SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)"

Transkript

1 SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski Jan Grandell & Timo Koski () Matematisk statistik / 46

2 Idén med konfidensintervall Det föreligger som vanligt ett slumpmässigt stickprov x 1,..., x n från en fördelning som beror av den okända parametern θ (eventuellt flera stickprov från fördelningar som beror av θ). En vag definition som strax skall preciseras: Ett intervall I θ som med sannolikheten 1 α täcker över θ kallas ett konfidensintervall för θ med konfidensgraden 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

3 KONFIDENSINTERVALL Definition Låt x 1, x 2,..., x n vara utfall av X 1, X 2,..., X n vars fördelning beror av en okänd parameter θ. Intervallet I θ = (a 1 (x 1,..., x n ), a 2 (x 1,..., x n )) kallas ett konfidensintervall för θ med konfidensgrad 1 α om P(a 1 (X 1,..., X n ) < θ < a 2 (X 1,..., X n )) = 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

4 Innehåll Konfidensintervall, definition, konfidensgrad konfidensintervall för θ i N(θ, σ) med känt σ. konfidensintervall för θ i N(θ, σ) med okänt σ. konfidensintervall för σ 2 i N(θ, σ) Nya sannolikhetsfördelningar dyker upp vid konfidensintervall t-fördelning χ 2 (n)-fördelning Konfidensintervall med approximativ konfidensgrad konfidensintervall för p i Bin(p) konfidensintervall för θ i Po(θ) Jan Grandell & Timo Koski () Matematisk statistik / 46

5 Exempel: Mätningar med fel mätvärde = θ+ slumpmässigt normalfördelat mätfel X i = θ + σz i, Z i N(0, 1), i = 1, 2,..., n x 1,..., x n, observerade utfall av X 1 N(θ, σ),... X n N(θ, σ), respektive. Vi vill ha en uppfattning om precisionen i skattningen. Visserligen vet vi att E(X) = θ och D(X) = σ n, men vi vill ha en mera informativ och lättbegriplig beskrivning konfidensintervall. Jan Grandell & Timo Koski () Matematisk statistik / 46

6 Repetition: Kvantiler α-kvantilen för Z N(0, 1) λ α definieras av P(Z > λ α ) = α eller α = 1 Φ(λ α ). Symmetri ger vilket ger (Slut på repetition.) α = Φ(λ 1 α ) α = 1 Φ( λ 1 α ), λ 1 α = λ α. Jan Grandell & Timo Koski () Matematisk statistik / 46

7 N(θ, σ), konfidensintervall för θ fall a) σ känt Vi antar att X 1, X 2,..., X n är oberoende och N(θ, σ)-fördelade. Detta innebär att X θ σ/ är N(0, 1)-fördelad. n Således gäller att ( P λ α/2 < X θ ) σ/ n < λ α/2 = 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

8 Kursens formelsamling: kvantiler för N(0, 1) Jan Grandell & Timo Koski () Matematisk statistik / 46

9 N(θ, σ), konfidensintervall för θ a) σ känt Detta ger ( P λ α/2 < X θ ) σ/ n < λ α/2 = 1 α. P ( λ α/2 σ/ n < X θ < λ α/2 σ/ n ) = 1 α Jan Grandell & Timo Koski () Matematisk statistik / 46

10 N(θ, σ), konfidensintervall för θ fall a) σ känt P ( λ α/2 σ/ n < θ X < λ α/2 σ/ n ) = 1 α P ( X λ α/2 σ/ n < θ < X + λ α/2 σ/ n ) = 1 α. Jmf. vi definitionen av konfidensintervall så inser vi att I θ = x ± λ α/2 σ/ n har konfidensgrad 1 α. En vanlig konfidensgrad är 95%. Då är λ = Jan Grandell & Timo Koski () Matematisk statistik / 46

11 N(θ, σ), konfidensintervall för θ. Fall a) σ känt I θ = x ± λ α/2 σ/ n Intervallängden beror som synes av σ. Ju större precision mätningen har, desto mindre är σ och desto kortare blir intervallet. Längden är också beroende av den önskade konfidensgraden. Med 95 % konfidensgrad blir konstanten λ α/2 = 1.96, 99 % konfidensgrad ger λ α/2 = 2.58, och intervallet är ca 30 % längre. Jan Grandell & Timo Koski () Matematisk statistik / 46

