Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer"

Transkript

1 Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20

2 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k) = p X (i) p Y (j) = p X (i) p Y (k i) f Z (z) = i+j=k i= f X (x) f Y (z x) dx Maximum/Minimum av fler oberoende n Z = max(x 1,..., X n ) F Z (z) = F Xi (z) Z = min(x 1,..., X n ) F Z (z) = 1 n [1 F Xi (z)] Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 2/20

3 sum/max/min V.v./var Väntevärde Väntevärdet anger tyngdpunkten för fördelningen { k E(X) = k p X(k) diskret x f X(x) dx kontinuerlig Varians Variansen anger hur utspridd X är kring sitt väntevärde. [ ] } 2 V(X) = E{ X E(X) = E(X 2 ) E(X) 2 0 Standardavvikelse, D(X), σ, σ X D(X) = V(X) Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 3/20

4 Betingat väntevärde Det betingade väntevärdet för X givet att Y = y blir (inget nytt) { k E(X Y = y) = k p X Y=y(k) diskret x f X Y=y(x) dx kontinuerlig Lagen om total förväntan E(E(X Y)) = E(X), dvs E(X Y = k) p Y (k) k E(X) = E(X Y = y) f Y (y) dy Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 4/20

5 Ex (forts): Om f X,Y (x, y) = e y, 0 x y Vi hade tidigare att f X Y=y (x) = 1, 0 x y dvs X Y = y R(0, 1) y f Y X=x (y) = e (y x), y x dvs Y X = x x + Exp(1) f X (x) = e x, x 0 dvs X Exp(1) f Y (y) = ye y, y 0 dvs X Γ(2, 1) Vad blir E(X Y = y) och E(Y X = x)? Vad blir E(X) och E(Y)? Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 5/20

6 Linjärkombination Oberoende Exempel Beroendemått Kovarians Kovarians, C(X, Y) C(X, Y) = E{[X E(X)][Y E(Y)]} = E(XY) E(X) E(Y) Kovariansen anger hur mycket linjärt beroende som finns mellan X och Y. Ur definitionen fås C(X, X) = V(X) X och Y oberoende C(X, Y) = 0 dvs X och Y är okorrelerade. Men obs! C(X, Y) = 0 X och Y oberoende Korrellationskoefficient, ρ, ρ X,Y C(X, Y) ρ X,Y = D(X)D(Y) 1 ρ X,Y 1 (p.g.a. Cauchy Schwarz olikhet) Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 6/20

7 Linjärkombination Oberoende Exempel Korrellation Stanislav Volkov FMSF20 F5: linjärkombinationer 7/20

8 Linjärkombination Oberoende Exempel Ex.: Civilingenjörer som tar doktorsexamen korrelerar med konsumtionen av mozzarellaost åtminstone i USA. (ρ = 0.96) Ex.: USA råolja import från Norge korrelerar med antalet bilförare dödades i kollision med tåg (ρ = 0.95) Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 8/20

9 Linjärkombination Oberoende Exempel Linjärkombination E(aX + b) = ae(x) + b V(aX + b) = a 2 V(X) D(aX + b) = a D(X) Allmänt ( n ) a i X i = E V ( n ) a i X i = n a i E(X i ) n a i a j C(X i, X j ) a 2 i V(X i) + 2 i<j }{{} =0 om okorrelerade Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 9/20

10 Linjärkombination Oberoende Exempel Kovariansen är bilinjär dvs linjär i båda argumenten (jfr polynommultiplikation) C a j X j, b k Y k = a j b k C(X j, Y k ) j k j k Exempel: 1. Beräkna E(X 1 + 2X 2 ) och E(3Y 1 4Y 2 ) 2. Beräkna V(X 1 + 2X 2 ) och V(3Y 1 4Y 2 ) 3. Beräkna C(X 1 + 2X 2, 3Y 1 4Y 2 ) Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 10/20

11 Linjärkombination Oberoende Exempel Specialfall av oberoende och likafördelade s.v. Låt E(X i ) = μ, V(X i ) = σ 2 Summa: Y = n X i ( n ) n E(Y) = E X i = E(X i ) = ( n ) V(Y) = V X i = n μ = nμ n 1 2 V(X i ) = Medelvärde: X n = 1 n X n i E( X n ) = 1 n E(X i ) = 1 n n V( X n ) = 1 n 2 n σ 2 = nσ 2 n μ = 1 n nμ = μ n V(X i ) = 1 n 2 n σ 2 = 1 n 2 nσ2 = σ2 n Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 11/20

12 Linjärkombination Oberoende Exempel Exempel: Brädor Kapa brädor med oberoende längder X i. E(X i ) = 1 m och V(X i ) = 0.1 m 2. Bestäm E(Y) och V(Y) om Y ges av: a) sammanlagda längden av 10 stycken. b) sammanlagda längden av en bräda och dess nio kloner (tag en bräda, kapa nio till exakt lika långa). dvs... a) Y = X 1 + X X 10 b) Ỹ = X 1 + X X 1 }{{} 10 stycken Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 12/20

13 Tio oberoende realiseringar för succesiva medelvärden av standard exponential fördelning Vi har här E(X) = 1. 4 Succesiva medelvärden standard exponentialfördelning n Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 13/20

14 Stora talens lag Om X 1, X 2,..., X n är oberoende och likafördelade med E(X i ) = μ så gäller P( X n μ > ε) 0, n för alla ε > 0. Det vill säga medelvärdet konvergerar i sannolikhet mot väntevärdet då n växer mot oändligheten! (STL i svag form) Vi har till och med att: ({ }) P X n existerar och är lika med μ = 1 (STL i stark form) lim n Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 14/20

15 Exempel n variabler Exempel Linjärisering av g(x) kring punkten μ = E(X) (tangent) g(x) g(µ) + g (µ)(x µ) g(µ) g(x) µ Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 15/20

16 Exempel n variabler Exempel Gauss approximationsformler i en variabel Y = g(x). Taylorutveckla funktionen g kring μ = E(X) g(x) g(μ) + (X μ) g (μ) = E(Y) g(e(x)) V(Y) (g [E(X)]) 2 V(X) Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 16/20

17 Exempel n variabler Exempel Exempel Låt E(X) = μ och V(X) = σ 2. a) Bestäm approximativt väntevärde och varians för Y = g(x) = πx 2. b) Bestäm väntevärdet för Y utan approximation. Vi ser att approximationen av väntevärdet alltid är för liten men stämmer bra om σ är liten i förhållande till μ. Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 17/20

18 Exempel n variabler Exempel Gauss approximationsformler i n variabler För en funktion av n variabler fås på samma sätt Y = g(x 1,..., X n ) E(Y) g(e(x 1 ),..., E(X n )) n V(Y) ci 2 V(X i ) + 2 c i c j C(X i, X j ) i<j där c i = g(x 1, x 2,..., x n ) x i x1 =E(X 1 ),...,x n=e(x n) Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 18/20

19 Exempel n variabler Exempel Gaussaproximation för två variabler För en funktion av två variabler g(x, Y) blir Gauss approximationsformler (med E(X) = μ X, E(Y) = μ Y ) E ( g(x, Y) ) g(μ X, μ y ) V ( g(x, Y) ) [ g X (μ X, μ Y ) ] 2 V(X) + [ g Y (μ X, μ Y ) ] 2 V(Y) + 2 [ g X (μ X, μ Y ) ][ g Y (μ X, μ Y ) ] C(X, Y) där sista termen är noll då X och Y är okorrelerade. g X och g Y är partiell derivata map X resp. Y. Jämför detta med det generella uttrycket för en funktion av n variabler. Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 19/20

20 Exempel n variabler Exempel Exempel Bestäm approximativa värden på variansen för X Y och X/Y om X och Y är oberoende av varandra. Uttryck svaren i μ X, μ Y, V(X) och V(Y). 1. g(x, Y) = X Y. g X (X, Y) = Y och g Y (X, Y) = X. V(X Y) [ g X (μ X, μ Y ) ] 2 V(X) + [ g Y (μ X, μ Y ) ] 2 V(Y) = = μ 2 Y V(X) + μ2 X V(Y) 2. Antag Y > c > 0 och g(x, Y) = X Y. g X (X, Y) = 1 Y och g Y (X, Y) = X Y 2. V ( ) X 1 Y μ 2 V(X) + μ2 X Y μ 4 V(Y) Y Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 20/20

Föreläsning 6, FMSF45 Linjärkombinationer

Föreläsning 6, FMSF45 Linjärkombinationer Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = /

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = / Föreläsning 5: Matstat AK för I, HT-8 MATEMATISK STATISTIK AK FÖR I HT-8 FÖRELÄSNING 5: KAPITEL 4.6 7: SUMMOR, MAXIMA OCH ANDRA FUNKTIONER AV S.V. KAPITEL 5. : VÄNTEVÄRDEN, LÄGES- OCH SPRIDNINGSMÅTT EXEMPEL

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Stokastiska vektorer och multivariat normalfördelning

Stokastiska vektorer och multivariat normalfördelning Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen

Läs mer

Föreläsning 8, Matematisk statistik Π + E

Föreläsning 8, Matematisk statistik Π + E Repetition Binomial Poisson Stokastisk process Föreläsning 8, Matematisk statistik Π + E Sören Vang Andersen 9 december 214 Sören Vang Andersen - sva@maths.lth.se FMS12 F8 1/23 Repetition Binomial Poisson

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Sannolikhetsteori Stokastisk variabel 2D stokastisk variabel Linjärkombination Gauss approximation Poissonprocess Markovkedjor Statistik Konfidensintervall Hypotesprövning Regression Multipel reg. Matematisk

Läs mer

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 8 Johan Lindström 9 oktober 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F8 1/26 process Johan Lindström - johanl@maths.lth.se FMSF45/MASB3

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Sannolikhet och statistik XI

Sannolikhet och statistik XI April 219 Betingade väntevärden. Vi ska säga att E[Y X = x] är väntevärdet av den sv som samma förd som Y givet X = x. Definition: Y diskret: E[Y X = x] = y k V Y y k p Y X (y k x), Y kont: E[Y X = x]

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Föreläsning 7: Stokastiska vektorer

Föreläsning 7: Stokastiska vektorer Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07.

Bengt Ringnér. September 20, Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Bengt Ringnér September 0, 007 1 Inledning Detta är föreläsningsmanus på lantmätarprogrammet LTH vecka 5 HT07. Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).

TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar). Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

Föreläsning 17, Matematisk statistik Π + E

Föreläsning 17, Matematisk statistik Π + E Sannolikhetsteori Statistik Föreläsning 17, Matematisk statistik Π + E Sören Vang Andersen 26 febuar 2015 Sören Vang Andersen - sva@maths.lth.se FMS012 F17 1/63 Stokastisk variabel En stokastisk variabel

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Bengt Ringnér. October 30, 2006

Bengt Ringnér. October 30, 2006 Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess

Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik

Läs mer

Matematisk statistik 9 hp Föreläsning 4: Flerdim

Matematisk statistik 9 hp Föreläsning 4: Flerdim Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK 9HP, FMS012 [UPPDATERAD ] Sannolikhetsteorins grunder

Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK 9HP, FMS012 [UPPDATERAD ] Sannolikhetsteorins grunder LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK 9HP, FMS02 [UPPDATERAD 2007-09-2] Sannolihetsteori Sannolihetsteorins grunder Följande gäller för sannoliheter:

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,

Läs mer

SF1901: Medelfel, felfortplantning

SF1901: Medelfel, felfortplantning SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6. Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A

Övning 1. Vad du ska kunna efter denna övning. Problem, nivå A Övning 1 Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig

Läs mer

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4.

Detta formelblad får användas under både KS2T och KS2D, samt ordinarie tentamen. x = 1 n. x i. with(stats): describe[mean]([3,5]); 4. Formelblad Detta formelblad får användas under både KST och KSD, samt ordinarie tentamen. Medelvärde x = 1 n x i with(stats): describe[mean]([3,5]); 4 Varians s = 1 (x i x) n 1 ( s = 1 x i n 1 1 n ) x

Läs mer