Svar till gamla tentamenstal på veckobladen

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Svar till gamla tentamenstal på veckobladen"

Transkript

1 Svar till gamla tentamenstal på veckobladen Veckoblad : Data/Eletro 54 A = Patienten är ett allvarligt fall B = Patienten är under 4 år C= Någon av patientens föräldrar har diabetes a) P(A =.4 och P(C)= = d.v.s. P(A) P(C.4.58 =. medan P(A C =.8 d.v.s. A och C är beroende b) ) P(A C B C 5 + P(patienten är ett lindrigt fall över 4 år =.5 ) P(A C B C P(patienten är inte ett allvarligt fall under 4 år = P(A B. =.9 ) P(A C B C C P(patienten är ett lindrigt fall under 4 år vars föräldrar inte har diabetes. Data herrar och n damer ) varje herre kysser n damer antal kyssar = 5n 5 ) antal handskakningar mellan herrar = n antal handskakningar mellan damer = Antal kyssar = antal handskakningar 5n = 5 n n ( n ) 5n = + n = + (n - n) n - n + = n = 96 ± n = ± n = och n = OBS! Två svar 4

2 Veckoblad : Data/Eletro 7 A: Den svarta tärningen kommer upp med 6 ögon. B: Den vita tärningen kommer upp med 6 ögon. C: Summan av antal ögon på den svarta och den vita tärningen är udda. a) Om A och B är oberoende så gäller att P(A B P(A) ÿ P(B) Ovannämnda situation kan illustreras genom att man ritar in de olika tal-paren i ett spridningsdiagram. kast med tärning tärningarna visar vilka antal ögon som tärning och har. tärningarna visar 6 ögon på både tärning och kast med tärning P(A P(B 6 P(A B (enligt ovanstående figur 6 P(A) ÿ P(B 6 ÿ 6 = 6 = P(A B) A och B är oberoende b) Denna situation kan illustreras av nedanstående figur kast med tärning tärningarna visar vilka antal ögon som tärning och har. tärningarna visar när summan av antal ögon är udda kast med tärning

3 fortsättning uppgift b: P(A 6 8 P(C = 6 P(A C (fås mha den översta raden svarta prickar i ovanstående figur 6 = P(A) ÿ P(C 6 ÿ = = P(A C) A och C är oberoende c) Är de tre händelserna A, B och C oberoende eller beroende av varandra? P(A B C eftersom det inte finns någon situation där både tärning och har 6 ögon samtidigt som summan av antal ögon skall vara udda. P(A) ÿ P(B) ÿ P(C 6 ÿ 6 ÿ = 7 = P(A B C) A, B och C är beroende. Bygg 99 Låt F vara händelsen att vi erhållit det felaktiga myntet. P(F. P(F C.99. a) Låt K vara händelsen att vi erhållit en klave i ett kast. Sannolikheten för K blir givetvis olika beroende på vilket mynt vi har valt. Vi får alltså en betingad sannolikhet. Vi antar att mynten är symmetriska. Alt : Myntet, som vi har valt är inte det felaktiga. P(K.5. Men uppgiften bestod i att vi skulle studera tre kast. Variabeln antal klavar är binomialfördelad. Sannolikheten att få tre klavar i tre kast när vi använder ett felfritt mynt blir P(K K K.5.5 =.5 Alt : Vi har valt det felaktiga myntet. P(K.. Eftersom vi erhåller klave varje gång vi kastar så blir även sannolikheten för att erhålla tre klavar i tre kast P(K K K. Vi kombinerar båda dessa resultat för att få sannolikheten att med ett slumpmässigt valt mynt få tre klavar i tre kast. P(K K K P(K K K F C ) P(F C ) + P(K K K F) P(F =.75 Vi kan nu beräkna den efterfrågade sannolikheten genom att använda Bayes sats: P(F K K K P(K K K F) P(F).. =.75 P(K K K ).75

4 P(K... Kn F) P(F) b) P(F n klavar i n kast = P(K... Kn).. = = C C P(K... K F) P(F) + P(K... K F ) P(F ) n n n > ÿ. >.9(. ÿ. +.5 n ÿ.99)..9 >.5 n ÿ.89. >.5 n nÿln.5 > ln.4 n ( ) > n > º dvs minst tio kast Veckoblad : Maskin 888 ξ= kostnaden för ett förlorat bagage a) Förväntad kostnad per passagerare = 6.5 = dollar b) ξ= P(ξ= ) Bygg 99 a) Beräkna sannolikhetsfördelningen för A:s vinst. Antal kast, η P(η=y) Banken betalar ut A:s vinst, ξ 5 5 ( = ( = ( = 5 ( = 5 P(η=y P(ξ=) Förväntad vinst: E(ξ)] = i P( ξ = i -5ÿ +5ÿ + ÿ +5ÿ = = 85 6 = -.95 dvs en förlust på c:a 4 franc. b) Var(ξ i P( ξ = i ) [E(ξ)] = ((-5) 5 ÿ ÿ + 5 ÿ ÿ ) ( ) = S(ξ

