,5. Vi har E( ξ m ) = m m E(ξ i ) = np i= V( ξ m ) = m m V(ξ i ) = i= np( p) m. För varje t > gäller då ( P ξ m np > t ) np( p) m t. Välj t så att t =, 5, dvs t = 5 = 5. Då gäller P ( ξ m np 5 ) np( p) m, 5. Välj nu m så stort att np( p) 5 =, m np( p) = m m = np( p). T.ex. om n = och p = fås att m = 5. 63

12 Övningsuppgifter. Den tvådimensionella variabeln (ξ, η) har frekvensfunktionen f(x, y) = c(x+y), (x, y) {, } {, }. Bestäm konstanten c samt de endimensionella frekvensfunktionerna f ξ och f η. Är variablerna ξ och η oberoende?. Den tvådimensionella stokastiska variabeln (ξ, η) har följande fördelning y : 5 6 x: 3 Bestäm frekvensfunktionerna f ξ (x) och f η (y) för de endimensionella variablerna. Är ξ och η oberoende? Bestäm vidare frekvensfunktionerna för variablerna ζ = ξ η och ζ = ξ. 3. De stokastiska variablerna ξ och ξ har samma väntevärden och samma varianser. Variablerna är oberoende. Den stokastiska variabeln η = ξ + ξ har väntevärdet lika 3 med 6 och variansen. Bestäm E(ξ ) och V(ξ ).. ξ är en tvåpunktsfördelad variabel, som antar värdet med sannolikheten a och värdet med sannolikheten a. a) Bestäm E(ξ) och V(ξ). b) Gör två oberoende observationer på ξ och bestäm väntevärdet och variansen för dessa observationers summa. 5. För variablerna ξ och η gäller följande E(ξ) =, V(ξ) =, Kov(ξ, η) =, 3. E(η) =, V(η) =, 9 Sök väntevärdet för variabeln ζ = ξ + η ξη! 6. Ett försäkringsbolag tillämpar ett bonussystem med 3 klasser med nedan angiven rabatt på grundpremien: bonusklass 3 bonus (rabatt) % 35 % 7 % Första året betalar en ny försäkringstagare full premie ( mk). Ett skadefritt år medför för nästa år en uppflyttning till närmast högre bonusklass, dock högst till bonusklass 3. Ett icke skadefritt år medför att nästa års premie betalas enligt närmast 3 6

13 lägre bonusklass, dock lägst klass. Bestäm för en ny försäkringstagare väntevärdet för den sammanlagda premien under de första tre åren. De tre årens premier grundar sig på förhållandena under de två första åren, eftersom första årspremien är given. Vår försäkringstagare har sannolikheten 5 6 att köra skadefritt under ett år och vi förutsätter oberoende mellan åren. 7. En urna innehåller fem kulor markerade,, 3, och 5. Man tar med återläggning på måfå två kulor ur urnan. Låt ξ och η vara de därvid erhållna poängtalen för första resp. andra kulan. Definiera nya stokastiska variabler enligt ξ = ξ + η och ξ = max(ξ, η). Bestäm frekvensfunktionerna för ξ, ξ och (ξ, ξ ). Är variablerna oberoende? 8. Låt ξ och η vara två stokastiska variabler. Talet ρ = Kov(ξ,η) kallas korrelationsko- V(ξ)E(η) efficienten mellan variablerna ξ och η. Bestäm korrelationskoefficienten mellan ξ och ξ, där ξ betecknar utfallet vid kast med en symmetrisk tärning. 9. En stokastisk variabel ξ har frekvensfunktionen cx 3, för x, f(x) =, för övriga x. Bestäm konstanten c! Vad är sannolikheten att av två slumpmässiga oberoende observationer av variabeln båda är större än,5?. Den kontinuerliga stokastiska variabeln ξ är likformigt fördelad i intervallet (a, b) och har variansen 3 6. Bestäm variationsvidden för ξ, dvs beräkna avståndet mellan a och b.. Beräkna väntevärdet och variansen för summan av tio oberoende stokastiska variabler, som alla är likformigt fördelade i intervallet (, 3).. Bestäm k så att funktionen f(x, y) = k xy( y), (x, y) (, ) (, ) blir en frekvensfunktion för en tvådimensionell stokastisk variabel (ξ, η). Visa att variablerna ξ och η är oberoende. Beräkna sannolikheterna P(ξ > η) och P(η < ξ ). 3. En tvådimensionell stokastisk variabel (ξ, η) har frekvensfunktionen f(x, y) = x y, (x, y) (, ) (, ). Bestäm frekvensfunktionerna för ξ och η. Sätt ζ = ξη. Bestäm E(ζ)! 65

14 . Man väljer på måfå två punkter på en cirkels periferi. Vad är sannolikheten att deras avstånd är större än cirkelns radie? (Ledning: Välj först en punkt. Fördela sedan sannolikhetsmassan likformigt över cirkelns periferi.) 5. Låt ξ, ξ,... vara oberoende och a) Poissonfördelade b) exponentialfördelade. Bestäm med hjälp av Tjebysjevs olikhet ett tal n så att sannolikheten att ξ n = n n i= ξ i avviker från E( ξ n ) med mer än, är mindre än,5. 6. Låt ξ vara en normalfördelad stokastisk variabel med parametrarna µ och σ. Uppskatta med Tjebysjevs olikhet sannolikheten att ξ avviker från µ med mer än, 96 σ. Vad är den exakta sannolikheten? 66

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2 Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011 Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

6. Flerdimensionella stokastiska variabler

6. Flerdimensionella stokastiska variabler 6 Flerdimensionella stokastiska variabler 61 Simultana fördelningar Den simultana fördelningsfunktionen av X och Y, vilka som helst två stokastiska variabler, definieras F(a,b) = F X,Y (a,b) = P(X a,y

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Tentamen LMA 200 Matematisk statistik, data/elektro

Tentamen LMA 200 Matematisk statistik, data/elektro Tentamen LMA 00 Matematisk statistik, data/elektro 039 Tentamen består av åtta uppgiter motsvarande totalt 50 poäng. Det krävs minst 0 poäng ör betyg 3, minst 30 poäng ör 4 och minst 40 ör 5. Examinator:

Läs mer

Stokastiska variabler

Stokastiska variabler Kpitel 4 Stokstisk vribler Ett utfll v ett slumpmässigt försök är oft sådnt som inte direkt kn mäts. T.ex. försöket Kst med ett symmetriskt mynt hr utfllsrummet {kron, klve}. För tt kvntittivt nlyser försök

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord

Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord Övningstentamen Uppgift : I en kvalitetskontroll är det fyra olika fel A, B, C och D som kan förekomma oberoende av varandra där P(A) 0.03, P(B) 0.05, P(C) 0.07 och P(D) 0.. a. Beräkna sannolikheten att

Läs mer

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0 Övningstentamen Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet de att Bill träffar tavlan med sannolikheten.7

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Centrala gränsvärdessatsen (CGS). Approximationer

Centrala gränsvärdessatsen (CGS). Approximationer TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination

Läs mer

1 Föreläsning V; Kontinuerlig förd.

1 Föreläsning V; Kontinuerlig förd. Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall

Läs mer

Övningstentamen i matematisk statistik

Övningstentamen i matematisk statistik Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Mer om integraler. Kapitel I. I.1 Integraler

Mer om integraler. Kapitel I. I.1 Integraler Kapitel I Mer om integraler I detta kapitel bevisar vi de resultat om integraler som i boken lämnats utan bevis. En del av bevisen utnyttjar begreppet likformig kontinuitet från Kapitel K i detta nätmaterial.

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005 Teoretisk statistik Gunnar Englund Matematisk statistik KTH Vt 2005 Inledning Vi skall kortfattat behandla aspekter av teoretisk statistik där framför allt begreppet uttömmande (ibland kallad tillräcklig

Läs mer

Svar till gamla tentamenstal på veckobladen

Svar till gamla tentamenstal på veckobladen Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes 8 + + + + + 8 + a) P(A).4 och P(C).8

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 25..26 Jan Grandell & Timo Koski Matematisk statistik 25..26 / 44 Stokastiska

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) = Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Vi tittar också på Makehams fördelning som är den mest tillämpade livslängdsmodellen i Sverige. Historia om livslängdstabeller 2

Vi tittar också på Makehams fördelning som är den mest tillämpade livslängdsmodellen i Sverige. Historia om livslängdstabeller 2 Abstract Den här föreläsningen introducerar en stokastisk modell för livslängder. Speciellt definierar vi livslängd, fördelningsfunktion, dödlighetsintensitet och överlevelsefunktion. Vi tittar också på

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt

modell Finansiell statistik, vt-05 Modeller F5 Diskreta variabler beskriva/analysera data Kursens mål verktyg strukturera omvärlden formellt Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F5 Diskreta variabler Kursens mål beskriva/analysera data formellt verktyg strukturera omvärlden innehåll osäkerhet

Läs mer

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) = Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Onsdagen

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005

Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005 Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens

Läs mer

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):

Läs mer

Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik

Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik Sida 1 Lösningar till uppgifter från Milton-Arnold, kap 3 4 Matematisk statistik 3.7, 3.11 Ympning används för att få en planta att växa på ett rotsystem tillhörande en annan växt. Elementarsannolikheterna

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4. Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x

Läs mer

Övningstentamen 1. A 2 c

Övningstentamen 1. A 2 c Övningstentamen Uppgift : På en arbetsplats skadades % av personalen under ett år. 6% av alla skadade var män. % av alla anställda var kvinnor. Är det manliga eller kvinnliga anställda som löper störst

Läs mer