12 N(θ, σ), konfidensintervall för θ a) σ känt Låt oss gång på gång upprepa insamlingen av data och varje gång bestämma ett tvåsidigt 95 % intervall. I det långa loppet skulle 95% av dem täcka över det okända värdet θ, medan återstoden skulle missa det. Mätning nr θ Jan Grandell & Timo Koski () Matematisk statistik / 46

13 N(θ, σ), konfidensintervall för θ. Fall b) σ okänt Vi utgår nu från där S 2 = 1 n 1 Man kan bestämma fördelningen för X θ S/ n, n i=1 (X i X) 2. X θ S/ n. Jan Grandell & Timo Koski () Matematisk statistik / 46

14 N(θ, σ), konfidensintervall för θ. Fall b) σ okänt Det gäller att X θ S/ n är t-fördelad med n 1 frihetsgrader, eller att den är t(n 1)-fördelad. Vi återkommer till t-fördelningens matematik senare i denna föreläsning. Jan Grandell & Timo Koski () Matematisk statistik / 46

15 Tätheten för t(n) t(n)-fördelningen kallas även Students t-fördelning. n = 1, 2, 3,... f X (x) = ( ) (n+1)/2 Γ((n + 1)/2) 1 + x2 πnγ(n/2) n Vi kommer att använda t-fördelningens kvantiler men inte alls med denna formel. Γ(x) finns definierad på sid. 64 av G. Blom m.fl.. Jan Grandell & Timo Koski () Matematisk statistik / 46

16 Kursens formelsamling: kvantiler för t(n) Fördelning är symmetrisk, och för stora värden på n, lik N(0, 1)-fördelningen. I bilden ser vi t(4) (funktionsgraf i blått) och N(0, 1) (funktionsgraf i grönt). Jan Grandell & Timo Koski () Matematisk statistik / 46

17 Kursens formelsamling: kvantiler för t(n) I tabellen är antalet frihetsgrader betecknat med f Jan Grandell & Timo Koski () Matematisk statistik / 46

18 N(θ, σ), konfidensintervall för θ b) σ okänt På samma sätt som i a) fås nu att I θ = x ± t α/2 (n 1)s/ n är ett konfidensintervall för θ med konfidensgrad 1 α. I fallet med n = 10 gäller t (9) = 2.26, vilket kan jämföras med λ = Jan Grandell & Timo Koski () Matematisk statistik / 46

19 Sammanfattning Sats Låt x 1,..., x n vara ett slumpmässigt stickprov från N(θ, σ) där θ är okänt. Då är I θ = ( x λ α/2 D, x + λ α/2 D) om σ är känt (D = σ/ n) samt I θ = ( x t α/2 (f )d, x + t α/2 (f )d ) om σ är okänt (d = s/ n, f = n 1) ett tvåsidigt konfidensintervall för θ med konfidensgraden 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

20 Pausbild The derivation of the t-distribution was first published in 1908 by William Sealy Gosset, while he worked at a Guinness Brewery in Dublin. He was prohibited from publishing under his own name, so the paper was written under the pseudonym Student. Jan Grandell & Timo Koski () Matematisk statistik / 46

21 χ 2 (n)-fördelning Vi ska börja med ett par sannolikhetsteoretiska resultat. Sats Om Z 1,..., Z n är oberoende och N(0, 1)-fördelade, så är n Zi 2 i=1 χ 2 (n)-fördelad (uttal: tji-två eller ki-två) med n frihetsgrader. Jan Grandell & Timo Koski () Matematisk statistik / 46

22 χ 2 (n)-fördelning: täthet Definition Om den s.v. X har täthetsfunktionen x f 2 1 e x/2 f X (x) = Γ(f /2)2 f /2 om x > 0 0 om x 0, säges X vara χ 2 -fördelad med f frihetsgrader. Vi använder kvantilerna för χ 2 (n)-fördelning men inte alls formeln för tätheten. Γ(f /2) finns definierad på sid. 64 av G. Blom.fl.. Jan Grandell & Timo Koski () Matematisk statistik / 46

23 χ 2 (n)-fördelning X χ 2 (n). P ( X χ 2 α/2 (n)) = α 2 P ( X χ 2 1 α/2 (n)) = 1 α 2 Vi är nu i en lite besvärligare situation än för µ, eftersom χ 2 -fördelningen inte är symmetrisk. I normal- respektive t-fallet utnyttjade vi att symmetrin medförde att λ 1 α = λ α resp. t 1 α (n 1) = t α (n 1). Jan Grandell & Timo Koski () Matematisk statistik / 46

24 Kursens formelsamling: kvantiler för χ 2 (n)-fördelning Jan Grandell & Timo Koski () Matematisk statistik / 46

25 χ 2 (n)-fördelning Sats Om X 1, X 2,..., X n är oberoende och N(θ, σ)-fördelade så är 1 σ 2 n i=1 (X i X) 2 = (n 1)S2 σ 2 χ 2 (n 1)-fördelad. Detta är den riktiga motiveringen till att man i s 2 dividerar med n 1. Jan Grandell & Timo Koski () Matematisk statistik / 46

26 konfidensintervall för σ 2 i N(θ, σ) Vi kommer att använda (n 1)S2 för konfidensintervall lite på samma sätt σ 2 som vi använde oss av X för konfidensintervall för θ. Jan Grandell & Timo Koski () Matematisk statistik / 46

27 Konfidensintervall för σ 2 Låt nu χ 2 α(n 1) vara α-kvantilen i χ 2 (n 1)-fördelningen. Då gäller ) 21 α/2 (n 1)S2 P (χ (n 1) < σ 2 < χ 2 α/2 (n 1) = 1 α P ( χ 2 1 α/2 (n 1) n 1 ) σ 2 < χ2 α/2 (n 1) = 1 α n 1 < S2 Jan Grandell & Timo Koski () Matematisk statistik / 46

28 Konfidensintervall för σ 2 P ( χ 2 α/2 ) n 1 σ2 < (n 1) S 2 < n 1 = 1 α (n 1) ( (n 1)S 2 P χ 2 α/2 (n 1) < σ2 < χ 2 1 α/2 ) (n 1)S2 = 1 α (n 1) χ 2 1 α/2 Jan Grandell & Timo Koski () Matematisk statistik / 46

29 Ett stickprov, konfidensintervall för σ 2 ( ) P (n 1)S 2 (n 1)S < σ < (n 1) (n 1) = 1 α. χ 2 α/2 χ 2 1 α/2 Jan Grandell & Timo Koski () Matematisk statistik / 46

30 Ett stickprov, konfidensintervall för σ 2 Detta ger att resp. ( ) I σ 2 = (n 1)s 2 χ 2 α/2 (n 1), (n 1)s 2 χ 2 1 α/2 (n 1) ( ) I σ = (n 1)s 2 (n 1)s, (n 1) (n 1) χ 2 α/2 χ 2 1 α/2 är konfidensintervall för σ 2 resp. σ med konfidensgrad 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

31 t-fördelningen Vi återgår nu lite till t-fördelningen. Sats Om X är N(0, 1)-fördelad, Y är χ 2 (f )-fördelad, och X och Y är oberoende, så är X Y /f t(f )-fördelad. Jan Grandell & Timo Koski () Matematisk statistik / 46

32 t-fördelningen Sats Om X 1, X 2,..., X n är oberoende och N(θ, σ)-fördelade så är X och S 2 oberoende. Denna sats karakteriserar normalfördelningen! Med detta avses att satsen inte är sann för någon annan fördelning. Jan Grandell & Timo Koski () Matematisk statistik / 46

33 t-fördelningen Av detta följer nu att X θ S/ n = X θ / σ/ S 2 n σ 2 är t(n 1)-fördelad. X θ / σ/ S 2 n σ 2 = X θ / (n 1)S 2 σ/ σ 2 n n 1 X θ σ/ n N(0, 1), (n 1)S2 σ 2 χ 2 (n 1) och oberoende. Jan Grandell & Timo Koski () Matematisk statistik / 46

34 Användning av normalapproximation, approximativ konfidensgrad Fördelningen beror av en okänd parameter θ. en punktskattning θ som är ungefär normalfördelad med väntevärdet θ och standardavvikelsen D = D(θ ). Då gäller approximativt θ θ D N(0, 1). Jan Grandell & Timo Koski () Matematisk statistik / 46

35 Medelfel för en skattning Vi använder variansen V (θ ) eller, vilket i princip är samma sak, standardavvikelsen D(θ ) som precisionsmått för en skattning θ. Ju mindre varians (större effektivitet), desto belåtnare är vi med skattningen. Ibland hamnar man då i en besvärlig situation: Variansen och standardavvikelsen är själva okända, emedan de beror av just den parameter som man vill skatta (och kanske av ytterligare andra okända parametrar). Jan Grandell & Timo Koski () Matematisk statistik / 46

36 Medelfel för en skattning Om man vill få information om D(θ ) får man försöka hitta på en skattning även av denna storhet (parameter). Konsekvensen blir att man inte får ett exakt precisionsmått utan bara ett ungefärligt. Vi skulle kunna beteckna denna numeriska skattning av osäkerheten med D(θ ) obs men skriver den i stället d(θ ). Definition En skattning av D(θ ) kallas medelfelet för θ och betecknas d(θ ). Hur medelfelet skall väljas får avgöras från fall till fall. Man borde tillse att d(θ ) är en konsistent skattning av D(θ ). Detta kan nog verka förbryllande men man skall hålla isär begreppen: θ obs är en skattning av θ och d(θ ) är en skattning av D(θ ). Det var detta vi gjorde i det inledande exemplet i i samband med analys av en opinionsundersökning. Jan Grandell & Timo Koski () Matematisk statistik / 46

37 Konfidensintervall med en approximativ konfidensgrad En punktskattning θ av en okänd parameter θ är ungefär normalfördelad med väntevärdet θ och standardavvikelsen D. Då är I θ = (θ λ α/2 D, θ + λ α/2 D) I θ = (θ λ α/2 d, θ + λ α/2 d) om D ej beror av θ om D beror av θ (och d väljs lämpligt) ett konfidensintervall för θ med den approximativa konfidensgraden 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

38 Konfidensintervall med en approximativ konfidensgrad Låt x 1,..., x n vara ett stort slumpmässigt stickprov från en fördelning, där väntevärdet är θ och standardavvikelsen σ. Då är I µ = ( x λ α/2 D, x + λ α/2 D) om σ känt (D = σ/ n) I µ = ( x λ α/2 d, x + λ α/2 d) om σ okänt (d = s/ n) konfidensintervall för θ med den approximativa konfidensgraden 1 α. Jan Grandell & Timo Koski () Matematisk statistik / 46

39 Konfidensintervall för p i Bin(n, p) med en approximativ konfidensgrad Låt x vara en observation av X, där X Bin(n, p) och p är okänt. Maximum-likelihood skattningen är p obs = x/n. Man kan inte enkelt konstruera ett intervall I p som exakt har given konfidensgrad. Jan Grandell & Timo Koski () Matematisk statistik / 46

40 Konfidensintervall för p i Bin(n, p) med en approximativ konfidensgrad För stora n gäller approximativt att X /n N(p, D) där D = p(1 p)/n. Som medelfel tar vi d = pobs (1 p obs )/n. och får intervallet I p = (pobs λ α/2d, pobs + λ α/2d) (d = pobs (1 p obs )/n). (1) Jan Grandell & Timo Koski () Matematisk statistik / 46

41 Konfidensintervall för p i Bin(n, p) med en approximativ konfidensgrad Vid intervjuer med n = 250 personer, uttagna slumpmässigt ur en mycket stor population, visade sig 42 ha en viss åsikt H. Som punktskattning av relativa antalet p i hela populationen med åsikten H tar vi pobs = 42/250 = Alltså blir d = /250 = Ett approximativt 95 % konfidensintervall för p blir I p = (0.168 ± ) = (0.168 ± 0.046) = (0.12, 0.21). Jan Grandell & Timo Koski () Matematisk statistik / 46

42 Approximativa konfidensintervall Man önskar planera undersökningen så, att man efteråt får ett ungefär 95 % konfidensintervall för p med högst längden Hur många skall tillfrågas? Jan Grandell & Timo Koski () Matematisk statistik / 46

43 Approximativa konfidensintervall Man får p obs (1 p obs ) varav, eftersom alltid p(1 p) 1/4, n < n personer bör alltså tillfrågas. ( 1.96 ) 2 = Jan Grandell & Timo Koski () Matematisk statistik / 46

44 Approximativa konfidensintervall: populationsundersökning ML-skattningen av p blir, som vi redan vet pobs = x/n. Den approximativa formeln för konfidensintervallet blir I p = (p obs λ α/2d, p obs + λ α/2d) (d = d n p obs (1 p obs )/n). (2) där d n = (N n)/(n 1) är en s.k. korrektionsfaktor för ändlig population. Jan Grandell & Timo Koski () Matematisk statistik / 46

45 Approximativa konfidensintervall: poissonfördelning Vi har ett slumpmässigt stickprov x av X Po(θ) och punktskattar µ. Under antagande att det är känt att θ > ca 15 kan normalapproximationen användas Som skattning av θ tar vi θobs = x. Tillhörande standardavvikelse är D(X) = θ och vi tar därför som medelfel d = x. Jan Grandell & Timo Koski () Matematisk statistik / 46

46 Approximativa konfidensintervall: poissonfördelning Konfidensintervallet för θ blir enligt den approximativa metoden I θ = ( x λ α/2 x, x + λα/2 x ). (3) Dess konfidensgrad är ungefär 1 α, och approximationen är bättre ju större θ är. Jan Grandell & Timo Koski () Matematisk statistik / 46

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Föreläsning 11, Matematisk statistik Π + E

Föreläsning 11, Matematisk statistik Π + E Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (92MA1, STN2) 21-1-16 kl 8 12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1907, SF1908 samt SF1913 SANNOLIKHETSTEORI OCH STATISTIK, ONS- DAGEN DEN 9:E JANUARI 2013 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Johan Lindström Repetition Johan Lindström - johanl@maths.lth.se FMS86/MASB2 1/44 Begrepp S.V. Fördelning Väntevärde Gauss CGS Grundläggande begrepp (Kap.

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 5. Väntevärde; Väntevärde för funktioner av s.v:er; Varians; Tjebysjovs olikhet. Jan Grandell & Timo Koski 28.01.2015 Jan Grandell & Timo Koski () Matematisk

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Tentamen LMA 200 Matematisk statistik,

Tentamen LMA 200 Matematisk statistik, Tentamen LMA 00 Matematisk statistik, 0 Tentamen består av åtta uppgifter motsvarande totalt 50 poäng. Det krävs minst 0 poäng för betyg, minst 0 poäng för 4 och minst 40 för 5. Examinator: Ulla Blomqvist,

Läs mer

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen

Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

TAMS65 - Föreläsning 12 Test av fördelning

TAMS65 - Föreläsning 12 Test av fördelning TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen TENTA 9MA31, 9MA37, 93MA31, 93MA37 / STN 9GMA5 / STN 1 1 juni 16, klockan 8.-1. Jour: Jörg-Uwe Löbus Tel: 79-687) Tillåtna hjälpmedel är en räknare, formelsamling

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK FREDAGEN DEN 8 MAJ 010 KL 14.00 19.00. Eaminator: Gunnar Englund, tel. 79074 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell

Föreläsningsanteckningar i Matematisk Statistik. Jan Grandell Föreläsningsanteckningar i Matematisk Statistik Jan Grandell 2 Förord Dessa anteckningar gjordes för mitt privata bruk av föreläsningsmanuskript och har aldrig varit tänkta att användas som kursmaterial.

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014 Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 21 september 2016 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/21 för diskret data : Poisson & Binomial för

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall. UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Kapitel 9 Egenskaper hos punktskattare

Kapitel 9 Egenskaper hos punktskattare Sannolikhetslära och inferens II Kapitel 9 Egenskaper hos punktskattare 1 Egenskaper hos punktskattare En skattare är en funktion av stickprovet och således en slumpvariabel. En bedömning av kvaliteten

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

TMS136: Dataanalys och statistik Tentamen

TMS136: Dataanalys och statistik Tentamen TMS136: Dataanalys och statistik Tentamen 013-08-7 Examinator och jour: Mattias Sunden, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkänd räknare och formelsamling (formelsamling delas ut med tentan). Betygsgränser:

Läs mer

Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter).

Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter). Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 13:E MARS 2015 KL 14.00 19.00. Kursledare för F och E: Timo Koski, tel: 070 237 00 47 Kursledare för D

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F7: Bayesiansk inferens Klassisk vs Bayesiansk Två problem Klassisk statistisk inferens Frekventistisk tolkning av sannolikhet Parametrar fixa (ofta okända) storheter Skattningar och konfidensintervall

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer