F11 Två stickprov. Måns Thulin. Uppsala universitet Statistik för ingenjörer 26/ /11

Storlek: px
Starta visningen från sidan:

Download "F11 Två stickprov. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 26/2 2013 1/11"

Transkript

1 1/11 F11 Två stickprov Måns Thulin Uppsala universitet Statistik för ingenjörer 26/2 2013

2 2/11 Dagens föreläsning Konfidensintervall när man har ihopparade stickprov Att väga samman skattningar Konfidensintervall när man har två oberoende stickprov För µx µ y För p1 p 2

3 3/11 Stickprov i par I många situationer där man har samlat in två datamaterial har man studerat samma försöksenheter (personer, föremål...) under olika förutsättningar, som man vill jämföra. I sådana situationer kan man utnyttja att observationerna hör ihop parvis när man vill konstruera konfidensintervall för skillnaden mellan resultaten under de olika förutsättningarna. Exempel: dragstyrkan hos en viss typ av metallstänger undersöks. Stängerna klyvs i två delar och den ena delen utsätts för en härdande behandling. Man mäter sedan dragstyrkan för bägge delarna och vill få ett konfidensintervall för skillnaden mellan dragstyrkan före och efter härdningen. Se tavlan!

4 4/11 Oberoende stickprov: att väga ihop skattningar I en stad finns två sjukhus som oberoende av varandra har undersökt hur vanlig en viss sjukdom är. Det första sjukhuset undersökte n 1 = 500 patienter och fann att x 1 = 52 led av sjukdomen. Det andra sjukhuset undersökte n 2 = 750 personer och fann x 2 = 87. Alla personer antas vara oberoende av varandra och sjukhusen undersökte samma population. (a) Ange punktskattningar av andelarna p 1 och p 2 för respektive sjukhus. (b) Det är rimligt att anta p 1 = p 2 = p. Hur ska p skattas? Två förslag ges: antingen 1 2 (ˆp 1 + ˆp 2 ) eller (500ˆp ˆp 2 )/1250. Vilket av dessa är bäst?

5 Sammanvägd variansskattning Givet ett stickprov x 1,..., x n från en fördelning med varians σ 2 är ˆσ 2 = s 2 = sx 2 = 1 n (x i x) 2. n 1 Men hur gör vi om vi vill skatta variansen givet flera stickprov? Antag att vi har två stickprov x 1,..., x nx och y 1,..., y ny, av storlek n x respektive n y, från fördelningar med samma varians σ 2 men olika väntevärden µ x och µ y. Man kan då visa att den sammanvägda variansskattningen sp 2 (p kommer från engelskans pooled) är väntevärdesriktig: sp 2 = (n x 1)sx 2 + (n y 1)sy 2 nx i=1 = (x i x) 2 + n y i=1 (y i ȳ) 2, (n x 1) + (n y 1) n x + n y 2 i=1 Om man har tre stickprov med samma varians så blir den sammanvägda skattningen istället s 2 p = (n x 1)s 2 x + (n y 1)s 2 y + (n z 1)s 2 z (n x 1) + (n y 1) + (n z 1) och så vidare... 5/11

6 Oberoende stickprov: jämförelse av två datamaterial Ett svenskt företag utvecklar gruvborrar och vill jämföra två olika material för hårdmetallstift på borrkronor. Man gör provborrningar i en gruva, dels med det material som används idag och dels med det nya testmaterial som man utvecklat. Vid provborrningarna mäter man dels hur långt man lyckas borra (borrmeter) och dels nötningen på stiften (i mikrometer/borrad meter). Jämförelse av borrar Nötning (mikrometer/borrmeter) Standard Test /11

7 Jämförelse av två datamaterial Man vill nu undersöka om nötningen per borrad meter skiljer sig åt mellan de två materialen. Standard Borrmeter (m) Nötning (µm/m) Test Borrmeter (m) Nötning (µm/m) Standardmaterial Testmaterial Jämförelse av material Frequency Frequency x y 7/11

8 8/11 Jämförelse av två datamaterial Modell: utifrån histogrammen och lådagrammen på förra sidan så verkar följande modell någorlunda rimlig. Låt X 1,..., X 6 vara mätningarna för standardmaterialet och antag att X i N(µ X, σ 2 ) samt att mätningarna är oberoende. Låt Y 1,..., Y 7 vara mätningarna för standardmaterialet och antag att Y i N(µ Y, σ 2 ) samt att mätningarna är oberoende. För standardmaterialet får man x = och s 2 x = För testmaterialet får man ȳ = och s 2 y = Hur kan vi utifrån detta få fram ett konfidensintervall för µ X µ Y? Hur kan vi skatta σ 2?

9 9/11 Skillnader i väntevärde Konfidensintervallet för skillnaden µ x µ y är x ȳ ± t (n 1+n 2 2) α/2 s p 1 n x + 1 n y Se borrexempel på tavlan!

10 10/11 Skillnader i andelar Ett företag som tillverkar solcellskomponenter genomför en kvalitetskontroll av 400 slumpmässigt utvalda komponenter och finner att 20 av dessa är undermåliga. De anser att andelen undermåliga komponenter är för hög och genomför därför en rad förändringar i tillverkningsprocessen. Efter förändringarna tas ett nytt stickprov om 400 komponenter. Av dessa är 12 stycken undermåliga. Har förändringarna lett till att andelen undermåliga komponenter har minskat?

11 11/11 Skillnader i andelar Vi vill jämför två andelar p 1 och p 2 givet en observation vardera av X 1 Bin(n 1, p 1 ) och X 2 Bin(n 2, p 2 ). Ett konfidensintervall för differensen p 1 p 2 med approximativ konfidensgrad 1 α ges av ˆp 1 (1 ˆp 1 ) ˆp 1 ˆp 2 ± λ α/2 + ˆp 2(1 ˆp 2 ). n 1 n 2 Här krävs att de två tumreglerna ˆp 1 (1 ˆp 1 )n 1 > 10 och ˆp 2 (1 ˆp 2 )n 2 > 10 ska vara uppfyllda för att intervallet ska få användas. Se solcellskomponentexempel på tavlan!

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Laboration 4: Intervallskattning och hypotesprövning

Laboration 4: Intervallskattning och hypotesprövning Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 4 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT14 Laboration 4: Intervallskattning och hypotesprövning Syftet med den

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II G. Gripenberg Aalto-universitetet 13 februari 2015 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl och

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Sannolikhet och statistik med Matlab. Måns Eriksson

Sannolikhet och statistik med Matlab. Måns Eriksson Sannolikhet och statistik med Matlab Måns Eriksson 1 Inledning Det här kompiet är tänkt att användas för självstudier under kursen Sannolikhet och statistik vid Uppsala universitet. Målet är att använda

Läs mer

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin

Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat

Läs mer

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Handelshögskolan i Stockholm Anders Sjöqvist 2087@student.hhs.se Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Efter förra kursen hörde några av sig och ville gärna se mina aktivitetsuppgifter

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

1. Att en exponentialfördelad stokastisk variabel X är minneslös formuleras matematiskt

1. Att en exponentialfördelad stokastisk variabel X är minneslös formuleras matematiskt Tentamensskrivning i Matematisk statistik för D3 Lärare: Dan Mattsson, tfn 77 5349 Hjälpmedel: Utdelad formelsamling med tabeller (även BETA, Physics Handbook, skoltabeller, till exempel TEFYMA). Valfri

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

Innehållsförteckning. MAS110B - Föreläsningsserie (overheader) MAS110B Matematisk statistik, grundkurs, statistikteori, HT04

Innehållsförteckning. MAS110B - Föreläsningsserie (overheader) MAS110B Matematisk statistik, grundkurs, statistikteori, HT04 Innehållsförteckning Föreläsning 1 - Punktskattningar I MAS110B - Föreläsningsserie (overheader) MAS110B Matematisk statistik, grundkurs, statistikteori, HT04 Henrik Bengtsson Matematikcentrum, avd. för

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Datakvalitet. Hva duger data til? Jonas Ranstam jonas.ranstam@med.lu.se

Datakvalitet. Hva duger data til? Jonas Ranstam jonas.ranstam@med.lu.se Hva duger data til? Jonas Ranstam jonas.ranstam@med.lu.se Registercentrum Syd, Skånes Universitetssjukhus och Inst. f. kliniska vetenskaper, Lunds Universitet, Klinikgatan 22, 22185 Lund, Sverige 15 Jan

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Björnstammens storlek i Sverige 2008 länsvisa uppskattningar och trender Rapport 2009 2 från det Skandinaviska björnprojektet

Björnstammens storlek i Sverige 2008 länsvisa uppskattningar och trender Rapport 2009 2 från det Skandinaviska björnprojektet Björnstammens storlek i Sverige 2008 länsvisa uppskattningar och trender Rapport 2009 2 från det Skandinaviska björnprojektet Jonas Kindberg, Jon E. Swenson och Göran Ericsson Introduktion Björnen tillhör

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap Michael Hörnquist, 1 februari 2013 TNIU66: Statistik och sannolikhetslära Kursinformation 2013 Mål och innehåll Kursens mål och förväntade läranderesultat enligt

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering.

Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering. Uppgift 1 (14p) I en hockeymatch mellan lag A och lag B leder lag A med 4-3 när det är en kvart kvar av ordinarie matchtid. En oddssättare på ett spelbolag behöver bestämma sannolikheten för de tre matchutfallen

Läs mer

Gasverkstomten Västerås. Statistisk bearbetning av efterbehandlingsåtgärderna VARFÖR STATISTIK? STANDARDAVVIKELSE MEDELVÄRDE OCH MEDELHALT

Gasverkstomten Västerås. Statistisk bearbetning av efterbehandlingsåtgärderna VARFÖR STATISTIK? STANDARDAVVIKELSE MEDELVÄRDE OCH MEDELHALT Gasverkstomten Västerås VARFÖR STATISTIK? Underlag för riskbedömningar Ett mindre subjektivt beslutsunderlag Med vilken säkerhet är det vi tar bort över åtgärdskrav och det vi lämnar rent? Effektivare

Läs mer

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter.

Poolade data över tiden och över tvärsnittet. Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. PANELDATA Poolade data över tiden och över tvärsnittet Alternativ 1: Oberoende poolade tvärsnittsdatamängder från olika tidpunkter. Oberoende stickprov dragna från stora populationer vid olika tidpunkter.

Läs mer

Är icke-sannolikhetsurval aldrig representativa?

Är icke-sannolikhetsurval aldrig representativa? Surveyföreningens webbpanelseminarium 2011-02-03 Är icke-sannolikhetsurval aldrig representativa? Jan Wretman Webbpanelkommittén 1 Det kommer att handla om: Begreppet representativitet. Bedömning av skattningars

Läs mer

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information

Påbyggnad/utveckling av lagen om ett pris Effektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Föreläsning 4 ffektiva marknader Påbyggnad/utveckling av lagen om ett pris ffektiv marknad: Priserna på en finansiell marknad avspeglar all relevant information Konsekvens: ndast ny information påverkar

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Kompendium med extra övningsuppgifter

Kompendium med extra övningsuppgifter Tillämpad statistik Uppgifter sammanställda av Eva Leander, Claudia Libiseller, Stig Danielsson och Karl Wahlin Institutionen för Datavetenskap Avdelningen för statistik Linköpings universitet Kompendium

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap TNIU66: Statistik och sannolikhetslära Kursinformation 2015 Kursens mål och förväntade läranderesultat Kursens mål är att ge en introduktion till matematisk

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 13 november 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A Deltentamen, 4p november 004, kl. 09.00-.00 Tillåtna hjälpmedel: Bifogad formel- och

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Del 2: Hantering och bedömning av data och osäkerheter

Del 2: Hantering och bedömning av data och osäkerheter Del 2: Hantering och bedömning av data och osäkerheter Praktikfall: Kv. Verkstaden 14 Teori: Representativ halt, referenshalt, stickprov & beskrivande statistik, konfidensintervall & UCLM95 Diskussion:

Läs mer

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems MINITAB i korthet release 16 Jan-Eric Englund SLU Alnarp Kompendium 2011 Område Agrosystem Course notes Swedish University of Agricultural Sciences Department of Agrosystems Jan-Eric Englund är universitetslektor

Läs mer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB

Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Konsekvenser av Bortfall Introduktion Illustration av hur bortfall påverkar resultaten i en statistisk

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Statistikens betydelse och nytta för samhället

Statistikens betydelse och nytta för samhället Statistikens betydelse och nytta för samhället SCB i Varför är SCB i Almedalen? Utveckla, framställa och sprida statlig statistik Förse våra användare med statistik som underlag för beslutsfattande, debatt

Läs mer

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar

Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 3 Diskreta slumpvariabler och deras sannolikhetsfördelningar 1 Diskreta slumpvariabler En slumpvariabel tilldelar tal till samtliga utfall i ett slumpförsök. Vi

Läs mer

Arbetskraftsbarometern 2008 UF0505

Arbetskraftsbarometern 2008 UF0505 Befolkning och välfärd 2008-12-01 1(9) Arbetskraftsbarometern 2008 UF0505 I denna beskrivning redovisas först allmänna och legala uppgifter om undersökningen samt dess syfte och historik. Därefter redovisas

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p) Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng Stockholms Universitet Statistiska Institutionen VT-2009 Kursbeskrivning Statistisk Teori I, grundnivå, 15 högskolepoäng Allmänt Kursen består av två moment: Moment 1. Grundläggande statistisk teori, 12hp.

Läs mer

LEKTION 1: VAD GÖR EN INGENJÖR?

LEKTION 1: VAD GÖR EN INGENJÖR? LEKTION 1: VAD GÖR EN INGENJÖR? 01 LEKTION 1: VAD GÖR EN INGENJÖR? Tid: 80 minuter Årskurs: 7-9 Huvudämne: Teknik KOPPLING TILL KURSPLANER FÖRMÅGOR Identifiera problem och behov som kan lösas med teknik

Läs mer

Övningstentamen i matematisk statistik

Övningstentamen i matematisk statistik Övningstentamen i matematisk statistik Uppgift : Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens Någon förälder med

Läs mer

Manual för beräkningsverktyget Räkna med rotröta

Manual för beräkningsverktyget Räkna med rotröta Manual för beräkningsverktyget Räkna med rotröta Verktyget Räkna med rotröta hjälper dig att beräkna rotrötan i ett granbestånd i två steg. I det första steget räknar du ut den förväntade genomsnittliga

Läs mer

Östgötens psykiska hälsa. Kommunrapport om självskattad psykisk hälsa

Östgötens psykiska hälsa. Kommunrapport om självskattad psykisk hälsa Östgötens psykiska hälsa Kommunrapport om självskattad psykisk hälsa Rapport 2004:2 Linköping mars 2004 Madeleine Borgstedt-Risberg Tommy Holmberg Per Nettelbladt Helle Noorlind Brage Marika Wenemark Ingemar

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

Lilla årsrapporten verksamhetsåret 2010

Lilla årsrapporten verksamhetsåret 2010 Självskattning - hälsa Regionsjukhuset Karsudden 166 60.6 RPV Jönköping 18 60.7 Rättspsykiatri Västmanland 33 61.6 RPV Falköping 22 62.2 RP S:t Görans sjukhus 24 63 LRV enheten Gävleborg 21 63.1 Piteå

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Vad kursen handlar om Kurslitteratur Examination Betygssättning Betygskriterier Vad kursen handlar om är inte en sedvanlig introduktionskurs

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

BIOSTATISTISK GRUNDKURS

BIOSTATISTISK GRUNDKURS BIOSTATISTISK GRUNDKURS ÖVNINGSMATERIAL VT 2011 Naturvetenskaplig fakultet Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM Övningsmaterial 1 Övningsuppgifter 1. I en stor befolkning

Läs mer

Vi kan inte vänta med att göra vården ren, fräsch och säker

Vi kan inte vänta med att göra vården ren, fräsch och säker Socialdemokraterna i Stockholms läns landsting Vi kan inte vänta med att göra vården ren, fräsch och säker På senare år har problemen med bristande städning i vården uppmärksammats allt mer. Patienter

Läs mer

Chalmers University of Beer. VLE-test 2. For Dummies. Supervisor: Klot Johan. Author: G. Starius

Chalmers University of Beer. VLE-test 2. For Dummies. Supervisor: Klot Johan. Author: G. Starius Chalmers University of Beer VLE-test 2 For Dummies Author: G. Starius Supervisor: Klot Johan 13 oktober 2011 Innehåll 1 s3. Poisson 3 1.0.1 Q1............................... 3 1.0.2 Q2...............................

Läs mer

Statistik i Excel en introduktion

Statistik i Excel en introduktion Statistik i Excel en introduktion Thommy Perlinger När man använder statistik i Excel behöver man paketet Data Analysis som ligger under menyn Verktyg (Alt-y,d). Finns det inte där kan man installera det

Läs mer

Analys av köpviljan avseende försäkring med logistisk regression och bootstrap

Analys av köpviljan avseende försäkring med logistisk regression och bootstrap Matematisk statistik Stockholms universitet Analys av köpviljan avseende försäkring med logistisk regression och bootstrap Anna Sandler Examensarbete 2007:11 Postadress: Matematisk statistik Matematiska

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

Föreläsning 1, Matematisk statistik för M

Föreläsning 1, Matematisk statistik för M Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

Förstagångsprövade ersättningsärenden vid Hotell- och restauranganställdas arbetslöshetskassa

Förstagångsprövade ersättningsärenden vid Hotell- och restauranganställdas arbetslöshetskassa 2013:16 Förstagångsprövade ersättningsärenden vid Hotell- och restauranganställdas arbetslöshetskassa Granskning initierad av IAF Rättssäkerhet och effektivitet i arbetslöshetsförsäkringen Dnr: 2013/190

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden!

FÅ FRAM INDATA. När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! FÅ FRAM INDATA När inga data finns!? Beslutsfattarens dilemma är att det är svårt att spå! Särskilt om framtiden! (Falstaff Fakir) Svårigheter att få fram bra information - en liten konversation Ge mig

Läs mer

Ung Företagsamhet Vad hände sedan? Sida 1

Ung Företagsamhet Vad hände sedan? Sida 1 Ung Företagsamhet Vad hände sedan? Sida 1 Sammanfattning 13% av UF-deltagarna har startat eget efter utbildningen. 19% av respondenterna över 28 år har företagarerfarenhet. Andelen med företagarerfarenhet

Läs mer

4.1 Datainsamling, svarsprocessen. Ekonomisk statistik Höstterminen 2009 Stockholms Universitet

4.1 Datainsamling, svarsprocessen. Ekonomisk statistik Höstterminen 2009 Stockholms Universitet 4.1 Datainsamling, svarsprocessen Ekonomisk statistik Höstterminen 2009 Stockholms Universitet Svarsprocessen Teorin för hur företagens uppgiftslämnande går till är inte lika väl utvecklad som för insamling

Läs mer

Bilaga 4. SBU-projektet sjukskrivning, mall för dataextraktion för kvalitetsgranskning av studie

Bilaga 4. SBU-projektet sjukskrivning, mall för dataextraktion för kvalitetsgranskning av studie Bilaga 4. SBU-projektet sjukskrivning, mall för dataextraktion för kvalitetsgranskning av studie Datum granskningen gjordes: 200............. Granskare:....................... Studien behandlar: " Orsaker

Läs mer

Vad lärare tycker om undervisningen i matematik på civilingenjörsprogrammen

Vad lärare tycker om undervisningen i matematik på civilingenjörsprogrammen Vad lärare tycker om undervisningen i matematik på civilingenjörsprogrammen Martina Persson och Raimundas Gaigalas Matematiska institutionen Uppsala universitet Box 4, S-75 6 Uppsala Sammanfattning Som

Läs mer

Problem med väljarbarometrar

Problem med väljarbarometrar Statistisk kommunikationsfärdighet Problem med väljarbarometrar GÖRAN ANDERSSON I den tredje artikeln i vår pågående serie 1 ) behandlar statistikern Göran Andersson undersökningar av väljarsympatier.

Läs mer

OMNIBUSRAPPORT VG REGIONEN

OMNIBUSRAPPORT VG REGIONEN OMNIBUSRAPPORT VG REGIONEN KAN Energi Juni 2007 Gårdavägen 1 412 50 Göteborg Tel: 031 703 73 70 Fax: 031 703 73 71 www.statistikkonsulterna.se Sammanfattning Statistikkonsulternas Västra Götalands-omnibus

Läs mer

Kapitel Statistikgrafer och beräkningar

Kapitel Statistikgrafer och beräkningar Kapitel Statistikgrafer och beräkningar Detta kapitel beskriver inmatning av statistikdata i listor, beräkning av medelvärde, maximivärde och andra statistiska värden, bestämning av konfidensintervall

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

Evidensbaserad medicin (EBM)

Evidensbaserad medicin (EBM) Evidensbaserad medicin (EBM) En guide för brukare Inge Axelsson november 2007 Östersunds sjukhus och Mittuniversitetet www.peditop.com EBM - en guide för brukare 1 Definition av evidensbaserad medicin

Läs mer

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp)

Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT2009 Inlämningsuppgift (1,5hp) Stockholms Univ., Statistiska Inst. Finansiell Statistik, GN, 7,5 hp, VT009 Inlämningsuppgift (1,5hp) Nicklas Pettersson 1 Anvisningar och hålltider Uppgiften löses i grupper om -3 personer och godkänt

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Studerandes sysselsättning 2013. YH- och KY-studerande som examinerades 2012

Studerandes sysselsättning 2013. YH- och KY-studerande som examinerades 2012 Studerandes sysselsättning 2013 YH- och KY-studerande som examinerades 2012 Förord Utbildningar inom yrkeshögskolan ska tillgodose arbetslivets behov av kvalificerad arbetskraft. Det är därför angeläget

Läs mer

En aktuaries synpunkter på könsneutrala premier

En aktuaries synpunkter på könsneutrala premier En aktuaries synpunkter på könsneutrala premier Erland Ekheden erland@math.su.se och försäkringsmatematik Stockholms universitet Bakgrund Introduktion Vi aktuarier har levt i Sus och Dus de senaste åren...

Läs mer

KVANTITATIV FORSKNING

KVANTITATIV FORSKNING KVANTITATIV FORSKNING Teorier innehåller begrepp som byggstenar. Ofta är kvantitativa forskare intresserade av att mäta företeelser i verkligheten och att koppla denna kvantitativa information till begrepp

Läs mer

SKI Kundnöjdhet. Så får du kvitto på ditt ledarskap!! Att mäta kvalitetsarbete. 3 Februari 2010. Mari Nilsson, Svenskt Kvalitetsindex

SKI Kundnöjdhet. Så får du kvitto på ditt ledarskap!! Att mäta kvalitetsarbete. 3 Februari 2010. Mari Nilsson, Svenskt Kvalitetsindex SKI Kundnöjdhet Så får du kvitto på ditt ledarskap!! Att mäta kvalitetsarbete 3 Februari 2010 Mari Nilsson, Svenskt Kvalitetsindex Kort om SKI Har genomfört kund/brukarstudier under mer än 20 år. Idag

Läs mer

Mikroföretagens inställning till revision och revisorer

Mikroföretagens inställning till revision och revisorer UPPSALA UNIVERSITET Företagsekonomiska Institutionen C-uppsats Vt-2005 Revisionsplikt Mikroföretagens inställning till revision och revisorer Författare: Handledare: Emil Abedian Mattias Mattsson Roger

Läs mer

Martina Datavs Johansson Ann-Sofie Kardell. Utvärdering av KBT i grupp för personer med depression Vid psykiatrisk mottagning 2, allmänpsyk Uppsala

Martina Datavs Johansson Ann-Sofie Kardell. Utvärdering av KBT i grupp för personer med depression Vid psykiatrisk mottagning 2, allmänpsyk Uppsala Martina Datavs Johansson Ann-Sofie Kardell Utvärdering av KBT i grupp för personer med depression Vid psykiatrisk mottagning 2, allmänpsyk Uppsala BAKGRUND Vid psykiatrisk mottagning 2, (tidigare mottagningen

Läs mer