10. Konfidensintervall vid två oberoende stickprov

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "10. Konfidensintervall vid två oberoende stickprov"

Transkript

1 TNG006 F Konfidensintervall för linjärkombinationer 0. Konfidensintervall vid två oberoende stikprov Antag att X, X,..., X m är ett stikprov på N(µ, σ ) oh att Y, Y,..., Y n är ett stikprov på N(µ, σ ). Antag vidare att stikproven är oberoende av varandra. Nedan ska vi bestämma ett konfidensintervall för linjärkombinationen µ + µ. Vi kommer att ta upp två fall. Det första oh enklaste är då σ oh σ är kända. Det andra är då σ oh σ är okända men lika, dvs σ = σ. 0.. Konfidensintervall för µ + µ då σ oh σ är kända Vi vet sen tidigare att X = m X j N(µ, σ / m) m oh Ȳ = n j= n Y j N(µ, σ / n). j= samt att linjärkombinationen är normalfördelat s.v. med X + Ȳ. väntevärdet E( X + Ȳ ) = E( X) + E(Ȳ ) = µ + µ.. variansen V ( X + Ȳ ) = V ( X) + V (Ȳ ) = σ /m + σ /n. Vi bildar en ny s.v. ( X + Ȳ ) ( µ + µ ) σ /m + σ /n N(0, ). Om vi söker ett intervall med konfidensgraden α, så kan vi ur tabellen för N(0, ) hitta kvantilen λ α/, så att ( P λ α/ ( X + Ȳ ) ( µ + µ ) ) σ /m + σ /n λ α/ = α. Vi säger då att I µ + µ = x + ȳ λ σ α/ m + σ n, x + ȳ + λ σ α/ m + σ ], n är ett tvåsidigt konfidensintervall för µ + µ med konfidensgraden α.

2 Exempel 0.. Vi har följande oberoende observationer från N(µ, 4) samt följande oberoende observationer från N(µ, 9) Bestäm ett 95% tvåsidigt konfidensintervall för µ µ. Lösning:

3 0.. Konfidenintervall för µ + µ då σ oh σ är okända Den tidigare bildade s.v. ( X + Ȳ ) ( µ + µ ) σ /m + σ /n N(0, ) duger inte nu då σ oh σ är okända. Låt oss anta att Då är linjärkombinationen normalfördelat med σ = σ = σ. X + Ȳ. väntevärdet E( X + Ȳ ) = E( X) + E(Ȳ ) = µ + µ.. variansen V ( X + Ȳ ) = V ( X) + V (Ȳ ) = σ /m + σ /n = σ ( /m + /n). Detta medför att s.v. ( X + Ȳ ) ( µ + µ ) σ /m + /n N(0, ). Vi ersätter nu σ med den sammanvägda stikprovs standardavvikelsen (m )s s = + (n )s, m + n där vi har använt stikprovens varianser s = m Vi bildar nu en ny s.v m j= (X j X) oh s = n n (Y j Ȳ ). j= ( X + Ȳ ) ( µ + µ ) s /m + /n t(m + n ). Ur tabell kan vi hitta kvantilen t α (m + n ), så att med sannolikheten α gäller dvs I µ + µ = t α/ (m + n ) ( x + ȳ) ( µ + µ ) s /m + /n t α/ (m + n ), x+ ȳ t α/ (m+n ) s m + n, x+ ȳ +t α/ (m+n ) s m + ] n är ett tvåsidigt konfidensintervall för µ + µ med konfidensgraden α. 3

4 Exempel 0.. Vikten av en tillverkad produkt A antas vara N(µ, σ). Följande värden är oberoende observationer på vikten för produkten A: Vikten av en annan tillverkad produkt B antas vara N(µ, σ). Följande värden är oberoende observationer på vikten för produkten B: Bestäm ett 95% tvåsidigt konfidensintervall för µ µ, dvs för den genomsnittliga skillnaden i vikt mellan produkt A oh produkt B. Lösning: 4

