Parade och oparade test

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Parade och oparade test"

Transkript

1 Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

2 Hypotesprövning: möjliga jämförelser Jämförelser mot ett visst värde Parvisa observationer Före och Efter inom samma individ Gruppvisa jämförelser 2 oberoende grupper Mellan 2 eller fler variabler Regression Analys av frekvenser och proportioner - χ 2 -test Mellan 3 eller fler observationstillfällen eller mellan 3 eller flera olika grupper ANOVA (variansanalys) 2

3 Parvisa observationer Det finns två typfall - Före och efter inom samma individ - Matchande kontroller där varje individ i stickprovet har en tvilling I hypotesprövningen undersöks differensen mellan de två beroende variablerna - Före - Efter - Stickprovs-individ - tvilling 3

4 Hypotesprövning: Parvisa observationer Parametrisk analys Parat Z-test - Används då n är stort (σ okänd), (centrala gränsvärdessatsen) - Används då σ är känd Parat t-test OBS: n=antalet par - Används då n är litet (σ okänd) men normalfördelning kan antas Icke-parametrisk analys Wilcoxons tecken-rangtest - Används då n är litet och normalfördelning ej kan antas 4

5 Hypotesprövning: Parade värden Definiera och beräkna teststorhet Parametrisk analys Vi använder antingen Z eller t : Z = X μ σ t n 1 = X μ σ H 0 X μ δ 0 Medelvärdet av de parvisa skillnaderna s = 1 n 1 n i σ s n i 2 Parvisa skillnader Genomsnittlig skillnad i hela populationen Z = s n t n 1 = s n 5

6 Hypotesprövning: Parade värden Parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? Ett nytt antiviralt preparat ges till 7 patienter med Hepatit A Blodprover tas dag 1 och dag 5 Viruskoncentrationen i proverna analyseras Viruskoncentrationerna kan antas vara normalfördelade Parade värden, n litet men normalfördelning Parat 2-sidigt t-test! 6

7 Hypotesprövning: Parade värden Parametrisk analys Viruskoncentration Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? H 0 : δ = 0, ingen genomsnittlig skillnad i populationen H 1 : δ 0 ID [Virus] D1 [Virus] D Dag 1 Dag 5 7

8 Hypotesprövning: Parade värden Parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? s = 1 n 1 n i=1 i 2 t n 1 = s n Vi behöver beräkna i,, och s för att beräkna t-värdet 8

9 Hypotesprövning: Parade värden Parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? ID [Virus] D1 [Virus] D5 i = 255 n i=1 i (-314) 2 (-115) 2 (-231) (-203) 2 i 2 =

10 Hypotesprövning: Parade värden Parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? = 255 n = 7 H 0 : H 1 : s = Kritiskt värde för 5% signifikansnivå (95% CI): ±2.45 t n 1 =

11 Konfidensintervall: Parvisa observationer Precis som för beräkningar av populationsmedelvärden så kan vi bestämma ett konfidensintervall för medelvärdet av de parvisa skillnaderna ( ). Om konfidensintervallet inkluderar värdet för H 0 (d.v.s. 0) så kan vi inte säga att det finns en statistisk skillnad på den aktuella signifikansnivån. 11

12 Konfidensintervall: Parade värden Parametrisk analys (Z) Det sanna medelvärdet av skillnaderna i populationen ligger med 95% sannolikhet inom gränserna: δ = ± Z 95% = ± 1.96 s s n n 12

13 Konfidensintervall: Parade värden Parametrisk analys (t) Det sanna medelvärdet av skillnaderna i populationen ligger med 95% sannolikhet inom gränserna: δ = ± t 95%,n 1 s n 13

14 Konfidensintervall: Parade värden Parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? = 255 n = 7 s = 298 δ = ± t 95%,n 1 s n Lägre gräns - Lower 95%CI = Övre gräns - Upper 95%CI = 14

15 Hypotesprövning: Parade värden Icke-parametrisk analys Wilcoxons tecken-rangtest Bygger på rangordning av differenserna ( i ) Förutsätter inte en viss fördelning Okänsligt för extremvärden 15

16 Hypotesprövning: Parade värden Icke-parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? Samma exempel som tidigare men Viruskoncentrationerna kan INTE antas vara normalfördelade Parade värden, n litet och normalfördelning kan INTE antas 2-sidigt Wilcoxons tecken-rangtest! 16

17 Hypotesprövning: Parade värden Icke-parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? H 0 : Ingen skillnad i viruskoncentration H 1 : Det finns en skillnad (2-sidigt test) Tillvägagångssätt: 1. Rangordna differenserna ( i ) utan att ta hänsyn till differensernas tecken 2. Summera rangtalen för de positiva och de negativa differenserna var för sig 3. Bedöm sannolikheten att observera de erhållna (eller mer extrema) differenserna om H 0 är sann 17

18 Hypotesprövning: Parade värden Icke-parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? ID [Virus] D1 [Virus] D5 i Rangtal T + = T =

19 Hypotesprövning: Parade värden Icke-parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? T + = T = Kontrollräkning: T + + T = n n =

20 Hypotesprövning: Parade värden Icke-parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? Det kritiska värdet vid ett 2-sidigt Wilkoxons teckenrangtest bestäms utifrån en tabell och om den lägsta rangsumman underskrider eller är lika med detta värde så förkastas H 0! T + : T - : T α 2 T α 2 Signifikansnivån α

21 Hypotesprövning: Parade värden Icke-parametrisk analys Är det någon skillnad mellan viruskoncentrationerna dag 1 och dag 5? H 0 : Ingen skillnad i viruskoncentration H 1 : Det finns en skillnad (2-sidigt test) Kritiskt värde för 5% signifikansnivå (n=7): T = 2 T =

22 Hypotesprövning: möjliga jämförelser Jämförelser mot ett visst värde Parvisa observationer Före och Efter inom samma individ Gruppvisa jämförelser 2 oberoende grupper Mellan 2 eller fler variabler Regression Analys av frekvenser och proportioner - χ 2 -test Mellan 3 eller fler observationstillfällen eller mellan 3 eller flera olika grupper ANOVA (variansanalys) 22

23 Gruppvisa jämförelser När vi inte har parvisa observationer så kan vi istället jämföra medelvärdena från två oberoende stickprov (populationer) - Effekten av läkemedel jämfört med placebo - Effekten av läkemedel x jämfört med läkemedel y I hypotesprövningen undersöks differensen mellan de två oberoende variablerna - Läkemedel v.s. Placebo - x v.s. y 23

24 Gruppvisa jämförelser Effekten har mätts efter två olika behandlingar (parallellgruppsstudie) och behandlingarna har följande distributioner från vilka vi erhållit ett antal stickprov: μ a μ b Variabelvärde Behandling A: Medelvärde μ a, standardavvikelse σ a Behandling B: Medelvärde μ b, standardavvikelse σ b

25 Gruppvisa jämförelser Hur gör vi en objektiv bedömning av skillnaden och hur objektiva ska vi vara? μ a μ b Variabelvärde

26 Hypotesprövning: Gruppvisa jämförelser / Oparade värden Parametrisk analys Z-test (2 prov) - Används då n a och n b är stora (σ okänd), (centrala gränsvärdessatsen) - Används då σ är känd t-test (2 prov) - Används då n a och n b är små (σ okänd) men normalfördelning kan antas Icke-parametrisk analys Wilcoxons rangsummetest OBS: n a och n b måste inte vara lika! OBS: s a och s b är två skattningar av samma σ! - Används då n a och n b är små och normalfördelning ej kan antas 26

27 Hypotesprövning: Oparade värden Parametrisk analys Definiera och beräkna teststorhet Skillnaden i stickprovsmedelvärde för grupp a och grupp b Vi använder antingen Z eller t : Z = X μ σ X x a x b σ s a 2 + s 2 b n a n b t n 1 = σ X μ σ s 2 pool μ μ a μ b 1 n a + 1 n b Skillnaden i populationsmedelvärde för grupp a och grupp b 0 H 0 Z = x a x b s 2 a + s t b 2 na+nb 2 = n a n b x a x b 2 1 s pool + 1 n a n b

28 Hypotesprövning: Oparade värden Definiera och beräkna teststorhet Parametrisk analys De båda stickprovsstandardavvikelserna (s a och s b ) är olika noggranna skattningar av populationsstandardavvikelsen (σ) Ju större stickprov desto säkrare skattning s pool är ett vägt medelvärde av s a och s b s pool = s a 2 n a 1 + s b 2 n b 1 n a 1 + n b 1 28

29 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? 16 patienter randomiseras till behandling med läkemedel A eller läkemedel B mot Hepatit A 2 patienter med läkemedel B drar tillbaka sin medverkan i studien av anledningar som inte har med läkemedel B att göra 29

30 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? Blodprover tas dag 1 och dag 5 Viruskoncentrationen i proverna analyseras och skillnaden i koncentration mellan dag 1 och dag 5 beräknas Viruskoncentrationerna kan antas vara normalfördelade Oparade värden, n a och n b små, normalfördelning kan antas Oparat 2-sidigt t-test! 30

31 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? Grupp A a = 2066 virus/l s a = 1180 virus/l Grupp B n a = 8 n b = 6 H 0 : H 1 : b = 664 virus/l s b = 297 virus/l Kritiskt värde för 5% signifikansnivå (95% CI): ±2.18 används här som notation istället för x eftersom vi jämför en sänkning av viruskoncentrationer i blodet. Dock används formlerna på samma sätt som om x hade använts!

32 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? t na +n b 2 = a b s pool 2 1 n a + 1 n b 2 Vi behöver beräkna s pool för att kunna beräkna t-värdet 32

33 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? 2 s pool = s a 2 n a 1 + s 2 b n b 1 n a 1 + n b 1 2 s pool = 33

34 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? t na +n b 2 = a b s pool 2 1 n a + 1 n b 34

35 Hypotesprövning: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? Kritiskt värde för 5% signifikansnivå (95% CI): ±2.18

36 Konfidensintervall: Gruppvisa jämförelser Ett konfidensintervall för skillnaden mellan grupperna kan beräknas. Om konfidensintervallet inkluderar värdet för H 0 (d.v.s. 0) så kan vi inte säga att det finns en statistisk skillnad på den aktuella signifikansnivån. 36

37 Konfidensintervall: Oparade värden Parametrisk analys (Z) Den sanna skillnaden mellan gruppernas medelvärden ligger med 95% sannolikhet inom gränserna: μ a μ b = x a x b ± Z 95% s a 2 2 n a + s b n b = x a x b ± 1.96 s a 2 2 n a + s b n b 37

38 Konfidensintervall: Oparade värden Parametrisk analys (t) Den sanna skillnaden mellan gruppernas medelvärden ligger med 95% sannolikhet inom gränserna: μ a μ b = x a x b ± t 95%,na +n b 2 s pool 2 1 n a + 1 n b 38

39 Konfidensintervall: Oparade värden Parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? Grupp A a = 2066 virus/l s a = 1180 virus/l Grupp B n a = 8 n b = 6 2 s pool = b = 664 virus/l s b = 297 virus/l a b = Lägre gräns - Lower 95%CI = Övre gräns - Upper 95%CI =

40 Hypotesprövning: Oparade värden Icke-parametrisk analys Wilcoxons rangsummetest Bygger på rangordning av mätdata Förutsätter inte en viss fördelning Okänsligt för extremvärden Wilcoxons rangsummetest kallas ibland även för Mann-Whitneys U-test! 40

41 Hypotesprövning: Oparade värden Icke-parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? Samma exempel som tidigare men Viruskoncentrationerna kan INTE antas vara normalfördelade Oparade värden, n a och n b små, normalfördelning kan INTE antas 2-sidigt Wilcoxons rangsummetest! 41

42 Hypotesprövning: Oparade värden Icke-parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? H 0 : Ingen skillnad mellan grupperna (läkemedlen) H 1 : Det finns en skillnad (2-sidigt test) Tillvägagångssätt: 1. Rangordna alla observerade värden, från det lägsta till det högsta 2. Summera rangtalen för de båda stickproven var för sig 3. Rangsumman för det mindre stickprovet jämförs med motsvarande tabellvärden och om rangsumman är tillräckligt låg eller tillräckligt hög så förkastas H 0 42

43 Hypotesprövning: Oparade värden Icke-parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? ID i A/B Rangtal ID i A/B Rangtal A B A A B B A B B A B A A A 12 Rangsumman för den minsta gruppen (B): T B =

44 Hypotesprövning: Oparade värden Icke-parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? De kritiska värdena vid ett 2-sidigt Wilkoxons rangsummetest bestäms utifrån en tabell och om rangsumman för den minsta gruppen faller utanför intervallet som bildas av de kritiska värdena (eller exakt på intervallgränserna) så förkastas H 0!

45 Hypotesprövning: Oparade värden Icke-parametrisk analys Är det någon skillnad i effekt mellan läkemedel A och läkemedel B? H 0 : Ingen skillnad mellan grupperna (läkemedlen) H 1 : Det finns en skillnad (2-sidigt test) Kritiska värden för 5% signifikansnivå (n a = 8, n b = 6): T 0.05 = T B =

46 Sammanfattning Parametrisk vs. icke-parametrisk analys Parametrisk analys + Kvantifierar skillnader och spridningar Icke-parametrisk analys + Inga antaganden om fördelningen (gäller lika bra för alla fördelningar) + Ordinaldata (ordningstal) - Ej robust vid små n (och ej normalfördelning) - Kan missa små skillnader (lägre teststyrka) 46

47 Sammanfattning Parametrisk vs. icke-parametrisk analys Parametrisk analys Små n: Om normalfördelning kan antas Stora n: OK (om fördelningen ej är alltför skev - i så fall testa att transformera) Icke-parametrisk analys Om fördelningen är okänd (exempelvis p.g.a. litet n) Om fördelningen är skev Om många extrema värden (så kallade outliers ) finns Aldrig om n<4 47

48 Sammanfattning Hypotesprövning: Parade och oparade test Parvisa observationer Parametrisk analys Parat t-test Parat Z-test Konfidensintervall Icke-parametrisk analys Wilcoxons teckenrangtest Oberoende grupper Parametrisk analys Oparat t-test Oparat Z-test Konfidensintervall Icke-parametrisk analys Wilcoxons rangsummetest 48

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

a) Facit till räkneseminarium 3

a) Facit till räkneseminarium 3 3.1 Fig 1. Sammanlagt 30 individer rekryteras till studien. Individerna randomiseras till en av de fyra studiearmarna (1: 500 mg artemisinin i kombination med piperakin, 2: 100 mg AMP1050 i kombination

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Gamla tentor (forts) ( x. x ) ) 2 x1

Gamla tentor (forts) ( x. x ) ) 2 x1 016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

7.3.3 Nonparametric Mann-Whitney test

7.3.3 Nonparametric Mann-Whitney test 7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig steg 1 5 Steg 4 Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 Hypotesprövning

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Föreläsning 5 och 6.

Föreläsning 5 och 6. Föreläsning 5 och 6. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Icke-parametriska metoder Föreläsningarnas innehåll: Allmänt, icke-parametrisk

Läs mer

Fråga nr a b c d 2 D

Fråga nr a b c d 2 D Fråga nr a b c d 1 B 2 D 3 C 4 B 5 B 6 A 7 a) Första kvartilen: 33 b) Medelvärde: 39,29 c) Standardavvikelse: 7,80 d) Pearson measure of skewness 1,07 Beräkningar: L q1 = (7 + 1) 1 4 = 2 29-10 105,8841

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

F9 Konfidensintervall

F9 Konfidensintervall 1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Medicinsk statistik VT-2013 Tre stycken

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Omtentamen i Statistik A1, 2013 08 15 Skrivtid: 3 timmar (08:00 11:00) Ansvarig lärare: Åsa Johansson poäng = 45 p Betyg (U/G/VG):

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Laboration 4 Statistiska test

Laboration 4 Statistiska test Matematikcentrum Matematisk statistik Lunds universitet MASB11 HT14, lp2 Laboration 4 Statistiska test 2015-01-09 Del I: Styrkefunktion Del II: Standardtest Syftet med laborationen är att ni ska bekanta

Läs mer

10. Konfidensintervall vid två oberoende stickprov

10. Konfidensintervall vid två oberoende stickprov TNG006 F0-05-06 Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ,

Läs mer

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion Matematikcentrum Matematisk statistik Lunds universitet MASB11 VT15, lp3 Laboration 4 Statistiska test 2015-03-06 Del I: Standardtest Del II: Styrkefubktion Syftet med laborationen är att ni ska bekanta

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Icke-parametriska/fördelningsfria test. Finansiell statistik, vt-05. Teckentest. Teckentest. Vi gör observationer för =1,, på variablerna.

Icke-parametriska/fördelningsfria test. Finansiell statistik, vt-05. Teckentest. Teckentest. Vi gör observationer för =1,, på variablerna. Ickeparametriska/fördelningsfria test Vi gör observationer för,, på variablerna,,, eller Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt05 F0 ickeparametriska

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

ANOVA Mellangruppsdesign

ANOVA Mellangruppsdesign ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

Ledtrådar till utvalda uppgifter för NDAB01, vt2011, 17 januari 2011.

Ledtrådar till utvalda uppgifter för NDAB01, vt2011, 17 januari 2011. Ledtrådar till utvalda uppgifter för DAB01, vt011, 17 januari 011. 3.1cd sida 3 Summatecknet antas vara känt för er. Övningen avser mer att kolla på skrivsättet X i som förklaras i boken ungefär mitt på

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

TAMS38 - Föreläsning 4 Icke-parametriska metoder. Kursansvarig/examinator: Martin Singull Föreläsningar: Jolanta Pielaszkiewicz

TAMS38 - Föreläsning 4 Icke-parametriska metoder. Kursansvarig/examinator: Martin Singull Föreläsningar: Jolanta Pielaszkiewicz TAMS38 - Föreläsning 4 Icke-parametriska metoder Kursansvarig/examinator: Martin Singull Föreläsningar: Jolanta Pielaszkiewicz Matematisk statistik - Matematiska institutionen Linköpings universitet Good

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16 Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-

Läs mer