Föreläsning G60 Statistiska metoder

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Föreläsning G60 Statistiska metoder"

Transkript

1 Föreläsning 5 Statistiska metoder 1

2 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2

3 Introduktion När man beräknar medelvärden och andelar utifrån stickprov så gör man enbart punktskattningar av populationens värden. Dessa punktskattningar varierar så klart från stickprov till stickprov och de träffar väldigt sällan populationens sanna värden. För att hantera den osäkerhet som uppstår kan konfidensintervall skapas. Dessa intervall täcker med en viss säkerhet populationens sanna värden, och denna säkerhet kallas för konfidensgrad. Konfidensgraden brukar vara 90, 95 eller 99 %. Två viktiga egenskaper för konfidensintervall: o Högre konfidensgrad (säkerhet) leder till bredare intervall o Större stickprov leder till smalare intervall 3

4 Andel När ett konfidensintervall för populationsandelen (π) ska skapas så måste man först undersöka om stickprovet är tillräckligt stort, vilket det är om: n p 1 p > 5 Där p är stickprovsandelen och n är stickprovsstorleken. Därefter beräknas ett intervall enligt detta uttryck: p ± z p(1 p) n z bestäms av den valda konfidensnivån och hämtas från tabell 2 (sida 193 i kursboken). 4

5 Andel, exempel Man vill undersöka (den vuxna) befolkningens inställning till det svenska medlemskapet i EU. Bland 120 tillfrågade slumpmässigt utvalda personer uppger 48 att de är negativa till det svenska medlemskapet. o Bilda ett 95% konfidensintervall för andelen i hela populationen som är negativa till det svenska medlemskapet i EU. o Om man i stället valt 1200 personer och 480 sagt sig vara negativa till det svenska medlemskapet, hur påverkas då konfidensintervallet? 5

6 Medelvärde När konfidensintervall för populationsmedelvärdet (μ) ska beräknas kan två formler användas. Om stickprovet är stort (n > 30) används: x ± z s n Om stickprovet är litet (n < 30) används: x ± t s n Där värdet på t har n-1 frihetsgrader (fg) och hämtas från tabell 3. s är stickprovets standardavvikelse och n är stickprovsstorleken. 6

7 Medelvärde, exempel En vintillverkare vill undersöka hur bra den vuxna svenska befolkningen tycker om ett visst vin. Tio slumpmässigt utvalda personer får provsmaka vinet och sätta betyg på en skala 1 20, där 1 motsvarar uselt och 20 motsvarar utsökt. Betygen finns sammanställda i tabellen nedan. Person Betyg Beräkna ett konfidensintervall med 95 % konfidensgrad för den vuxna svenska befolkningens medelbetyg. 7

8 Vid jämförelser, andel Ibland kan det vara intressant att undersöka skillnader mellan två olika populationer. Vi börjar med jämförelse av andelar. Beteckningar: o π 1 och π 2 är populationsandelarna för population 1 respektive 2. o p 1 och p 2 är stickprovsandelarna för population 1 respektive 2. o n 1 och n 2 är stickprovsstorlekarna för de två populationerna. Populationsandelarna är okända, så differensen (π 1 π 2 ) mellan dessa skattas med hjälp av p 1 p 2. 8

9 Vid jämförelser, andel Givet att de två stickproven är tillräckligt stora (np 1 p > 5) så kan konfidensintervall för differensen π 1 π 2 skapas med hjälp av följande uttryck: p 1 p 2 ± z p 1 (1 p 1 ) n 1 + p 2(1 p 2 ) n 2 Värdet på z hämtas från tabell 2. 9

10 Vid jämförelser, andel, exempel Vi anknyter till det tidigare exemplet, där inställningen till det svenska EU-medlemskapet undersöktes. Bland 120 slumpmässigt utvalda uppgav 48 att de var negativa till det svenska medlemskapet. En opinionsundersökning riktad till ett slumpmässigt urval om 1080 personer för ett år sedan visade att andelen som då var negativa till det svenska medlemskapet var 35.5%. o Bilda ett konfidensintervall med 95 % konfidensgrad för skillnaden i andelen EU-negativa i dag jämfört med för ett år sedan. 10

11 Vid jämförelser, medelvärden Det brukar också vara av intresse att jämföra medelvärden mellan två populationer (μ 1 μ 2 ). Åter igen kan två olika uttryck användas. Vid stora stickprov (båda n > 30): x 1 x 2 Vid mindre stickprov (n < 30): ± z s n 1 + s 2 n 2 x 1 x 2 ± t s p 2 1 n n 2 s p 2 = n 1 1 s (n 2 1)s 2 2 n 1 + n 2 2 När t hämtas används n 1 + n 2 2 frihetsgrader. 11

12 Vid jämförelser, medelvärden, exempel Vintillverkaren vi stötte på tidigare vill undersöka hur stor skillnad det är i betyg mellan två av sina viner. Tio slumpmässigt utvalda personer fick provsmaka vin A och nio andra slumpmässigt utvalda personer provsmakade vin B. Betygen syns i tabellen nedan. Vin A Vin B o Beräkna ett konfidensintervall med 95 % konfidensgrad för skillnaden i betyg mellan de två vinerna. 12

13 Den statistiska felmarginalen Vad är det? På nyheter hörs ofta meningen: men detta ligger inom den statistiska felmarginalen. Förenklat innebär detta att det inte skett någon statistiskt säkerställd skillnad från tidigare mätningar eller mellan olika grupper. Vi kommer att diskutera detta mer när vi kommer in på hypotesprövning. Rent matematiskt så är det som finns till höger om ± i ett intervalluttryck den statistiska felmarginalen. Den statistiska felmarginalen är alltså halva intervallbredden. 13

14 Stickprovsstorlek Andelar Innan en undersökning görs så kan man undersöka hur stort stickprov som bör dras för att en viss intervallbredd (d) ska uppnås. När andelar analyseras kan stickprovsstorleken bestämmas med hjälp av följande uttryck: n = 2 z 2 p(1 p) Punktskattningen (p) kan hämtas från tidigare undersökningar, eller så används p = 0.50, vilket ger största stickprovsstorleken. d 2 14

15 Stickprovsstorlek Medelvärden När medelvärden analyseras kan stickprovsstorleken bestämmas med hjälp av: n = 2 z 2 s2 d 2 Där stickprovsstandardavvikelsen s hämtas från tidigare liknande undersökningar, eller beräknas enligt exempel i boken. Stickprovsstorlekar avrundas alltid uppåt, och vi går inte in på beräkningar för stickprovsstorlekar vid jämförelser. 15

16 Stickprovsstorlek Exempel Vi återgår till undersökningen gällande andelen EU-negativa i den svenska befolkningen. Man vill nu beräkna ett konfidensintervall med 95 % konfidensgrad, där intervallbredden får vara högst 4 %. Hur många personer bör ingå i undersökningen? Vintillverkan vill återigen undersöka vad den vuxna svenska befolkningen tycker om vin A. Intervallets bredd ska vara högst 1 och konfidensgraden 95 %. Hur många personer bör provsmaka och betygssätta vinet? 16

17 Tack för idag! Nästa tillfälle: Laboration 3, onsdag 6/ , PC1-2 17

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att

Läs mer

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Exempel i stickprovsteori

Exempel i stickprovsteori Exempel i stickprovsteori p. 1/26 Exempel i stickprovsteori Göran Arnoldsson Umeå universitet Exempel i stickprovsteori p. 2/26 1. Audit sampling En bank vill göra en snabb uppskattning av den totala behållningen

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )

Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap ) F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Urvalsmetoder: Stratifierat urval (kap 9.5)

Urvalsmetoder: Stratifierat urval (kap 9.5) F4 Urvalsmetoder: Stratifierat urval (kap 9.5) Tidigare exempel Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11 1/11 F11 Två stickprov Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 26/2 2013 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Punktskattning och kondensintervall Innehåll 1 Punktskattning och kondensintervall Population Punktskattning och kondensintervall Vi har en population vars någon mätbar egenskap X vi är intresserade

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

Extrauppgifter i matematisk statistik

Extrauppgifter i matematisk statistik Extrauppgifter i matematisk statistik BT 2014 1. Mängden A är dubbelt så sannolik som B. Hur förhåller sig P(A B) till P(B A)? 2. Två händelser A och B har sannolikheter skilda från noll. (a) A och B är

Läs mer

Föreläsning 11, Matematisk statistik Π + E

Föreläsning 11, Matematisk statistik Π + E Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19 Repetition

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tenta i Statistisk analys, 15 december 2004

Tenta i Statistisk analys, 15 december 2004 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.

Läs mer

Tidigare exempel. Några beteckningar. Stratifierat urval

Tidigare exempel. Några beteckningar. Stratifierat urval Tidigare exempel F4 Urvalsmetoder: (kap 9.5) Ursprung: Linda Wänström Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler

Läs mer

Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering.

Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering. Uppgift 1 (14p) I en hockeymatch mellan lag A och lag B leder lag A med 4-3 när det är en kvart kvar av ordinarie matchtid. En oddssättare på ett spelbolag behöver bestämma sannolikheten för de tre matchutfallen

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014 Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap

Läs mer

Nr 1 (10p) a) En affär har två kylskåp i lager när den öppnar måndag morgon. Ytterligare skåp kan inte erhållas förrän på onsdagen.

Nr 1 (10p) a) En affär har två kylskåp i lager när den öppnar måndag morgon. Ytterligare skåp kan inte erhållas förrän på onsdagen. Nr 1 (10p) a) En affär har två kylskåp i lager när den öppnar måndag morgon. Ytterligare skåp kan inte erhållas förrän på onsdagen. Sannolikheten att man efterfrågar 0, 1, 2 skåp på måndagen är respektive

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall. UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan

Läs mer

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant? LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

Analys av proportioner

Analys av proportioner Analys av proportioner Innehåll Proportion konfidensintervall Jämförelse av två proportioner Två oberoende stickprov Relativ risk Parvisa observationer Jämförelse av tre eller flera proportioner x² (chi-två)

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord

Övningstentamen 2 Uppgift 1: Uppgift 2: Uppgift 3: Uppgift 4: Uppgift 5: Uppgift 6: i ord Övningstentamen Uppgift : I en kvalitetskontroll är det fyra olika fel A, B, C och D som kan förekomma oberoende av varandra där P(A) 0.03, P(B) 0.05, P(C) 0.07 och P(D) 0.. a. Beräkna sannolikheten att

Läs mer

Föreläsning 5: Att generalisera

Föreläsning 5: Att generalisera Föreläsning 5: Att generalisera Pär Nyman 4 september 2015 Både föreläsning 4 och 5 innehåller en del matematik. På Studentportalen finns därför några sidor med räkneövningar, vilka riktar sig till personer

Läs mer

Väljaropinion i samarbete med Metro. December 2016

Väljaropinion i samarbete med Metro. December 2016 Väljaropinion i samarbete med Metro ember Hur skulle du rösta om det vore riksdagsval i dag? Jämförelse med november 24, 24, 24, 19,0% 22, 21, 10% 0% 8, 7, 7, 8,0% 4,9% 5,9% 4, 3, 3, 3, 2, 2, 1,1% M C

Läs mer

Studerandes sysselsättning 2015. YH-studerande som examinerades 2014

Studerandes sysselsättning 2015. YH-studerande som examinerades 2014 Studerandes sysselsättning 2015 YH-studerande som examinerades 2014 Förord Utbildningar inom yrkeshögskolan ska tillgodose arbetslivets behov av kvalificerad arbetskraft. Det är därför angeläget att följa

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Studerandes sysselsättning 2014. YH- och KY-studerande som examinerades 2013

Studerandes sysselsättning 2014. YH- och KY-studerande som examinerades 2013 Studerandes sysselsättning 2014 YH- och KY-studerande som examinerades 2013 Förord Utbildningar inom yrkeshögskolan ska tillgodose arbetslivets behov av kvalificerad arbetskraft. Det är därför angeläget

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

= 0.044±

= 0.044± Lösningsförslag TMSB18 Matematisk statistik IL 100815 Tid: 12.00-17.00 Telefon: 0707-463397, Examinator: F Abrahamsson 1. Om ett visst företags inkomster en månad är fördelade enligt N(7000, 300) och samma

Läs mer

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.

9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

EXAMINATION KVANTITATIV METOD

EXAMINATION KVANTITATIV METOD ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-09 (090209) Examinationen består av 8 frågor, några med tillhörande följdfrågor. Frågorna 4-7 är knutna till

Läs mer

Är icke-sannolikhetsurval aldrig representativa?

Är icke-sannolikhetsurval aldrig representativa? Surveyföreningens webbpanelseminarium 2011-02-03 Är icke-sannolikhetsurval aldrig representativa? Jan Wretman Webbpanelkommittén 1 Det kommer att handla om: Begreppet representativitet. Bedömning av skattningars

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Konsekvenser av Bortfall Introduktion Illustration av hur bortfall påverkar resultaten i en statistisk

Läs mer

Väljaropinion i samarbete med Metro. Augusti 2015

Väljaropinion i samarbete med Metro. Augusti 2015 Väljaropinion i samarbete med Metro Augusti Innehållsförteckning 1. Sammanfattning 2. Om undersökningen o Metod o Bakgrundsvariabler 3. Resultat 4. Slutsatser och rekommendationer 5. Att läsa rapporten

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 8

ÖVNINGSUPPGIFTER KAPITEL 8 ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016

Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Jonas Björk E-post: jonas.bjork@med.lu.se Medicinsk statistik III Innehåll och läsanvisningar Statistik för binära utfall Kapitel 12 Dimensionering

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 Avd. Matematisk statistik SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 0 Allmänna anvisningar Arbeta med handledningen, och skriv rapport, i grupper om två eller tre personer. Närvaro vid laborationstiden

Läs mer

Institutionen för beteendevetenskap Tel: 0733-633 266 013-27 45 57/28 21 03. Tentamen i kvantitativ metod Psykologi 2 HPSB05

Institutionen för beteendevetenskap Tel: 0733-633 266 013-27 45 57/28 21 03. Tentamen i kvantitativ metod Psykologi 2 HPSB05 Linköpings Universitet Jour; Ulf Andersson Institutionen för beteendevetenskap Tel: 0733-633 266 013-27 45 57/28 21 03 Tentamen i kvantitativ metod Psykologi 2 HPSB05 Torsdagen den 3/5 2007, kl. 14.00-18.00

Läs mer

Statistisk acceptanskontroll

Statistisk acceptanskontroll Publikation 1994:41 Statistisk acceptanskontroll BILAGA 1 Exempel på kontrollförfaranden Metodbeskrivning 908:1994 B1 Exempel på kontrollförfaranden... 5 B1.1 Nivåkontroll av terrassyta, exempel... 5 B1.1.1

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10 Laboration 4: Intervallskattning och hypotesprövning Syftet med den här laborationen

Läs mer

Attityder kring SBU:s arbete. Beskrivning av undersökningens upplägg och genomförande samt resultatredovisning

Attityder kring SBU:s arbete. Beskrivning av undersökningens upplägg och genomförande samt resultatredovisning Attityder kring SBU:s arbete Beskrivning av undersökningens upplägg och genomförande samt resultatredovisning Hösten 2010 Innehållsförteckning INNEHÅLLSFÖRTECKNING ANALYSRAPPORT Sammanfattning... 1 Inledning...

Läs mer

Problem med väljarbarometrar

Problem med väljarbarometrar Statistisk kommunikationsfärdighet Problem med väljarbarometrar GÖRAN ANDERSSON I den tredje artikeln i vår pågående serie 1 ) behandlar statistikern Göran Andersson undersökningar av väljarsympatier.

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Onsdagen

Läs mer

Föreläsning 7 FK2002

Föreläsning 7 FK2002 Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Fredagen

Läs mer

Kompletterande kursmaterial till kursen Matematisk statistik.

Kompletterande kursmaterial till kursen Matematisk statistik. Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 5 (8 uppgifter) Poäng totalt för del 30 (3 uppgifter) Tentamensdatum 008-0-7 Robert Lundqvist Lärare: Ove Edlund Skrivtid 09.00-4.00

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Del 2: Hantering och bedömning av data och osäkerheter

Del 2: Hantering och bedömning av data och osäkerheter Del 2: Hantering och bedömning av data och osäkerheter Praktikfall: Kv. Verkstaden 14 Teori: Representativ halt, referenshalt, stickprov & beskrivande statistik, konfidensintervall & UCLM95 Diskussion:

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

Statistikens betydelse och nytta för samhället

Statistikens betydelse och nytta för samhället Statistikens betydelse och nytta för samhället SCB i Varför är SCB i Almedalen? Utveckla, framställa och sprida statlig statistik Förse våra användare med statistik som underlag för beslutsfattande, debatt

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Extra övningssamling i undersökningsmetodik. till kursen Regressionsanalys och undersökningsmetodik, 15 hp

Extra övningssamling i undersökningsmetodik. till kursen Regressionsanalys och undersökningsmetodik, 15 hp Extra övningssamling i undersökningsmetodik HT10 till kursen Regressionsanalys och undersökningsmetodik, 15 hp Författad av Karin Dahmström 1. Utgå från en population bestående av 5 personer med följande

Läs mer