5 0.3. Konfidensintervall vid observationer i par Exemplet ovan beskriver situationen då två personer Linnéa oh Linus utför m = 5 respektive n = 8 mätningar på vikten hos en produkt. Stikproven var oberoende N(µ, σ ) respektive N(µ, σ ) oh vi kunde då studera den systematiska skillnaden µ µ mellan mätvärdena. Nedan ska vi studera situationen då Linnéa oh Linus utför en mätning var på vikten hos n olika produkter, Personer Objekt n Linnéa x x x n Linus y y y n Preis som tidigare är dessa två serier av mätvärden, men den tidigare modellen är oanvändbar, eftersom skillnader kan föreligga mellan objekten, oavsett om det föreligger skillnader mellan Linnéa oh Linus eller ej. Observationerna hänger ihop parvis från samma produkt. Antag att värdet x j för den j:te produkten kommer från en N(µ j, σ ) oh y j kommer från en annan fördelning N(µ j +, σ ). Vi har då okända parametrar µ, µ,..., µ n, σ, σ oh. Genom att bilda differenserna får vi z = y x, z = y x,..., z n = y n x n,. väntevärdet E(z j ) = E(y j x j ) = E(y j ) E(x j ) =.. variansen V (z j ) = V (y j x j ) = V (y j ) + ( ) V (x j ) = σ + σ. Alltså är z j N(, σ), där σ = σ + σ, oh de okända parametrar har därmed reduerts till enbart oh σ. Fallet med ett stikprov av oberoende z, z,..., z n som kommer från N(, σ) med okända oh σ har vi redan behandlat. Där har vi visat att om s är stikprovets standardavikelse s = n (z j z) n, j= så är I = z t α/ (n ) s n, z + t α/ (n ) s n ], ett konfidensintervall för med konfidensgraden α. 5

6 Exempel 0.3. Vid en studie vill man undersöka om ett visst preparat har någon effekt på järnbrist. I studien ingik nio personer på vilka järnhalten (i viss enhet) mättes vid studiens start samt efter tre vekors behandling med preparatet. Person nr: Ursprungligt värde x j Värde efter behandling y j Bestäm ett 95%- konfidensintervall för den genomsnittliga effekten av behandlingen. Lösning: 6

7 0.4. Konfidensintervall via normalapproximation Exempel 0.4. Ur en population väljes 400 personer slumpmässigt. Av dessa har 80 åsikten A. Bestäm ett 95% approximativt intervall för andelen p av populationen som har åsikten A. Lösning: 7

8 Exempel 0.5. Företaget Areo vill jämföra tillverkningstiden för två olika tillverkningsmetoder A oh B för en viss typ av kretskort. Tabellen nedan ger 7 tider med metod A oh 6 tider med metod B: A : B : Antag att tiderna utgör stikprov på N(µ A, σ) resp. N(µ B, σ) oh att stikproven är oberoende. Beräkna ett 95%-igt konfidensintervall för µ A µ B. Lösning: Om Xoh Y är tiderna för metod A resp. metod B, så är X N(µ A, σ) resp. Y N(µ B, σ). För linjärkombinationen X Ȳ gäller att samt att E( X Ȳ ) = µ A µ B V ( X Ȳ ) = V ( X) + ( ) V (Ȳ ) = σ /7 + 4σ /6 = σ (/7 + 4/6). Vi bildar nu s.v. ( X Ȳ ) (µ A µ B ) s t(7 + 6 ), där s = 6s A + 5s B är den sammanvägda σ -skattningen. Eftersom s = 5.4 oh t 0.05 () =., så är I µa µ B = x ȳ ± t 0.05 ()s ] = 0.9, 0.6] 6 ett 95%-igt konfidensintervall för µ A µ B. Eftersom konfidensintervallet I µa µ B täker 0 kan vi med felrisk 5% påstå att metod B är mer dubbel så snabb som B. Exempel 0.6. Man vill jämföra söktiden (µs) för två olika sökmotorer A oh B. Tabellen nedan ger 6 tider med sökmotor A oh 5 tider med sökmotor B: A : B : Antag att tiderna utgör stikprov på N(µ A, σ) resp. N(µ B, σ) oh att stikproven är oberoende.. Beräkna ett 99% konfidensintervall för µ A µ B.. Antag nu att σ är känt oh att σ =.3. Om man önskar ett tvåsidigt 99% konfidensintervall för µ A µ B vars längd är högst hur stora stikprov måste då tas på tiderna för A resp. B? Lösning: a) Om Xoh Y är tiderna för sökmotor A resp. sökmotor B, så är X N(µ A, σ) resp. Y N(µ B, σ). För linjärkombinationen X Ȳ gäller att E( X Ȳ ) = µ A µ B 8

9 samt att V ( X Ȳ ) = V ( X) + ( ) V (Ȳ ) = σ /6 + σ /5 = σ (/6 + /5). Vi bildar nu s.v. ( X Ȳ ) (µ A µ B ) s t(6 + 5 ), där s = 5s A + 4s B är den sammanvägda σ -skattningen. Eftersom s =. oh t (9) = 9 3.5, så är I µa µ B = x ȳ ± t (9) s 7 + ] =.9,.8] 6 ett 99%-igt konfidensintervall för µ A µ B. b) Eftersom σ är känt så är Z = ( X Ȳ ) (µ A µ B ) N(0, ) oh P (.58 Z s ) = Vi väljer lika stora stikprov med storleken n. Längden av konfidensintervallet blir.58.3 n + n = n Vi väljer n så att dvs vi väljer n = n n.5, Exempel 0.7. Vid intervjuer med personer slumpmässigt valda ur en stor population visade sig 50 ha en viss åsikt A. Låt p vara andelen i hela populationen som har åsikten A.. Beräkna ett 95% konfidensintervall för p.. Uppskatta hur många personer som måste intervjuas för att intervallet skall bli hälften så brett som det i a). Lösning: Låt händelsen A= en tillfrågad person har åsikten A. Om X = antalet personer av åsikten A, så är X Bin(, p). Vi antar att p är sådant att p( p) 0. Enligt CGS så är X därmed approximativt N(p, p( p)). Betrakta punktskattningen ˆp = X med avseende på p. Då är oh ( ) E(ˆp) = E X = E(X) = p = p, ( ) V (ˆp) = V X = E(X) = p( p) = p( p), 9

10 ( p( p) ) så att ˆp aproximativt N p, oh ˆp p N(0, ). p( p) p( p) ˆp( ˆp) Eftersom p är okänt skattar vi med. Som observerat punktskattning med avseende på p tar vi ˆp obs = 50 = 0.7. Detta ger att ˆpobs ( ˆp obs ) ˆpobs ( ˆp obs ) ] I p = ˆp obs.96, ˆp obs +.96 = 0., 0.] ett approximativt konfidensintervall för p med konfidensgraden Låt n vara antal interjuvade personer. Då har konfidensintervallet approximativt längd Denna längd skall vara hälften av det tidigare intervallets längd. Alltså n n = 68. 0

11 Exempel 0.8. Vi har följande oberoende observationer från N(µ, 4) samt följande oberoende observationer från N(µ, 9) Bestäm ett 95% tvåsidigt konfidensintervall för µ µ. Lösning: Vi vill bestämma ett konfidensintervall för µ µ med konfidengraden Betrakta därför punktskattningen som har X Ȳ = 5 5 X j 8 j= 8 j=. väntevärdet E( X Ȳ ) = E( X) E(Ȳ ) = µ µ.. variansen V ( X Ȳ ) = V ( X) + ( ) V (Ȳ ) = σ /5 + 4σ /8. Alltså är den s.v. X Ȳ N(µ µ, D), där D = σ /5 + 4σ /8. Vi bildar den s.v. Y j ( X Ȳ ) (µ µ ) D N(0, ). Ur tabellen för N(0, ) hittar vi kvantilen λ 0.05 =.96, så att P (( X Ȳ ).96D µ µ ( X Ȳ ) +.96D) = Med x = 5., ȳ = 37.0 oh D = σ /5 + 4σ /8 = 4 / /8 = 6.6 får vi I µ µ = x ȳ.96d, x ȳ +.96D] = , ] = 35.8, 9.9] ett tvåsidigt konfidensintervall för µ µ med konfidensgraden 0.95.

12 Exempel 0.9. Vikten av en tillverkad produkt A antas vara N(µ, σ). Följande värden är oberoende observationer på vikten för produkten A: Vikten av en annan tillverkad produkt B antas vara N(µ, σ). Följande värden är oberoende observationer på vikten för produkten B: Bestäm ett 95% tvåsidigt konfidensintervall för µ µ, dvs för den genomsnittliga skillnaden i vikt mellan produkt A oh produkt B. Lösning: Vi vill bestämma ett konfidensintervall för µ µ med konfidengraden Betrakta därför punktskattningen X Ȳ = 5 X j 8 Y j 5 8 som har j= j=. väntevärdet E( X Ȳ ) = E( X) E(Ȳ ) = µ µ.. variansen V ( X Ȳ ) = V ( X) + ( ) V (Ȳ ) = σ /5 + σ /8 = σ ( 5 + ). 8 Alltså är den s.v. X (µ Ȳ N µ, σ 5 + ) ( X Ȳ ) (µ µ ) N(0, ). 8 σ Eftersom σ är okänt ersätts den med den sammanvägda stikprovets standardavikelsen (5 )s s = + (8 )s, där Vi bildar därför s.v. s = 4 5 (X j X) oh s = 7 j= 8 (Y j Ȳ ). j= ( X Ȳ ) (µ µ ) t(5 + 8 ). s Ur tabellen för t-fördelningen hittar vi kvantilen t 0.05 () =.0, så att ( P ( X Ȳ ).0s µ µ ( X Ȳ ) +.0s 5 + ) = (5 )8 + (8 )49 Med x = 5., ȳ = 37.0 oh s obs = = 6.4 får vi I µ µ = x ȳ.s obs 5 + 8, x ȳ +.s obs 5 + ] 8 = , ] = 6.4,.8] ett tvåsidigt konfidensintervall för µ µ med konfidensgraden 0.95.

13 Exempel 0.0. Vid en studie vill man undersöka om ett visst preparat har någon effekt på järnbrist. I studien ingik nio personer på vilka järnhalten (i viss enhet) mättes vid studiens start samt efter tre vekors behandling med preparatet. Person nr: Ursprungligt värde x j Värde efter behandling y j Bestäm ett 95%- konfidensintervall för den genomsnittliga effekten av behandlingen. Lösning: Låt x j = värdet före för person j oh y j = värdet efter för person j. Då är x j N(µ j, σ ) oh y j N(µ j +, σ ), där µ, µ,..., µ n, σ, σ oh är okända parametrar. Vi bildar differenserna z j = y j x j. Då är oh så är E(z j ) = E(y j x j ) = E(y j ) E(x j ) = V (z j ) = V (y j x j ) = V (y j ) + ( ) V (x j ) = σ + σ, z j N(, σ + σ ), j =,,..., 9, ett stikprov där anger den okända genomsnittliga effekten av behandlingen. Bilda s.v. Eftersom z = 9 I = Person nr: Differensen z j z j s/ 9 t(8). 9 z j = 0. oh s = 8 (z j z) 8 = 0.79, så är j= j= z t 0.05 (8) s, z+t 0.05 (8) s ] = ] 9 9 3, = 0.83, 0.39] 3 ett konfidensintervall för med konfidensgraden

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11

F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11 1/11 F11 Två stickprov Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 26/2 2013 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II G. Gripenberg Aalto-universitetet 13 februari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) = Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 Gripenberg I1. Vi antar att antalet telefonsamtal som kommer till ett servicenummer under en tidsperiod med längden

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Handelshögskolan i Stockholm Anders Sjöqvist 2087@student.hhs.se Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Efter förra kursen hörde några av sig och ville gärna se mina aktivitetsuppgifter

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 7 Mars 2014 Disposition r Kondensintervall och hypotestest Kondensintervall Statistika Z (eller T) har fördelning F (Z en funktion av ˆθ och θ) q 1 α/2

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser

Finansmatematik II Kapitel 2 Stokastiska egenskaper hos aktiepriser STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version Finansmatematik II Kapitel Stokastiska egenskaper hos aktiepriser Finansmatematik II För att kunna

Läs mer

Sannolikhet och statistik med Matlab. Måns Eriksson

Sannolikhet och statistik med Matlab. Måns Eriksson Sannolikhet och statistik med Matlab Måns Eriksson 1 Inledning Det här kompiet är tänkt att användas för självstudier under kursen Sannolikhet och statistik vid Uppsala universitet. Målet är att använda

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Blandade problem från maskinteknik

Blandade problem från maskinteknik Blandade problem från maskinteknik Sannolikhetsteori (Kapitel 1-7) M1. Vid tillverkning av en viss maskintyp får man spiralfjädrar från tre olika tillverkare. Varje dag levererar tillverkare A 100 fjädrar,

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK MER OM KONFIDENSINTERVALL. HYPOTESPRÖVNING. Jan Grandell & Timo Koski 19.02.2015

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK MER OM KONFIDENSINTERVALL. HYPOTESPRÖVNING. Jan Grandell & Timo Koski 19.02.2015 SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 11. MER OM KONFIDENSINTERVALL. HYPOTESPRÖVNING Jan Grandell & Timo Koski 19.02.2015 Jan Grandell & Timo Koski () Matematisk statistik 19.02.2015 1 / 53

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.'' Hjälpmedel:'Valfri'räknare,'egenhändigt'handskriven'formelsamling'(4''A4Esidor'på'2'blad)' och'till'skrivningen'medhörande'tabeller.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter).

Uppgift 1 Andrej och Harald roar sig med en standardkortlek med 52 kort uppdelade på fyra färger (spader, klöver, hjärter och ruter). Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 13:E MARS 2015 KL 14.00 19.00. Kursledare för F och E: Timo Koski, tel: 070 237 00 47 Kursledare för D

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

Blandade problem från väg- och vattenbyggnad

Blandade problem från väg- och vattenbyggnad Blandade problem från väg- och vattenbyggnad Sannolikhetsteori (Kapitel 1 7) V1. Vid en undersökning av bostadsförhållanden finner man att av 300 lägenheter har 240 bad (och dusch) medan 60 har enbart

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Kompletterande kursmaterial till kursen Matematisk statistik.

Kompletterande kursmaterial till kursen Matematisk statistik. Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 5 (8 uppgifter) Poäng totalt för del 30 (3 uppgifter) Tentamensdatum 008-0-7 Robert Lundqvist Lärare: Ove Edlund Skrivtid 09.00-4.00

Läs mer

Del 2: Hantering och bedömning av data och osäkerheter

Del 2: Hantering och bedömning av data och osäkerheter Del 2: Hantering och bedömning av data och osäkerheter Praktikfall: Kv. Verkstaden 14 Teori: Representativ halt, referenshalt, stickprov & beskrivande statistik, konfidensintervall & UCLM95 Diskussion:

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Extra övningssamling i undersökningsmetodik. till kursen Regressionsanalys och undersökningsmetodik, 15 hp

Extra övningssamling i undersökningsmetodik. till kursen Regressionsanalys och undersökningsmetodik, 15 hp Extra övningssamling i undersökningsmetodik HT10 till kursen Regressionsanalys och undersökningsmetodik, 15 hp Författad av Karin Dahmström 1. Utgå från en population bestående av 5 personer med följande

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet

Läs mer

Föreläsning 9: Hypotesprövning

Föreläsning 9: Hypotesprövning Föreläsning 9: Hypotesprövning Matematisk statistik David Bolin Chalmers University of Technology Maj 5, 2014 Statistik Stickprov Ett stickprov av storlek n är n oberoende observationer av en slumpvariabel

Läs mer

Lösningstips till de flesta uppgifterna i fjärde upplagan av Statistisk dataanalys

Lösningstips till de flesta uppgifterna i fjärde upplagan av Statistisk dataanalys Lösningstips till de flesta uppgifterna i fjärde upplagan av Statistisk dataanalys Din granne är hungrig. Ge honom en fisk och han har mat för dagen. Lär honom att fiska och han har mat resten av sitt

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant? LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 14 Februari 2014 Disposition ion Funktioner av stokastiska variabler E[aX + b] = ae[x ] + b Var(aX + b) = a 2 Var(X ) E[g(X { )] = x i Ω g(x i)p(x =

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Konsekvenser av Bortfall Introduktion Illustration av hur bortfall påverkar resultaten i en statistisk

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0

Övningstentamen 3. Uppgift 5: Anta att ξ är en kontinuerlig stokastisk variabel med följande frekvensfunktion: f(x) = 0 Övningstentamen Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet de att Bill träffar tavlan med sannolikheten.7

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp)

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp) Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT009 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om -3 personer och godkänt

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Gasverkstomten Västerås. Statistisk bearbetning av efterbehandlingsåtgärderna VARFÖR STATISTIK? STANDARDAVVIKELSE MEDELVÄRDE OCH MEDELHALT

Gasverkstomten Västerås. Statistisk bearbetning av efterbehandlingsåtgärderna VARFÖR STATISTIK? STANDARDAVVIKELSE MEDELVÄRDE OCH MEDELHALT Gasverkstomten Västerås VARFÖR STATISTIK? Underlag för riskbedömningar Ett mindre subjektivt beslutsunderlag Med vilken säkerhet är det vi tar bort över åtgärdskrav och det vi lämnar rent? Effektivare

Läs mer

Räkna med variation - Digitala uppgifter Studiematerial i sannolikhetslära och statistisk inferens. Lena Zetterqvist och Johan Lindström

Räkna med variation - Digitala uppgifter Studiematerial i sannolikhetslära och statistisk inferens. Lena Zetterqvist och Johan Lindström Räkna med variation - Digitala uppgifter Studiematerial i sannolikhetslära och statistisk inferens Lena Zetterqvist och Johan Lindström 29 oktober 25 Innehåll Beskrivning av data 5 2 Grundläggande sannolikhetsteori

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (6 uppgifter) Tentamensdatum 2010-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Ove Edlund Adam Jonsson

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Tillämpad Matematik III Övningar i Statistik

Tillämpad Matematik III Övningar i Statistik Tillämpad Matematik III Övningar i Statistik (Med reservation för eventuella tryckfel.) Kap. Grundläggande sannolikhetsteori.. Drag utan återlägg gör att det nns 4 = (= m) möjliga och lika troliga utfall

Läs mer