5 Maskin 987 ξ = antal bilar ξ = Po(λ = 5 bilar/5 min) a) Räkna om λ till antal bilar/ 5 minuter. λ =.667 bilar/ 5 min P(ξ P(ξ e (! ).54 =.496! Veckoblad 4: Maskin e a) f ()d = c d + ce d = c + c = 6 4 = c + c ( ) = c ñ c = b) : F( f (t)dt = < < : t F( f(t)dt = dt +.5( t )dt =.5 =.5 ( +.75( + ) : F( 6t f (t)dt = dt +.5 ( t)dt +.5 e dt = 6t 6 t e e = =.5( + ) +.5( +.5e Fördelningsfunktionen: F(.75(.5e 6 + ) + för för < < för c) P(.5 < ξ) + P(ξ <.5 P(ξ <.5) + P(ξ <.5.5e ( + ) =.5 e º = [ ] =.5 [ ] =. 5

6 Bygg 99 ξ i är Ep(λ i ) F( - i e λ för i =,, där λ =λ =.5 och λ = del och : - F( e -.5 ÿ.5 =.7788 del : - F( e - ÿ.5 =.665 P(systemet fungerar P(del fungerar del fungerar del fungerar (oberoende.7788 ÿ.665 =.68 Kemi 46 a) λ =.5 samtal / min λ =.5 samtal / min P(ξ = e ! b) λ =.5 samtal / min λ =.5 samtal / 5 min P(ξ > P(ξ e (! ).548 =.456!! c) η = tiden mellan två samtal η = Ep(λ =.5 samtal / min) P(ξ > P(ξ ( e -.5 e Bygg 99 ξ är N(µ, ). 99% 74 µ P(ξ>74.99 P(ξ>74 - P(ξ 74 P(Z 74 µ.99 P(Z 74 µ 74 µ. = -. µ = 74 + ÿ. = 786.6

7 Veckoblad 5: Väg o vatten a) ξ = pris på brödet ξ = P(ξ = ).8 8. E(ξ ÿ ÿ. = 7:6 E(Vinst/bröd 7:6 5:-- = :6 kr b) ξ = P(ξ = ) E(ξ 8 ÿ ÿ. = 7:-- E(Vinst/bröd 7:-- 5:-- = :-- kr b) ξ = P(ξ = ) 8 p 8 p E(vinst/bröd 8p + 8( p) 5 Om man tolkar frågan så att man måste gå med plus dvs att E(ξ) > 5:-- så får man lösningen 8p + 8 8p 5 = p 7 > p >.7 dvs, det kan innebära att det räcker att efterfrågan första dagen är lite mer än 7%. Om man tolkar frågan så att man måste gå med få ett bättre resultat än vi d den ordinarie försäljningen dvs att E(ξ) > 7:6 så får man lösningen 8p + 8 8p 5 = p 7 :6 p.96 Efterfrågan första dagen måste öka till 96% av tillverkningen. Data 986 σ = 49 P P ( µ < P( < µ < ) ( Z <.57) P( Z < = PZ < 7 8 P Z < = 7 8

Svar till gamla tentamenstal på veckobladen

Svar till gamla tentamenstal på veckobladen Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes 8 + + + + + 8 + a) P(A).4 och P(C).8

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011 Matematisk statistik, LMA, för DAI och EI den 5 aug Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg, minst poäng för och minst för 5. Examinator: Ulla Blomqvist Hjälpmedel:

Läs mer

Övningstentamen 1. A 2 c

Övningstentamen 1. A 2 c Övningstentamen Uppgift : På en arbetsplats skadades % av personalen under ett år. 6% av alla skadade var män. % av alla anställda var kvinnor. Är det manliga eller kvinnliga anställda som löper störst

Läs mer

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2 Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten

Läs mer

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0 Övningstentamen Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet de att Bill träffar tavlan med sannolikheten.7

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng)

Övningstentamen 1. c) Beräkna sannolikheten att exakt en av A eller B inträffar (6 poäng) Övningstentamen Uppgift : Vid ett experiment kan en händelse A, en händelse B eller både A och B inträffa. I en serie om 00 försök har man sammanställt följande statistik: i 90 fall har minst en av A eller

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005

Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005 Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens

Läs mer

Tentamen LMA 200 Matematisk statistik, data/elektro

Tentamen LMA 200 Matematisk statistik, data/elektro Tentamen LMA 00 Matematisk statistik, data/elektro 039 Tentamen består av åtta uppgiter motsvarande totalt 50 poäng. Det krävs minst 0 poäng ör betyg 3, minst 30 poäng ör 4 och minst 40 ör 5. Examinator:

Läs mer

Övningstentamen i matematisk statistik

Övningstentamen i matematisk statistik Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med

Läs mer

Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U.

Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U. Vecoblad 2 Kaptel 2 Matemats statst, Blomqvst U. ya begrepp: oberoende händelser, betngad sannolhet, Bayes formel.. är man sall lösa problem, där sntt mellan händelser ngår, an det ofta vara tll hjälp

Läs mer

Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord

Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord Övningstentamen Uppgift : I en kvalitetskontroll är det fyra olika fel A, B, C och D som kan förekomma oberoende av varandra där P(A) 0.03, P(B) 0.05, P(C) 0.07 och P(D) 0.. a. Beräkna sannolikheten att

Läs mer

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) = Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

Övningstentamen 2 5.44 5.39 5.41 5.35 5.41 5.46 5.40 5.37 5.39 5.43

Övningstentamen 2 5.44 5.39 5.41 5.35 5.41 5.46 5.40 5.37 5.39 5.43 Övningstentamen Uppgift 1: Företaget Holly Suger Co tillverkar sockerbitar. Med hjälp av kvalitetskontrollerna upptäcker man att 1% av sockerbitarna är defekta. Anta att man väljer ut 3 sockerbitar från

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

Exempel för diskreta och kontinuerliga stokastiska variabler

Exempel för diskreta och kontinuerliga stokastiska variabler Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005) Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) Formellsamling och teori Nästa varje ekva.on som vi använder under kursen finns I samlingen. Tricket i examen är hica räc metod/fördelning.ll

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärld funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

1 Föreläsning V; Kontinuerlig förd.

1 Föreläsning V; Kontinuerlig förd. Föreläsning V; Kontinuerlig förd. Ufallsrummet har hittills varit dsikret, den stokastisk variabeln har endast kunnat anta ett antal värden. Ex.vis Poissonfördeln. är antal observationer inom ett tidsintervall

Läs mer

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120) Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Tentamen i matematisk statistik för MI/EPI/DI/MEI den 19 dec 2012

Tentamen i matematisk statistik för MI/EPI/DI/MEI den 19 dec 2012 Tentamen i matematisk statistik för MI/EPI/DI/MEI den 19 dec 01 Uppgift 1: Ett företag tiverkar säkerhetsutrustningar ti biar. Tiverkningen är föragd ti fyra oika änder, A, B C och D. I and A finns 0%

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Föreläsning 2, Matematisk statistik för M

Föreläsning 2, Matematisk statistik för M Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret

Läs mer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Centrala gränsvärdessatsen (CGS). Approximationer

Centrala gränsvärdessatsen (CGS). Approximationer TNG006 F7 25-04-2016 Centrala gränsvärdessatsen (CGS. Approximationer 7.1. Centrala gränsvärdessatsen Vi formulerade i Sats 6.10 i FÖ6 en vitig egensap hos normalfördelningen som säger att en linjär ombination

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Exam MVE265 Mathematical Statistics,

Exam MVE265 Mathematical Statistics, Exam MVE65 Mathematical Statistics, 016-05-31 The exam consists of eight exercises with a total of 50 points. You need as least 0 points to get a 3, at least 30 points for a 4 and at least 40 points for

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

MATEMATIKSPELET TAR DU RISKEN

MATEMATIKSPELET TAR DU RISKEN MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 2. Kasta

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson,

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, 5--9 Lösningförslag skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen : Sannolikhetsteori

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR98 27 oktober, 2001 kl. 9.00 13.00 Kursansvarig: Eric Järpe Maxpoäng: 30 Betygsgränser: 12p: G, 22p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-01-15 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: A Jonsson, J Martinsson,

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN 016-03-1 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall vara

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss? 1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)

Läs mer

Inlämningsuppgift-VT lösningar

Inlämningsuppgift-VT lösningar Inlämningsuppgift-VT lösningar A 1. En van Oddset-spelare har under lång tid studerat hur många mål ett visst lag gör i ishockeymatcher och vet att sannolikheterna beskrivs av följande tabell: Mål 0 1

Läs mer

Antal ögon Vinst (kr) Detta leder till följande uttryck E(x) = x x p X(x) x f X(x)dx

Antal ögon Vinst (kr) Detta leder till följande uttryck E(x) = x x p X(x) x f X(x)dx 8. Väntevärde Exempel. Banken ordnar ett tärningsspel där de spelande erlägger en insats på 5 kr/kast. Vinsten är beroende på hur många ögon tärningen visar: Antal ögon 3 4 5 6 Vinst (kr) 3 4 5 6 7 8 Hur

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Stokastiska variabler

Stokastiska variabler Kpitel 4 Stokstisk vribler Ett utfll v ett slumpmässigt försök är oft sådnt som inte direkt kn mäts. T.ex. försöket Kst med ett symmetriskt mynt hr utfllsrummet {kron, klve}. För tt kvntittivt nlyser försök

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2

Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2 Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Satsen om total sannolikhet och Bayes sats

Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas

Läs mer

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005)

Repetition och förberedelse. Sannolikhet och sta.s.k (1MS005) Repetition och förberedelse Sannolikhet och sta.s.k (1MS005) F8.1 Kvantiler (3) F8.1 Kvantiler (3) F8.2 Räkna regler för väntevärdet (3) F8.3 Olikheter (X) F8.4 Sannolikgenererande funktioner (X) F8.5

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

= 0.044±

= 0.044± Lösningsförslag TMSB18 Matematisk statistik IL 100815 Tid: 12.00-17.00 Telefon: 0707-463397, Examinator: F Abrahamsson 1. Om ett visst företags inkomster en månad är fördelade enligt N(7000, 300) och samma

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer