Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Storlek: px
Starta visningen från sidan:

Download "Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U."

Transkript

1 Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna för en diskret stokastisk variabel är Likformig fördelning: ξ är Likf() = antal möjliga utfall med lika sannolikheter. Eempel: Antal ögon vid ett tärningskast. Hypergeometrisk fördelning: ξ är Hyp(, n, p) = begränsad mängd. p = antal element av ett visst slag. p = andel element av ett visst slag. n = antal slumpmässigt utvalda element ur mängden. p p n n Väntevärde: E(ξ) = n p n Varians: Var(ξ) = n p ( p) Eempel: Plocka kulor ur en urna utan återläggning. Övningar att räkna: 3.3, 3.5, 3.7 Binomialfördelningen: ξ är Bin(n, p) n = antal oberoende upprepningar av ett försök. C p = sannolikheten att händelsen A (eller A ) inträffar i ett sådant försök. n n p ( p) Väntevärde: E(ξ) = n p Varians: Var(ξ) = n p ( p) Eempel: Antal klavar vid 0 oberoende kast av ett mynt. Övningar att räkna: 3.4, 3.3

2 Gammalt tentamenstal (Bygg 990): I Monte Carlo:s casino kan man spela olika tärningsspel. Ett spel går till så att en spelare, A, satsar pengar och väljer en siffra mellan och 6. En croupier, som sköter banken, kastar tre tärningar. Om en, två eller tre av tärningarna visar den valda siffran så får A två, tre respektive fyra gånger insatsen av banken. Om ingen av tärningarna visar det valda numret förlorar A. Anta att A satsar 50 franc. a) Beräkna förväntad vinst för A. b) Beräkna standardavvikelsen för A:s förväntade vinst. Poissonfördelningen: ξ är Po(λ) λ = genomsnittligt antal händelser i ett intervall. e λ λ! Väntevärde: E(ξ) = λ Varians: Var(ξ) = λ Eempel: Antal båtar som anlägger i en hamn under ett dygn. Övningar att räkna: 3.4, 3.7. I en s.k. Poissonprocess med intensiteten c är antalet bilar som kommer i ett intervall av längden t Po(ct) och antalet bilar i disjunkta intervall oberoende. Intervallen mellan ankomsterna är eponentialfördelade. (Vi kommer till denna fördelning i kap.4). Summan av två variabler som är oberoende och Poissonfördelade med parametrarna λ resp. λ är Po(λ +λ ) 3. Lägg märke till villkoren vid approimationerna mellan de olika fördelningarna sid 89. Väntevärdet bibehålls dock alltid. Övningar att räkna: 3.5, 3.6 Hyp(, n, p) n>0 n n < p+ 0. <0. n>0 p<0. Bin(n, p) Po( λ )

3 Gammalt tentamenstal (Maskin 09087): I en vägkorsning kan antal bilar som passerar antas vara Poissonfördelat med en genomsnittlig passeringsfrekvens av 5 bilar på 5 minuter. Vad är sannolikheten att det kommer minst bilar till korsningen under en 5-minuters period? (3 poäng) Kapitel 4 i Matematisk statistik, Blomqvist U. ya begrepp: Kontinuerlig stokastisk variabel, frekvensfunktion f(), fördelningsfunktion F(), väntevärde, varians, fraktiler, standardfördelningarna rektangel- och eponentialfördelningen. Övningar att räkna: 4.(inte e-uppgiften), , 4.6a, 4.0, 4.8, 4.9, 4. Snabbrepetition:. Fördelningen för en s.v. kan anges genom att man anger frekvensfunktionen eller fördelningsfunktionen eller genom att man helt enkelt säger att eempelvis ξ är eponentialfördelad.. Allmänt för kontinuerliga fördelningar: Två villkor skall vara uppfyllda för att f() skall vara en frekvensfunktion: ) f() 0 ) f ()d= Fördelningsfunktion: F() = P(ξ ) = f (t)dt P(ξ > ) = P(a < ξ b) = b a f (t)dt = F() f ()d = F(b) F(a) Väntevärde: E(ξ) = f() d Varians: Var(ξ) = f() d [ E( ξ)] Om ξ är en kontinuerlig stokastisk variabel med frekvensfunktionen f(), då gäller för varje reellvärd funktion g att E[g(ξ)] = g() f() d 3. För en kontinuerlig stokastisk variabel ξ gäller alltid P ( ξ = a) = 0. Se sid. 0

4 Gammalt tentamenstal: (Ekonomi och produktion/maskin 4): En dator uppgraderas med ett nytt operativsystem. Ändringen av tiden, i sekunder, att koppla upp sig mot Internet kan beskrivas av nedanstående frekvensfunktion: f() = c e c < 0 a) Bestäm konstanten c. b) Bestäm fördelningsfunktionen c) Vad är sannolikheten att uppkopplingstiden med hjälp av den nya systemet förändras med minst en halv sekund? (8 poäng) Gammalt tentamenstal: (Data/elektro 030): En kontinuerlig stokastisk variabel ξ har frekvensfunktionen f() = a a för för 0 < för < 4 annars a) Bestäm konstanten a. b) Beräkna den stokastiska variabelns väntevärde. 4. Rektangelfördelning: ξ är R(a, b) a < < b Frekvensfunktion: f() = b a för övrigt 0 a a Fördelningsfunktion: F() = a < < b b a b a + b Väntevärde: E(ξ) = (b a) Varians: Var(ξ) =

5 5. Eponentialfördelning: ξ är Ep(λ) λ λ e 0 Frekvensfunktion: f() = 0 Fördelningsfunktion: F() = λ e 0 Väntevärde: E(ξ) = λ Varians: Var(ξ) = λ 6. I en Poissonprocess där det inträffar händelser i tiden (e. vis. bilar anländer) är tidsintervallen mellan händelserna oberoende och eponentialfördelade. Gammalt tentamenstal: (Bygg 990): En utrustning består av tre delar, vars livslängder mätt i år, är eponentialfördelade med parametrarna λ =0.5, λ =0.5 och λ 3 =. Alla tre delarna, som fungerar oberoende av varandra, måste fungera för att hela systemet skall fungera. Vad är sannolikheten att systemet fungerar efter 0.5 år? Gammalt tentamenstal (Kemi 046): Till en telefonväel kommer det i genomsnitt 30 samtal per timme. Anta att antalet telefonsamtal är Poissonfördelat. a) Vad är sannolikheten att det inte kommer något samtal under en 3-minuters period? b) Vad är sannolikheten att det kommer fler än samtal under en 5 minuters period? c) Anta att ett samtal just har kommit in till telefonväeln. Beräkna sannolikheten att det tar längre tid än minuter innan nästa samtal kommer. (7 poäng)

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

Övningstentamen i matematisk statistik

Övningstentamen i matematisk statistik Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering.

Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering. Uppgift 1 (14p) I en hockeymatch mellan lag A och lag B leder lag A med 4-3 när det är en kvart kvar av ordinarie matchtid. En oddssättare på ett spelbolag behöver bestämma sannolikheten för de tre matchutfallen

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

1. Att en exponentialfördelad stokastisk variabel X är minneslös formuleras matematiskt

1. Att en exponentialfördelad stokastisk variabel X är minneslös formuleras matematiskt Tentamensskrivning i Matematisk statistik för D3 Lärare: Dan Mattsson, tfn 77 5349 Hjälpmedel: Utdelad formelsamling med tabeller (även BETA, Physics Handbook, skoltabeller, till exempel TEFYMA). Valfri

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

En aktuaries synpunkter på könsneutrala premier

En aktuaries synpunkter på könsneutrala premier En aktuaries synpunkter på könsneutrala premier Erland Ekheden erland@math.su.se och försäkringsmatematik Stockholms universitet Bakgrund Introduktion Vi aktuarier har levt i Sus och Dus de senaste åren...

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Handelshögskolan i Stockholm Anders Sjöqvist 2087@student.hhs.se Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Efter förra kursen hörde några av sig och ville gärna se mina aktivitetsuppgifter

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng Stockholms Universitet Statistiska Institutionen VT-2009 Kursbeskrivning Statistisk Teori I, grundnivå, 15 högskolepoäng Allmänt Kursen består av två moment: Moment 1. Grundläggande statistisk teori, 12hp.

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström

Black-Scholes. En prissättningsmodell för optioner. Linnea Lindström Black-Scholes En prissättningsmodell för optioner Linnea Lindström Vt 2010 Examensarbete 1, 15 hp Kandidatexamen i matematik, 180 hp Institutionen för matematik och matematisk statistik Sammanfattning

Läs mer

The Title. The Author. The Date

The Title. The Author. The Date The Title The Author The Date ii Innehåll Vad statistik handlar om. Modeller............................ 3. Tre typer av medelvärden.................. 4.. Median........................ 5.. Typvärde.......................

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap Michael Hörnquist, 1 februari 2013 TNIU66: Statistik och sannolikhetslära Kursinformation 2013 Mål och innehåll Kursens mål och förväntade läranderesultat enligt

Läs mer

Bayesianska numeriska metoder I

Bayesianska numeriska metoder I Baesianska numeriska metoder I T. Olofsson Marginalisering En återkommende teknik inom Baesiansk inferens är det som kallas för marginalisering. I grund och botten rör det sig om tillämpning av ett specialfall

Läs mer

Föreläsning 1, Matematisk statistik för M

Föreläsning 1, Matematisk statistik för M Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

Statistiska modeller inom datateknik. Mikael Möller

Statistiska modeller inom datateknik. Mikael Möller Statistiska modeller inom datateknik Mikael Möller ii Innehåll Innehåll Figurer Tabeller Förord Introduktion iii ix xi xiii xvii. Läges- och spridningsmått.................. 3.. Medelvärdet......................

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Boken är tänkt att ersätta tidigare kurslitteratur som används i kursen Livförsäkringsmatematik I som ges vid Stockholms universitet.

Boken är tänkt att ersätta tidigare kurslitteratur som används i kursen Livförsäkringsmatematik I som ges vid Stockholms universitet. Livförsäkringsmatematik andra upplagan Inledning Litteraturen för inledande kurser inom livförsäkring på svenska högskolor och universitet har, på grund av den omfattande utvecklingen i livförsäkringsbranschen

Läs mer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II G. Gripenberg Aalto-universitetet 13 februari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och

Läs mer

Modellering av kostnaden för excess of loss

Modellering av kostnaden för excess of loss Matematisk statistik Stockholms universitet Modellering av kostnaden för excess of loss återförsäkring Andreas Ericsson Examensarbete 2004:14 Postadress: Matematisk statistik Matematiska institutionen

Läs mer

Sannolikhet och statistik med Matlab. Måns Eriksson

Sannolikhet och statistik med Matlab. Måns Eriksson Sannolikhet och statistik med Matlab Måns Eriksson 1 Inledning Det här kompiet är tänkt att användas för självstudier under kursen Sannolikhet och statistik vid Uppsala universitet. Målet är att använda

Läs mer

Prissättning för skadeförsäkring med postnummer som kredibilitetsfaktor

Prissättning för skadeförsäkring med postnummer som kredibilitetsfaktor Prissättning för skadeförsäkring med postnummer som kredibilitetsfaktor Fredrik Bjärnek Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2014:13 Matematisk

Läs mer

Anna: Bertil: Cecilia:

Anna: Bertil: Cecilia: Marco Kuhlmann 1 Osäkerhet 1.01 1.02 1.03 1.04 1.05 Intelligenta agenter måste kunna hantera osäkerhet. Världen är endast delvist observerbar och stokastisk. (Jmf. Russell och Norvig, 2014, avsnitt 2.3.2.)

Läs mer

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11 1/11 F11 Två stickprov Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 26/2 2013 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar

Läs mer

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p) Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Stokastiska variabler

Stokastiska variabler Sannolikhetsteori ör MN1 ht 2004 2004-09 - 07 Bengt Rosén Stokastiska variabler Deinition av stokastisk variabel Den matematiska beskrivningen av ett slumörsök är ett ar (Ω, P( )), där utallsrummet Ω är

Läs mer

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK.

120 110 S t : 100 100 90 80 Vi ska här betrakta ett antal portföljer som vid t = 0 är värda 100 SEK. STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund FINANSMATEMATIK I. KOMPLEMENT DAG 5. HANDELSSTRATEGIER Låt S t beteckna priset på en aktie vid tiden t. Vi

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden!

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! FÅ FRAM INDATA När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! (Falstaff Fakir) Svårigheter att få fram bra information - en liten konversation Ge mig

Läs mer

Release party: Non-life Insurance Pricing with GLMs

Release party: Non-life Insurance Pricing with GLMs Release party: Non-life Insurance Pricing with GLMs Esbjörn Ohlsson & Björn Johansson Svenska Aktuarieföreningen 15 juni 2010 1 Brandstod enligt 1734 års lag Ersätter för bonden nödige hus samt säd, foder

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM K.H./C.F./C.W. Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, 18/6 013, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap TNIU66: Statistik och sannolikhetslära Kursinformation 2015 Kursens mål och förväntade läranderesultat Kursens mål är att ge en introduktion till matematisk

Läs mer

5.3 Sannolikhet i flera steg

5.3 Sannolikhet i flera steg 5.3 Sannolikhet i flera steg När man singlar slant kan man få utfallen krona eller klave. Sannolikheten att få klave är - och krona ^. Vad är sannolikheten att fä krona två. kast i rad? Träddlagram För

Läs mer

Sannolikhetslära Albertus Pictor Lyckohjulet

Sannolikhetslära Albertus Pictor Lyckohjulet Sannolikhetslära Albertus Pictor Lyckohjulet Regnabo. Regnaui. Sum sine Regno står det målat över Albertus Pictors lyckohjul i Härkeberga vapenhus. Det betyder jag skall ha makten, jag har makten, jag

Läs mer

MATEMATISK STATISTIK FÖR V OCH L ÖVNINGSMATERIAL CENTRUM SCIENTIARUM MATHEMATICARUM HT 2012. Matematikcentrum Matematisk statistik

MATEMATISK STATISTIK FÖR V OCH L ÖVNINGSMATERIAL CENTRUM SCIENTIARUM MATHEMATICARUM HT 2012. Matematikcentrum Matematisk statistik MATEMATISK STATISTIK FÖR V OCH L ÖVNINGSMATERIAL HT 2012 Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM Innehåll 1 Innehåll 1 Övningsuppgifter 3 2 Lösningar 35 2 Matematisk statistik

Läs mer

Förord. Lund den 2 maj 2010

Förord. Lund den 2 maj 2010 Förord Denna rapport är resultatet av ett examensarbete på 20 veckor (30 ECTS) som utförts på halvfart under höstterminen 2009 samt vårterminen 2010 på psykiatriska länsakuten i Stockholm. Examensarbetet

Läs mer

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige. http://www.math.su.

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige. http://www.math.su. ËØÓ ÓÐÑ ÙÒ Ú Ö Ø Ø Å Ø Ñ Ø Ø Ø Ø ÅØØÔ Ú Ö Ø Ò Ý Ø Ñ Ø Ú Ö Ø ÓÒÑ ÐÐ Ò Ò Ú Ö Ø Ö Ò ÐÒ Ò ÔÖ Ñ Ð Ö ÒÓÑ Ö Ö Ò Ã ÂÖÒÑ ÐÑ Ü Ñ Ò Ö Ø ¾¼¼ ½ Postadress: Matematisk statistik Matematiska institutionen Stockholms

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, GA 08 januari 2015. Lösningar STOCKHOLMS UNIVERSITET MT712 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, GA 8 januari 215 Lösningar Tentamen i Livförsäkringsmatematik I, 8 januari 215 Uppgift 1 a) Först konstaterar

Läs mer

Räkna med variation Studiematerial i sannolikhetslära och statistisk inferens mars 2015

Räkna med variation Studiematerial i sannolikhetslära och statistisk inferens mars 2015 Räkna med variation Studiematerial i sannolikhetslära och statistisk inferens mars 2015 Innehåll 1. Beskrivning av data 2. Grundläggande sannolikhetsberäkningar 3. Fördelningar 3.1 Diskreta fördelningar

Läs mer

Osäkerhetsanalys för Sampers

Osäkerhetsanalys för Sampers VTI notat 4 2003 VTI notat 4-2003 Osäkerhetsanalys för Sampers Förstudie om Monte Carlo-simulering Författare FoU-enhet Projektnummer 40495 Projektnamn Uppdragsgivare Pontus Matstoms Urban Björketun Trafik-

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Statistisk analys av kundtjänstdata. Statistical analysis of customer service data. - Queuing theory, Entropy analysis, Time series analysis

Statistisk analys av kundtjänstdata. Statistical analysis of customer service data. - Queuing theory, Entropy analysis, Time series analysis Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2014:6 Statistisk analys av kundtjänstdata - Köteori, Entropianalys, Tidsserieanalys Statistical analysis of customer

Läs mer

Three Monkeys Trading. Tärningar och risk-reward

Three Monkeys Trading. Tärningar och risk-reward Three Monkeys Trading Tärningar och risk-reward I en bok vid namn A random walk down Wall Street tar Burton Malkiel upp det omtalade exemplet på hur en apa som kastar pil på en tavla genererar lika bra

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

Översikt Hur får vi aktiva, engagerade och motiverade elever i matematik? Jag kommer att visa hur vi genom olika aktiviteter och metoder kan inspirera och få eleverna att känna glädje inför matematiklektionerna.

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.

Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk. Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik

Läs mer

Karolina Klü ft (4/2/0)

Karolina Klü ft (4/2/0) Karolina Klü ft (4/2/0) Klüft tävlade i sjukamp och var en av Sveriges främsta medaljkandidater i VM i friidrott 2005. I sjukamp tävlar deltagarna i olika grenar. För att kunna summera resultaten från

Läs mer

Statistiskt säkerställande av skillnader

Statistiskt säkerställande av skillnader Rapport Statistiskt säkerställande av skillnader Datum: Uppdragsgivare: 2012-10-16 Mindball Status: DokumentID: Slutlig Mindball 2012:2, rev 2 Sammanfattning Totalt 29 personer har tränat med koncentrationshjälpmedlet

Läs mer

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat

Läs mer

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING Lönebildningsrapporten 9 FÖRDJUPNING Skattning av matchningseffektiviteten på den svenska arbetsmarknaden I denna fördjupning analyseras hur matchningseffektiviteten på den svenska arbetsmarknaden har

Läs mer

Nyckeltalsrapport 3L Pro 2014. Nyckeltalsrapport. Copyright VITEC FASTIGHETSSYSTEM AB

Nyckeltalsrapport 3L Pro 2014. Nyckeltalsrapport. Copyright VITEC FASTIGHETSSYSTEM AB Nyckeltalsrapport Innehåll NYCKELTAL... 3 REGISTRERA NYCKELTAL... 3 Variabler... 4 Konstanter... 5 Formler... 6 NYCKELTALSRAPPORTEN... 9 ALLMÄNT OM NYCKELTAL... 10 Avkastningsnyckeltal... 10 Likviditetsnyckeltal...

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

Matematisk processmodellering och effektivitetsrekommendation för patientflöden på Mälaren Hästklinik AB

Matematisk processmodellering och effektivitetsrekommendation för patientflöden på Mälaren Hästklinik AB DEGREE PROJECT, IN APPLIED MATHEMATICS AND INDUSTRIAL ECONOMICS, FIRST LEVEL STOCKHOLM, SWEDEN 2015 Matematisk processmodellering och effektivitetsrekommendation för patientflöden på Mälaren Hästklinik

Läs mer

Projektplan. Naturvetenskaps- och tekniksatsningen

Projektplan. Naturvetenskaps- och tekniksatsningen Projektplan Elever: Klass: Version på planen: Senast uppdaterad: Idé Vilket fenomen eller skeende i er omgivning vill ni undersöka? Exempel: Fåglars olika läten och beteenden vid olika situationer. Ämne

Läs mer

Metodanrop - primitiva typer. Föreläsning 4. Metodanrop - referenstyper. Metodanrop - primitiva typer

Metodanrop - primitiva typer. Föreläsning 4. Metodanrop - referenstyper. Metodanrop - primitiva typer Föreläsning 4 Metodanrop switch-slingor Rekursiva metoder Repetition av de första föreläsningarna Inför seminariet Nästa föreläsning Metodanrop - primitiva typer Vid metodanrop kopieras värdet av en variabel

Läs mer

Modern Programmering (2546) Tentamen lördag 30.09.2000

Modern Programmering (2546) Tentamen lördag 30.09.2000 Modern Programmering (2546) Tentamen lördag 30.09.2000 Svara på minst sex frågor. Om du svarar på alla sju frågorna faller den fråga bort som ger minst antal poäng. Maximalt 70 poäng. Det krävs 35 poäng

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

050504/AE. Regler för Pick n Click

050504/AE. Regler för Pick n Click 050504/AE Regler för Pick n Click Gäller fr o m den 23 maj 2005 1 INNEHÅLLSFÖRTECKNING 1. ALLMÄNNA REGLER... 3 2. SPELPLAN OCH SPELFORMER... 3 3. DELTAGANDE I LOTTERIET... 4 4. KVITT ELLER DUBBELT 5 5.

Läs mer

Jack, King, Queen = 3 kort, 4 valörer och totalt 52 kort (3*4)/52 b) P(Heart and Ace)?

Jack, King, Queen = 3 kort, 4 valörer och totalt 52 kort (3*4)/52 b) P(Heart and Ace)? DETTA ÄR EN SAMMANSTÄLLNING AV ALLA PASTASORTER SOM FINNS I HELA VÄRLDEN. DOCK FINNS DET ÄVEN EFTERBLIVNA MÄNNISKOR I VÅR FINA VÄRLD OCH DÄRFÖR SAKNAS DET PASTA PÅ VISSA FRÅGOR. TITTA GÄRNA IN PÅ MIN BLOGG

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer