Föreläsning 7: Stokastiska vektorer

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 7: Stokastiska vektorer"

Transkript

1 Föreläsning 7: Stokastiska vektorer Johan Thim oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras enligt CX, Y = E X µ X Y µ Y och korrelationen mellan X och Y enligt ρx, Y = CX, Y σ Y Både kovarians och korrelation är ett mått på linjärt beroende mellan X och Y där korrelationen är normerad så det går att jämföra olika fall Vi listar lite kända egenskaper i Om CX, Y = kallas X och Y för okorrelerade ii CX, Y = EXY EXEY iii Om X och Y är oberoende så är CX, Y = iv CX, X = V X m n v C a + a i X i, b + b j Y j = i= m n a i b j CX i, Y j i= vi ρx, Y med likhet om och endast om det finns ett linjärt samband mellan X och Y Observera att CX, Y = inte nödvändigtvis innebär oberoende Låt till exempel X vara rektangelfördelad enligt X Re, och definiera Y = X Uppenbarligen beroende variabler, men CX, Y = EXY EXEY = EX 3 EY = EX 3 = så X och Y är okorrelerade ˆ x 3 dx =,

2 Vektorer av stokastiska variabler Låt X = X X X n T vara en vektor vars komponenter är stokastiska variabler Vi strävar efter att skriva vektorer som kolonnvektorer Det faller sig naturligt att definiera väntevärdet av X genom väntevärdesvektorn EX = EX EX EX n T På samma sätt definierar vi väntevärdet av en matris av stokastiska variabler Variansen blir lite konstigare så vi introducerar kovariansmatrisen mellan två vektorer av samma dimension Låt Y = Y, Y,, Y n T och definiera CX, Y enligt c c c n CX, Y CX, Y CX, Y n c c c n CX, Y = = CX, Y CX, Y CX, Y n c n c n c nn CX n, Y CX n, Y CX n, Y n där c ij är kovariansen mellan X i och Y j En stor anledning att blanda in vektorer och matriser är givetvis att få tillgång till maskineriet från linjär algebra Kovariansen mellan två vektorer X och Y kan då lite mer kompakt skrivas CX, Y = EX EXY EY T = EXY T EXEY T, där T innebär transponering En produkt A = xy T brukar kallas för den yttre produkten och består av element a ij = x i y j, i, j =,,, n Detta är alltså inte skalärprodukten X T Y Låt A, B R n n vara matriser Då är AX en linjärkombination av X, X,, X n och BY en linjärkombination av Y, Y,, Y n Dessutom kan alla linjärkombinationer skrivas på detta sätt Vidare gäller nu tack varje linjäriteten att EAX = AEX och CAX, BY = EAXBY T EAXEBY T = AEXY T B T AEXEY T B T = ACX, Y B T Notationen covx, Y är också vanligt förekommande, och i fallet då Y = X skriver vi ofta C X = covx = CX, X Exempel Låt X = X X T vara en stokastisk variabel med EX = T och C X = Hitta en prediktor X = ax + b så att E X = EX och V X X är minimal Lösning Vi ser direkt att så a + b = Vidare gäller att så V X ax b = V EaX + b = aex + b = a + b och EX =, X ax + b = a X X a X X = a Minimum sker uppenbarligen när a =, vilket ger att b = b, = a a C X a = a + a + = a +

3 3 Skattningar för kovarians och korrelation Om vi har ett stickprov x k, y k, k =,,, n, där X k, Y k är stokastiska variabler med samma fördelning, så skattar vi kovariansen C med och korrelationen med ρ = ĉ s x s y = n ĉ = n n x k xy k y k= n n k= x k xy k y n k= x k x / n n k= y k y / Av tradition betecknar man ofta ρ = r En naturlig fråga i detta skede är om vi kan säga något om fördelningen för den skatta korrelationen under något lämpligt antagande om det slumpmässiga stickprovet Vi återkommer i fallet med normalfördelning i nästa avsnitt 3 Vad innebär korrelationen grafiskt? ρ = ρ = 5 3 ρ = 9 3 ρ =

4 ρ = 7 ρ = 3 ρ = ρ = Multivariat normalfördelning Pain has a face Allow me to show it to you Pinhead Vi har stött på den flerdimensionella normalfördelningen tidigare, men vi kan formulera det hela lite mer kompakt på följande sätt Multivariat normalfördelning Definition Vi säger att Y har en multivariat normalfördelning om det finns en konstant vektor µ R n och en konstant matris A R n m så att Y = µ + AX, där X är en vektor med stokastiska variabler, X = X X X m T, och X i N, är oberoende Är definitionen vettig? Ja, den reducerar åtminstone till det förväntade resultatet om n = : Y = µ + σ X där X N, Vidare gäller så klart att EY = µ + AEX = µ

5 och C Y = AC X A T = AA T eftersom C X är identitetsmatrisen variablerna är oberoende om har varians Låt X N, Exempel Bestäm fördelningen för Y = X + X Lösning Vi skriver Y = X X T = AX Då blir EY = AEX = T = och C Y = AC X A T = T = 5 Sats Om Y har väntevärdesvektorn µ och en kovariansmatris C som uppfyller att det C så gäller att Y har multivariat normalfördelning om och endast om Y har den simultana täthetsfunktionen f Y y, y,, y n = π n/ detc exp y µt C y µ, y R n Bevis Eftersom kovariansmatrisen C alltid är positivt semidefinit varför? och vi antar att determinanten C := det C, så är C positivt semidefinit och då finns alltid en inverterbar matris A R n n sådan att C = AA T Definiera Y = AX + µ, där X = X X X n T och X k N, är oberoende Täthetsfunktionen för X ges då av f X x, x,, x n = exp π n/ xt x, x R n Enligt transformationssatsen för flerdimensionella stokastiska variabler så kommer f Y y = f X A y µ dx, x,, x n dy, y,, y n eftersom X = A Y µ Vi ser att jacobianen ges av dx, x,, x n dy, y,, y n = A = A, så f Y y = = = π n/ A exp π n/ AAT / exp π n/ AAT / exp A y µ T A y µ y µt A T A y µ y µt C y µ, 5

6 där vi utnyttjat att A = A / A T / = AA T / Omvänt, om Y är normalfördelad så säger definitionen att det finns en matris A R n m och en vektor µ R n så att Y = AX + µ för X = X X X m T där X k N, är oberoende Faktum är att m = n är nödvändigt då C = AA T antas vara inverterbar, eftersom n = rankaa T min{ranka, ranka T } ty vid produkter av matriser vinner alltid den med lägst rank och ranka T = ranka, så ranka = n eftersom vi har n kolonner Samma argument som ovan visar nu att täthetsfunktionen ges av uttrycket i satsen Exempel Låt X, X N, vara oberoende och definiera Y = X X, X + X Bestäm täthetsfunktionen för Y Lösning Vi skriver Y Y X = A X, där A = Då blir och Således blir det C Y Alltså blir ty C Y = 9 och y y 9 µ Y = E X A X = AC X A T = A C Y = 9 = A = A T = AA T = 5 5 f Y y, y = 6π exp 5y 8 y y + y 5 y y = 9 5y y y + y Sats Låt Z = d + BY, där Y är multivariat normalfördelad Då är även Z multivariat normalfördelad Bevis Följer direkt från definitionen Sats För Y Nµ, C gäller att komponenterna i Y är oberoende om och endast om C är en diagonalmatris under förutsättning att A är inverterbar 6

7 Bevis Kravet på att A ska vara inverterbar följer av att om så icke är fallet så är fördelningen degenererad eftersom Ax = har oändligt många lösningar Det är alltså självklart i detta läge att komponenterna i Y inte kan vara oberoende Så antag nu att det A Den ena riktningen är mer eller mindre självklar eftersom om komponenterna i Y är oberoende kommer CY i, Y j = för i j och CY i, Y i = σi, så C Y blir en diagonalmatris Antag nu att C Y är en diagonalmatris, säg σ σ σn Eftersom C Y = AA T kommer C Y att vara inverterbar, vilket innebär att samtliga σi Inversen C Y är även den en diagonalmatrisen med diagonalelementen σ i Således blir den simultana täthetsfunktionen f Y y = π n/ exp det C Y y µt C y µ = exp n y j µ j σ π n j y j µ j σ σ σ n n = exp y j µ j n = f Yj y j σ j π σ j Eftersom den simultana täthetsfunktionen ges av produkten av täthetsfunktionerna för Y j följer det att variablerna är oberoende Bivariat normalfördelning Specialfallet när n = förtjänar lite kommentarer eftersom den situationen frekvent dyker upp Låt X, Y vara normalfördelad med väntevärdesvektor och kovariansmatris enligt µ = µx µ Y och σx CX, Y CY, X σy σ = X ρ σ Y ρ σ Y σ Y Täthetsfunktionen ges enligt ovan av x fx, y = π σ exp µx ρ x µ X Y ρ ρ y µ Y y µy +, σ Y σ Y för x, y R Vi ser direkt att om ρ = blir det produkten av täthetsfunktionerna för två oberoende variabler, precis som satsen i föregående avsnitt påstod Men vad händer om variablerna inte är oberoende, dvs om ρ oberoende och okorrelerade är ekvivalent i normalfördelningsfallet? Låt oss beräkna den marginella tätheten f X x bara för kul fast vi har nytta av den snart För att underlätta notationen låter vi u = x µ X och v = y µ Y σ Y 7

8 Vi har nu x µx ρ x µ X y µ Y y µy + = u ρuv + v = v ρu + ρ u, σ Y σ Y så f X x = π σ exp ˆ Y ρ u exp v ρ ρu dy = exp ˆ u exp v πσx πσy ρ ρ ρu dv = exp u, πσx ty ˆ exp v πσy ρ ρ ρu dv = Hur ser bivariata normalfördelningar ut? Om = σ Y = och ρ = får vi följande figur: och med = σ Y = och ρ = 9 erhåller vi 8

9 Test för ρ = Att direkt ge sig på uttrycket för ρ är komplicerat, så vi börjar lite annorlunda Låt X, Y vara bivariat normalfördelad Då har X, Y en simultan täthetsfunktion fx, y och den betingade på X = x täthetsfunktionen blir fx, y f Y X=x y x = f X x = exp v πσy ρ ρ ρu, vilket är tätheten för en normalfördelad variabel Y X = x med och EY X = x = µ Y ρ σ Y µ X + ρ σ Y x = β + β x V Y X = x = σ Y ρ Det betingade för givet X väntevärdet är alltså en rät linje y = β +β x Intressant! Åter igen något som är halvmagiskt för normalfördelningen det finns ingen fördelning ni kan misshandla lika mycket Den observante läsaren funderar nog även om detta har med regressionsanalysen att göra, vilket vi kommer till nästa föreläsning För nuvarande situation, notera specifikt att β = ρ σ Y Anledningen till denna manöver är att vi hellre betraktar tester för β än direkt för ρ Varför? Det har med ovanstående att göra linjär regression Tänk tillbaka till anda föreläsningen Där visade vi att MK-skattningen β av β ges av n β = x j xy j Y n x j x 9

10 och att β = Y β x Anledning till att blanda in detta är att vi på nästa föreläsning kommer att visa att σ β N β, n x j x Vi introducerar lite förenklande beteckningar Låt S x = n n x j x, S y = n n Y j Y samt S xy = n Notera nu att vi kan skriva R den stokastiska motsvarigheten till ρ som och därmed blir R = β = S xy S x S xy S x S y = R S y S x n x j xy j Y Vi introducerar det totala kvadratfelet, dvs summan av kvadraterna på skillnaden mellan mätvärden Y j och de skattade värdena β + β x j : SS E = n Y j β β x j Vi kommer även detta nästa föreläsning att visa att SS E är oberoende av β och att σ SS E χ n Vidare har denna storhet egenskapen att SS E = n S Y R vilket kan ses genom att expandera kvadraten i summan som definierar SS E : SS E = n S y β S xy + β S x = n Sy R S y S xy + R S y Sx = n S S y R x Det följer då Gossets sats att S x β β tn n E/n Sx Om nu ρ = vilket innebär att β = enligt ovan så gäller att identiteten β = SS n E/n SX rs Y /S X ns Y r n ns X = r n r medför att R n R tn Vi kan alltså använda denna storhet för att testa hypotesen H : ρ =

11 Exempel Astrid och Åsa grälar om två variabler är okorrelerade eller inte Vid 5 mätningar av två variabler X och Y erhöll de diagrammet till höger som spridningsplott Den empiriska korrelationen beräknades till ρ = 838 Astrid hävdar att det tyder på att ρ = medan Åsa anser att det absolut är signifikant om än lågt pga slumpen Om vi antar att X och Y är normalfördelade, testa hypotesen att H : ρ = mot H : ρ med signifikansnivån 5% Lösning Med 5 mätningar av X, Y blir T = R n R t8 om H är sann Kritiskt område erhålls därmed som C = {t R : t > 6} ty P T 6 = 975 Med det uppmätta r = 838 blir t = = 586 Eftersom t C så kan vi inte förkasta H Variablerna kan mycket väl vara okorrelerade men vi vet inte det! 5 Bonus: fördelningen för R Sats Om ρ = ges fördelningen för R av täthetsfunktionen f R r = Γ n Γ n r n /, < r < π Bevis Eftersom gs = s s är en strängt växande funktion för < s < så gäller att R n F R r = P R r = P r n R r r n = F T, r

12 där F T är fördelningsfunktionen för en tn -fördelad variabel Denna funktion är en integral av en kontinuerlig täthet, så vi kan derivera fram f R r = d r n r n n F T = f T dr r r r 3/ = Γ n n/ π Γ n + r r 3/ r = Γ n r n/ r 3/ = Γ n r n /, π Γ n vilket är täthetsfunktionen given i satsen π Γ n Vad händer om ρ? En fullt rimlig fråga, men fördelningen har inget trevligt utseende då inkluderar hypergeometriska funktioner

Stokastiska vektorer och multivariat normalfördelning

Stokastiska vektorer och multivariat normalfördelning Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

Föreläsning 3: Konfidensintervall

Föreläsning 3: Konfidensintervall Föreläsning 3: Konfidensintervall Johan Thim (johan.thim@liu.se) 5 september 8 [we are] Eplorers in the further regions of eperience. Demons to some. Angels to others. Pinhead Intervallskattningar Vi har

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Föreläsning 6, FMSF45 Linjärkombinationer

Föreläsning 6, FMSF45 Linjärkombinationer Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

2.1 Mikromodul: stokastiska processer

2.1 Mikromodul: stokastiska processer 2. Mikromodul: stokastiska processer 9 2. Mikromodul: stokastiska processer 2.. Stokastiska variabler En stokastiskt variabel X beskrivs av dess täthetsfunktion p X (x), vars viktigaste egenskaper sammanfattas

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = /

2 x dx = [ x ] 1 = 1 ( 1 (1 0.9) ) 100 = / Föreläsning 5: Matstat AK för I, HT-8 MATEMATISK STATISTIK AK FÖR I HT-8 FÖRELÄSNING 5: KAPITEL 4.6 7: SUMMOR, MAXIMA OCH ANDRA FUNKTIONER AV S.V. KAPITEL 5. : VÄNTEVÄRDEN, LÄGES- OCH SPRIDNINGSMÅTT EXEMPEL

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

Föreläsning 9: Linjär regression del II

Föreläsning 9: Linjär regression del II Föreläsning 9: Linjär regression del II Johan Thim (johan.thim@liu.se) 29 september 2018 No tears, please. It s a waste of good suffering. Pinhead Vi fixerar en vektor u T = (1 u 1 u 2 u k ), där u i kommer

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 6 Johan Lindström oktober 8 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Johan Lindström - johanl@maths.lth.se FMSF45/MASB F6 /9 Summa

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

Föreläsning 8: Linjär regression del I

Föreläsning 8: Linjär regression del I Föreläsning 8: Linjär regression del I Johan Thim (johanthim@liuse) 29 september 2018 Your suffering will be legendar, even in hell Pinhead Vi återgår nu till ett exempel vi stött på redan vid ett flertal

Läs mer

Sannolikhet och statistik XI

Sannolikhet och statistik XI April 219 Betingade väntevärden. Vi ska säga att E[Y X = x] är väntevärdet av den sv som samma förd som Y givet X = x. Definition: Y diskret: E[Y X = x] = y k V Y y k p Y X (y k x), Y kont: E[Y X = x]

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

REGRESSIONSANALYS. Martin Singull

REGRESSIONSANALYS. Martin Singull REGRESSIONSANALYS Martin Singull 16 april 2018 Innehåll 1 Beroendemått och stokastiska vektorer 4 1.1 Beroendemått........................................... 4 1.2 Stokastiska vektorer.......................................

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

15 september, Föreläsning 5. Tillämpad linjär algebra

15 september, Föreläsning 5. Tillämpad linjär algebra 5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Föresläsningsanteckningar Sanno II

Föresläsningsanteckningar Sanno II Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Uppgift 1. f(x) = 2x om 0 x 1

Uppgift 1. f(x) = 2x om 0 x 1 Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

14 september, Föreläsning 5. Tillämpad linjär algebra

14 september, Föreläsning 5. Tillämpad linjär algebra 14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.

Läs mer

Föreläsning 15: Försöksplanering och repetition

Föreläsning 15: Försöksplanering och repetition Föreläsning 15: Försöksplanering och repetition Matematisk statistik Chalmers University of Technology Oktober 19, 2015 Utfall och utfallsrum Slumpmässigt försök Man brukar säga att ett slumpmässigt försök

Läs mer

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013. Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90 TILLÄMPAD STATISTIK, ONSDAGEN DEN 7:E APRIL 09 KL 8.00 3.00. Examinator: Björn-Olof Skytt, 08-790 8649 Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO- Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

8 Minsta kvadratmetoden

8 Minsta kvadratmetoden Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 2 augusti 217, klockan 8-12 Examinator: Jörg-Uwe Löbus (Tel: 79-62827 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005 Teoretisk statistik Gunnar Englund Matematisk statistik KTH Vt 2005 Inledning Vi skall kortfattat behandla aspekter av teoretisk statistik där framför allt begreppet uttömmande (ibland kallad tillräcklig

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

Betingning och LOTS/LOTV

Betingning och LOTS/LOTV Betingning och LOTS/LOTV Johan Thim (johan.thim@liu.se 4 december 018 Det uppstod lite problem kring ett par uppgifter som hanterade betingning. Jag tror problemen är av lite olika karaktär, men det jag

Läs mer