Medicinsk statistik I

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Medicinsk statistik I"

Transkript

1 Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post:

2 Medicinsk statistik VT-2013 Tre stycken statistikföreläsningar - Susanna Lövdahl (I+II) / Jonas Björk (III) Frågestund ett tillfälle - Övningsuppgifter delas ut innan med facit

3 Medicinsk statistik INNEHÅLL Deskriptiv/beskrivande statistik Medelvärdesjämförselser Icke-parametriska test Tolkning av p-värden/konfidensintervall Proportionstal Korrelation Linjär regression Dimensionsberäkning/Statistik styrka

4 Medicinsk statistik Kompendium Biostatistik och epidemiologi Anna Axmon Bra artiklar Statistisk styrka: Colomb MO and Stevens A. Power analysis and sample size calculations. Current Anaesthesia & Critical Care 2008;19: Signifikanstest: Sterne JAC and Smith GD. Sifting the evidence what s wrong with significance tests? BMJ 2001;322: Statistics Notes in the British Medical Journal (praktiskt inriktade statistikartiklar):

5 Studiepopulation (Målpopulation) Stickprov Stickprov Datainsamling Analys Beskrivning Dra slutsatser från insamlad data genom skattningar och hypotesprövningar Deskriptiv statistik Analytisk statistik

6 Datatyper Kvantitativ Kvalitativ

7 Kvantitativ

8 Kvantitativ Kontinuerlig - Mäts på en skala - Exempel: Vikt, längd, ålder, blodtryck Diskret - Kontinuerliga data som bara kan anta vissa värden - Exempel: Antal barn - Värdena är sanna = är dubbelt så mycket som 2

9 Kvalitativ

10 Kvalitativ (kategorisk) Ordinaldata klassdata/kategoriindelning med rangordning Exempel: - 1 < 2 < 3 Nominaldata klassdata/kategoriindelning utan rangordning Exempel: Kön, bostadsort, civilstånd - Ej säkert att 2-1 = Ej säkert att 4 är dubbelt så mycket som 2 - Ålderskategorier - Självskattning

11 Studiepopulation (Målpopulation) Stickprov Stickprov Datainsamling Analys Beskrivning Dra slutsatser från insamlad data genom skattningar och hypotesprövningar Deskriptiv statistik Analytisk statistik

12 Deskriptiv statistik Beskrivning av materialet utan att ge alla siffror Grafiskt Numeriskt Viktiga frågor: Var ligger tyngdpunkten - Hur kan vi ange tyngdpunkten? Hur stor är spridningen

13 Tyngdpunkten kan anges genom Median Det mittersta värdet när man sorterat observationerna i storleksordning (om udda antal) Exempel: 4, 5, 6, 7, 10, 11, 12, 20, 22 Mittersta värdet: 10 Median = 10 Om jämnt antal observationer: medelvärdet av de två värdena i mitten x i n 1 n x i x 1 x 2 n... x n Typvärde Det mest förekommande värdet

14 Tyngdpunkten brukar refereras till som CENTRALMÅTT eller LÄGESMÅTT Valet görs utifrån hur data ser ut Symmetriska kontinuerliga data Assymetriska kontinuerliga data Ordinaldata Nominaldata

15 Symmetriska kontinuerliga data Medel = Median Exempel: Födelsevikt, längd I figuren: Medelvärde = 24 Median = 24 Använd medelvärdet!

16 Assymetriska kontinuerliga data Data förskjutet åt höger eller åt vänster Medelvärdet < Medianen Medelvärdet > Medianen I figuren: Medelvärdet = 8 Medianen = 5 Använd medianen!

17 Ordinaldata I figuren: Median = F! Använd median!

18 Varför inte alltid använda medelvärdet? Exempel I en enkätundersökning fanns följande fråga: Hur ofta tränar du? Aldrig 1-4 gånger i månaden 5-8 gånger i månaden Mer än 8 gånger i månaden 0 poäng 1 poäng 3 poäng 5 poäng Medelvärdet blir beroende av hur man kodar variabeln! Inget mätvärde utan endast en kodning som vi själva bestämmer.

19 Varför inte alltid använda medelvärdet? Exempel: Undersökning av löner på ett företag med 11 anställda Medelvärdet: / 11 = Median: Börja med att sortera lönerna I storleksordning

20 Nominaldata Ange exempelvis andelar. Här är lägesmått inte meningsfulla. I figuren: Malmö = 24% Göteborg = 50% Stockholm = 26%

21 Sammanfattning Lägesmått Symmetriska data Asymmetriska data Ordinaldata Medelvärde Median Median Nominaldata

22 Vilka lägesmått är lämpliga i dessa studier? Blodtrycket är uppmätt på 150 friska män i åldrarna Hur ofta ungdomar dricker alkohol: Aldrig 1p Sällan 2p Ofta 3p Undersöka hur många män respektive kvinnor som jobbar på Lunds universitet.

23 Sammanfattning Lägesmått Spridning?? Symmetriska data Asymmetriska data Ordinaldata Medelvärde Median Median Nominaldata ---

24 Spridning Liten spridning Stor spridning

25 Spridningsmått Beskriver hur pass koncentrerade data är kring centralvärdet Olika mått används för symmetriska och assymetriska data Symmetri spridningsmått baseras på medelvärde Assymetri spridningsmått baseras INTE på medelvärde

26 Spridningsmått Om vi kollar på den genomsnittliga avvikelsen från medelvärdet: ID x (x-x) x i n x Men den genomsnittliga avvikelsen från medelvärdet blir 0. 0 x i n x

27 Spridningsmått Genom att kvadrera varje term så slipper vi problemet med att det blir 0. 2 x i x För att få bättre skattning så använder man n-1 i nämnaren Detta kallas för VARIANSEN! 2 Men variansen är nu uttryckt i cm vilket inte är så praktiskt när medellängden är uttryckt i cm. n x i n 1 x 2 = x (x-x) (x-x)

28 Spridningsmått Genom att ta roten ur variansen så får man standardavvikelsen (standard deviation = SD) som har samma enhet som det man mäter s x n i 1 x 2

29 Percentiler Beskriver hur stor andel av observationerna som ligger under värdet 10% ligger under 10:e percentilen 20% ligger under 20:e percentilen etc Formel: n 1 q Kvartiler Delar upp data i fyra lika stora delar; Undre kvartil = n 1 1 Övre kvartil = n kvartilavstånd = skillnad mellan övre och undre kvartilen

30 Variationsvidd (range) Avståndet mellan det högsta och lägsta värdet kallas variationsvidd Kan användas för både symmetriska och asymmetriska data

31 Sammanfattning Symmetriska data Lägesmått Medelvärde Spridning Varians/standa rdavvikelse Asymmetriska data Median Percentiler Ordinaldata Median Percentiler Nominaldata

32 Hur vet vi om det är symmetriskt? Grafiskt se om värdena ser symmetriska ut Medianen och medelvärdet skall vara lika Avståndet mellan median och symmetriska percentiler skall vara lika stora, t.ex. jämföra avståndet av övre kvartilen med medianen och undre kvartiel med medianen. Dessa avstånd skall vara lika. Max Övre kvartil Median Undre kvartil Min

33 Hur vet vi om det är symmetriskt?

34 Normalfördelningen Symmetrisk fördelning runt sitt medelvärde X=medelvärde S=SD=standardavvikelse Referensintervall Medelvärdet ± 1 SD täcker 68% av data Medelvärdet 2 SD täcker 95% av data Medelvärdet 3 SD täcker 99.7% av data

35 Stickprov jämfört med studiepopulation Populationen vill man kunna dra slutsatser om Är de individer som man inte kan mäta plus stickprovet POPULATION

36 Stickprov jämfört med studiepopulation Stickprov hjälper oss att uppskatta och dra slutsatser om en population där stickprovet blev taget POPULATION Stickprov Stickprov Stickprovet är de individer som man mäter på Man kan ta reda på allt om stickprovet

37 Studiepopulation (Målpopulation) Stickprov Stickprov Datainsamling Analys Beskrivning Dra slutsatser från insamlad data genom skattningar och hypotesprövningar Deskriptiv statistik Analytisk statistik

38 Skattningar standardfel (medelfel) Varje skattning har en osäkerhet Osäkerheten kan mätas med standardfelet (standard error, SE) s = standardavvikelsen n = antal observationer SE Ju större n ju mindre blir SE s n 2

39 Standardfel - exempel Medellängden hos individer i två populationer Stor spridning Patienter i ett väntrum på en akutmottagning Medelvärde=150cm; standardavvikelse=25 Liten spridning Barn i årskurs 5 Medelvärde=150cm; standardavvikelse=10

40 Standardfel - exempel Patienter i ett väntrum på en akutmottagning Elever i årskurs 5 Medel=150, s=25 Medel=150, s= observationer Medel = 150,4 s = 28,9 SE = 2,9 10 observationer Medel = 141,2 s = 32,4 SE = 10,2 10 observationer Medel = 149,2 s = 8,2 SE = 2,6 100 observationer Medel = 149,2 s = 8,6 SE = 0,9

41 Sammanfattning Punktskattningar Osäkerhet - Stickprovet används för att skatta värden i studiepopulationen - Medelvärdet är exempel på en punktskattning. - Standardfel är ett mått på osäkerheten i punktskattningen - Ju mindre SE, desto säkrare punktskattning

42 Konfidensintervall SE kan användas för att beräkna ett konfidensintervall (KI) Med en viss säkerhet täcker konfidensintervallet det sanna värdet Konfidensintervallets bredd beror av Storleken på SE (och därmed antalet individer i stickprovet samt spridningen) Konfidensgraden hur säker man vill vara

43 Sanna medelvärdet Om vi tar 100 stycken stickprov och beräknar KI för varje stickprov så kommer vissa att inkludera det sanna värdet och vissa inte Antalet KI som täcker det sanna värdet beror på konfidensgraden Exempel 95% konfidensgrad 95 av 100 KI täcker det sanna medelvärdet Motsvarande gäller för andra konfidensgrader ex 90% eller 99%

44 Beräkning av konfidensintervall Generell formel för konfidensintervall Skattning ± konstant*se Konfidensgrad på 90% ger en konstant = 1.64 Konfidensgrad på 95% ger en konstant = 1.96 Konfidensgrad på 99% ger en konstant = 2.58

45 Konfidensintervall Exempel Patienter i ett väntrum på en akutmottagning Tar ut ett stickprov på 100 individer Beräknar ett 95% KI x 1.96 SE [144.7;156.1] Med 95 procent säkerhet finns den genomsnittliga längden i den underliggande målpopulationen mellan och cm. Det sanna medelvärdet ligger med 95% säkerhet i intervallet medelvärdet ± 2*SE

46 Referensintervall Ett referensintervall säger något om spridningen i studiepopulationen Istället för att använda SE används standardavvikelsen, s.

47 Referensintervall Exempel Stickprov om 100 individer till patienter i ett väntrum på en akutmottagning Beräkning av 95% referensintervall = 150,4 ± 1.96*28.9 = [93.8; 207.0] 95% av målpopulationen bör vara mellan 94 och 207 cm Intervallet medelvärde ± 2* standardavvikelser täcker 95% av data i studiepopulationen

48 Sammanfattning Konfidensintervall och referensintervall är beräknade baserat på data från stickprovet men drar slutsatser om studiepopulationen! KONFIDENSINTERVALL: Medelvärdet i studiepopulationen ligger med 95% säkerhet inom gränserna REFERENSINTERVALL: 95% av studiepopulationen har ett värde inom gränserna

49 Förutsättningar för konfidens och referensintervall Stickprovet måste vara representativt för studiepopulationen Kontinuerlig data måste vara normalfördelade Stickprovet är normalfördelat Studiepopulationen är normalfördelad Stickprovet stort

50 Hur gör vi med data som inte är kontinuerliga/normalfördelade?

51 Exempel Ett nytt läkemedel ska testas. Hur många kände sig bättre av det nya läkemedlet?

52 Konfidensintervall för en andel Antag att q = punktskattningen q är andelen i stickprovet, q ligger mellan 0-1 Konfidensintervall för andelar beräknas q c q 1 n q n=antalet individer i stickprovet c=konstant (samma som i tidigare beräkningar) Förutsättning: q*(1-q)*n > 5

53 Konfidensintervall för en andel Exempel: Ett nytt läkemedel ska testas. Hur många kände sig bättre av det nya läkemedlet? En studie med 100 individer, n=100 q=andel som kände sig bättre av det nya läkemedlet. A=70% Konfidensgrad=95% c=1.96

54 Exempel fortsättning 95% KI: % KI: 61% - 79% q c q 1 n q

55 Hypotesprövning Ett stickprov väljs för att dra slutsatser om en studiepopulation Det går inte att bevisa något om en studiepopulation Däremot kan man avfärda en teori som är mer eller mindre troligt Detta gör man genom hypotesprövningar

56

57 Hypotesprövning Man sätter upp en nollhypotes (H0) H0 vill man kunna förkasta/avfärda ex. ingen effekt Om H0 förkastas så finns en alternativhypotes kvar (H1) H0: Ingen effekt H1: Effekt

58 Att uttrycka hypoteser Hypoteser går att uttrycka på många olika sätt Bäst att uttrycka hypoteser så numerisk som möjligt Ex. H 0 : Medelvärdet för behandlade = Medelvärdet för kontroller H 1 : Medelvärdet för behandlade Medelvärdet för kontroller

59 Exempel Vi vill undersöka om det finns lika många kvinnor som män som läser medicinsk statistik på Lunds universitet. Vilka hypoteser testas i denna studie? Hur ser H0 respektive H1 ut?

60 Hypotesprövning med p-värde Stickprov Studiepopulation Stickprov Stickprov där H 0 inte verkar stämma! Studiepopulation där H 0 är sann! Sannolikhet? (p = probability)

61 Hypotesprövning med p-värde P-värdet är en sannolikhet som ligger mellan 0 och 1 P-värdet är sannolikheten att man får det resultat man fick (eller ännu mer extremt) om H0 är sann Mer extremt menar man ett värde som ligger längre ifrån nollhypotesen än det värde som man har fått fram Exempel: Undersökning av om det finns lika många kvinnor som män som läser medicinsk statistik vid Lunds universitet. H0: Andelen kvinnor = 50% H1: Andelen kvinnor 50% Undersökning av stickprovet gav oss att 61% som läser medicinsk statistik vid Lunds universitet är kvinnor. P-värdet kommer att ge oss sannolikheten att vi hittar ett stickprov minst 61% kvinnor eller mer givet att H0 är sann.

62 Hypotesprövning med p-värde Om p-värdet är tillräckligt litet så förkastas H0 Tillräckligt liten är en gräns som man sätter upp innan analysen utförs, signifikansnivån T.ex. 1%, 5% eller 10% Signifikansnivån + konfidensgraden = 1 Beräkning av p-värdet kan göras även om data inte är normalfördelat, men på olika sätt

63 Hypotesprövning med p-värde H0: Andelen kvinnor = 50% H1: Andelen kvinnor 50% P-värdet = 0.02 Signifikansnivå = 0.05 H0 kan förkastas eftersom 0.02 < 0.05

64 Hypotesprövning med KI Hypotesprövning kan även göras med KI Om H0 ligger inom KI:s gränser kan H0 vara det sanna värdet Vi kan inte förkasta H0 Om H0 ligger utanför KI:s gränser Förkasta H0 eftersom det då är låg sannolikhet att H0 är det sanna värdet Test med 95% KI = test med 5% signifikansgräns

65 Konstanten c=1.96 i formeln Medelvärdet c*se kommer från den standardiserade normalfördelningen vid konfidensgraden 95% För små stickprov blir KI för snäva, går inte upp till den önskade konfidensgraden Hur löser vi det?

66 T-fördelningen Vi löser det genom att använda t-fördelningen med n-1 frihetsgrader för att bestämma konstanten c - Ex. om vi har n=10 så blir antalet frihetsgrader 10-1=9 I en tabell kan man ta reda på att c=2.26

67 T-fördelningen En fördelning som mycket påminner om normalfördelningen men som för små stickprov gör att vi bättre uppnår den önskade konfidensgraden Vad är små stickprov?

68 Tumregel - stickprovsstorlek Antal oberoende observationer Tumregel n<20 Beräkna bara konfidensintervall om det sedan tidigare är känt att den variabel som studeras är normalfördelad. Använd t-fördelningen med n-1 frihetsgrader för att bestämma konstanten c n: Beräkna konfidensintervall om mätvariabeln är någorlunda normalfördelad. Använd t-fördelningen med n-1 frihetsgrader för att bestämma konstanten c n>50 Konfidensintervall kan beräknas oavsett hur variabeln som undersöks är fördelad i studiepopulationen. Den standardiserade normalfördelningen ger fortfarande något för låga värden på c; skillnaden jämfört med korrekta värdet hämtat från t-fördelningen är dock försumbart

69 Parametriska och icke parametriska test Namnet parametriskt kommer från att det bygger på användandet av specifika parametrar, - normalfördelningens parametrar. Normalfördelningens parametrar är det som definierar fördelningen - medelvärdet och variansen.

70 Parametriska och icke parametriska test Test som inte bygger på parametrar kallas ICKE-PARAMETRISKA TEST eller FÖRDELNINGSFRIA TEST Dessa använder observationernas ranger i i stället för värdena Kommer mer om detta i nästa föreläsning!

71 Parametriska och icke parametriska test Parametriskt Icke-parametriskt Utförs på Värden Ranger Kräver Ja Nej Normalfördelning Skattar effekt Ja Nej med KI P-värde Ja Ja

72 Lästips - Beskrivande statistik Kapitel 3 - Normalfördelningen/Referensintervall Kapitel 5 - Hypoteser/p-värden/konfidensintervall Kapitel 6, 7, , 12.1

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Medicinsk statistik Varför behöver Ni kunskap i medicinsk statistik? Självständigt arbete Framtida

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Statistik en introduktion

Statistik en introduktion Varför kurs i vetenskaplig metod? Statistik en introduktion Frida Eek Framtida forskning? Projektarbete? Förståelse! Tolkning! Kritisk granskning/utvärdering! frida.eek@med.lu.se Statistik 2 Medicinsk

Läs mer

Gamla tentor (forts) ( x. x ) ) 2 x1

Gamla tentor (forts) ( x. x ) ) 2 x1 016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån

Läs mer

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Jonas Björk E-post: jonas.bjork@med.lu.se Medicinsk statistik III Innehåll och läsanvisningar Statistik för binära utfall Kapitel 12 Dimensionering

Läs mer

BIOSTATISTIK OCH EPIDEMIOLOGI

BIOSTATISTIK OCH EPIDEMIOLOGI BIOSTTISTIK OCH EPIDEMIOLOGI 1. DTTYPER... 3 1.1. Kvalitativa data... 3 1.2. Kvantitativa data... 3 2. DESKRIPTIV STTISTIK... 5 2.1. Lägesmått... 5 2.2. Spridningsmått... 6 2.3. Grafisk beskrivning...

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Statistik en introduktion

Statistik en introduktion Statistik en överblick Statistik en introduktion Studiepopulation Stickprov Frida Eek Datainsamling frida.eek@med.lu.se Skattningar och hypotes-prövningar slutsatser Analytisk statistik Analys Beskrivning

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

ST-fredag epidemiologi och biostatistik 2017

ST-fredag epidemiologi och biostatistik 2017 ST-fredag epidemiologi och biostatistik 2017 Emma Larsson. ST-läkare, PhD. PMI, KS Solna Gabriella Jäderling. Överläkare, PhD. PMI KS Solna Mikael Eriksson. Specialistläkare, doktorand. PMI KS Solna. Max

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning.

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning. Biostatistik: Begrepp & verktyg Kvantitativa Metoder II: teori och tillämpning Lovisa.Syden@ki.se BIOSTATISTIK att hantera slumpmässiga variationer! BIO datat handlar om levande saker STATISTIK beskriva

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Vid Medicinsk statistik - Frågestund ges tillfälle att fråga om övningarna.

Vid Medicinsk statistik - Frågestund ges tillfälle att fråga om övningarna. Räkneövningar i Medicinsk statistik ISEX T5 HT 014 Vid Medicinsk statistik - Frågestund ges tillfälle att fråga om övningarna. 1. I en pilotstudie där man ville undersöka en kräm som verkade lokalt smärtstillande

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 29 oktober, 2016 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

732G01/732G40 Grundläggande statistik (7.5hp)

732G01/732G40 Grundläggande statistik (7.5hp) 732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.

Läs mer

17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi

17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi Kvantitativ metod och grundläggande statistik Varför Sjuksköterskans yrkesutövning skall vila på vetenskaplig grund Kritiskt förhållningssätt, att kunna läsa artiklar och bedöma om slutsatser är rimliga

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

TMS136. Föreläsning 7

TMS136. Föreläsning 7 TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och

Läs mer

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng Kognitiv psykologi Moment 1: Statistik, 3 poäng VT 27 Lärare: Maria Karlsson Deskription (Kapitel 2 i Howell) Beskrivande mått, tabeller och diagram 1 2 Tabeller Tabell- och kolumnrubriker bör vara fullständiga

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen

Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)

Läs mer

a) Facit till räkneseminarium 3

a) Facit till räkneseminarium 3 3.1 Fig 1. Sammanlagt 30 individer rekryteras till studien. Individerna randomiseras till en av de fyra studiearmarna (1: 500 mg artemisinin i kombination med piperakin, 2: 100 mg AMP1050 i kombination

Läs mer

Kvantitativ forskning C2. Viktiga begrepp och univariat analys

Kvantitativ forskning C2. Viktiga begrepp och univariat analys + Kvantitativ forskning C2 Viktiga begrepp och univariat analys + Delkursen mål n Ni har grundläggande kunskaper över statistiska analyser (univariat, bivariat) n Ni kan använda olika programvaror för

Läs mer

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig steg 1 5 Steg 4 Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 Hypotesprövning

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2012, , kl

TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2012, , kl TENTAMEN TEORI. EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, HT 2012, 2012-11-27, kl. 09.00-11.00 Namn: Pers.nr: Bokstavskombination: VIKTIGT: Skriv ovannämnda bokstavskombination plus de fyra sista siffrorna

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur

Läs mer

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten

Läs mer

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson January 3, 2017 January 3, 2017 1 / 84 January 3, 2017 2 / 84 Part I Lärandemål Kvantitativ undersökning Insamling av kvantitativa data Inledning January 3, 2017 3 / 84 Lärandemål Lärandemål definiera

Läs mer