FACIT (korrekta svar i röd fetstil)

Save this PDF as:

Storlek: px
Starta visningen från sidan:

Download "FACIT (korrekta svar i röd fetstil)"

Transkript

1 v Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska bearbetningen av samma öringdata som under laboration 1. Denna gång kommer ni att prova på några vanligt förekommande statistiska tester och skattningsmetoder. Mer information om dessa finns under handouts på kursens hemsida samt i "Ordbok i statistik" (Vejde & Leander, 2000). Arbeta gärna två och två. Öppna er datafil som ni sparade under första datorlaborationen, eller hämta en ny kopia av filen från samma adress som förut: Utför nedanstående uppgifter och svara på frågorna. Även denna gång ska protokollet lämnas in. Uppgifter/frågor 1. Konfidensintervall för en kontinuerlig variabel. Följande formel används: 1a. Beräkna ett 95 % konfidensintervall för variabeln WEIGHT (kroppsvikt). Använd totalmaterialet, d.v.s. alla fiskar (=n). Börja med att räkna ut medelvärde ("x-bar") och stickprovsvarians (s 2 ) för denna variabel (repetition från laboration 1): Stickprovsstorlek: 50 Medelvärde: 141 Varians: b. Beräkna därefter standard error (S.E.), d.v.s. följande del av ovanstående uttryck: S.E. för WEIGHT (kroppsvikt) är: 7,26

2 2. Tips: För att dra kvadratroten ur ett tal används funktionen =SQRT(tal), där tal representerar det värde man vill dra roten ur. Prova t.ex. att skriva =SQRT(9) i någon valfri cell (följt av ENTER) och kontrollera att det stämmer... 1c. Ta nu reda på värdet av t df, d.v.s. "t-faktorn" för det aktuella antalet frihetsgrader (df = n 1) och den önskade konfidensnivån. Detta gör ni antingen genom att använda funktionen =T.INV.2T(probability; deg_freedom) (Excel 2003 TINV) i Excel, där probability (sannolikhet) representerar den sökta konfidensgränsen (i detta fall 5 %, skriv in 0,05), eller med hjälp av en t-tabell. Vad är df respektive t df i det aktuella fallet? Observera att stickprovsstorleken (n) är det totala antalet fiskar i stickprovet (d.v.s. honor+hanar). df : 49 t df : 2,01 1d. Ni har nu den information som behövs för att räkna ut ett 95 % konfidensintervall för kroppsvikt med hjälp av formeln på föregående sida. Vad blev resultatet? nedre 95% gräns: 126,3 övre 95% gräns: 155,5 1e. Beskriv innebörden av det konfidensintervall ni just räknat ut: Med 95% sannolikhet ligger populationens medelvärde ( μ ) inom detta intervall 2. Hypotesprövning - test för medelvärdesskillnad (två medelvärden, t-test) 2a. Beräkna medellängden bland öringarna (båda könen) fångade i Blanktjärnen respektive i Flyn (repetition från laboration 1). Medellängder (mm): Blanktjärnen: 258 Flyn: 221 2b. Återspeglar den observerade medellängdsskillnaden i stickprovet en verklig ("sann") skillnad mellan de båda tjärnarnas öringar? För att angripa denna fråga statistiskt ska vi utföra ett så kallat t-test. I Excel används modulen Dataanalysis (den som ni använde för att framställa histogram tidigare; återfinns under menyn Data). "Rulla" ner mot slutet av listan med alternativ och välj t-test: Two sampel assuming equal variances.

3 3. Tryck OK och följande dialogruta öppnas: I fälten Variable range 1 och Variable range 2 skriver ni in de cellområden som innehåller kroppslängderna för Blanktjärnen respektive för Flyn (era data måste alltså vara sorterade med avseende på lokal). I rutan märkt Alfa står inskrivet 0.05 (5 %). Detta är den signifikansnivå som t-testet kommer att utföras på, och detta värde kan ändras om man så önskar (men låt det stå denna gång). Innan ni trycker OK och utför testet, svara på följande. Vilken är nollhypotesen (H 0 ) som skall testas? Medellängden bland 5-åriga öringar är den samma i de två insamlingslokalerna Tjärnen och Flyn (μ 1 = μ 2 ) Vilken är alternativhypotesen (H 1 ) vid ett dubbelsidigt test? Medellängden bland 5-åriga öringar i insamlingslokalerna Tjärnen och Flyn är inte den samma (μ 1 μ 2 ) Tryck på OK. Vilket blev resultatet? Vi bryr oss endast om det som står på följande rader i tabellen: Antal frihetsgrader ("fg"): 48 t-värde ("t-kvot"): 6,37 p-värde, dubbelsidigt test ("P(T<=t) tvåsidig"): 6,7 x 10-8

4 4. Föreligger det en statistiskt signifikant skillnad i medellängd mellan insamlingslokalerna? Ja! Det föreligger en statistiskt signifikant medellängdsskillnad mellan lokalerna (P<<0.05, H 0 förkastas) Tolkning: Om H 0 är sann är sannolikheten att få en så här stor skillnad (eller större) mellan två stickprov av denna storlek, väldigt låg! Alltså förkastar vi nollhypotesen. 3. Konfidensintervall för en relativ frekvens. Följande formel används: 3a. Beräkna konfidensintervall för andelen honor i totalmaterialet. Under laboration 1 (fråga 5) beräknade ni ett punktestimat för denna relativa frekvens i ert stickprov. Vilket var detta estimat? (Man beräknar konfidensintervall för andelar med formeln ovan.) Andelen honor i stickprovet (p honor ) är: 0,4 (40%) Beräkna ett 95% resp. 99% konfidensintervall. (Se fråga 1 för hur man med hjälp av Excel drar kvadratroten ur tal och bestämmer värdet för t df.) Åter är antalet frihetsgrader df = n 1. OBS! n=50 (ni har ju använt hela stickprovet för att skatta andelen honor/hanar!) 95% konfidensintervall för andelen honor: 0,26 < P honor < 0,54 99% konfidensintervall för andelen honor: 0,21 < P honor < 0,59 3b. Vilket av intervallen är "bredast" och varför? 99% konfidensintervallet är bredast; ju säkrare man vill vara på att intervallet inkluderar populationens sanna medelvärde, desto bredare intervall krävs 3c. Fundera över om det verkar troligt att den sanna frekvensen honor (P honor ) är 0.5, Ja, det förefaller möjligt att P honor är 0,5 (d.v.s. att könskvoten är jämn) eftersom denna frekvens täcks av konfidensintervallen.

5 5. 4. Hypotesprövning test av relativa frekvenser (χ 2 "a priori") Testa de observerade absoluta frekvenserna honor/hanar mot de som förväntas vid jämn könskvot med hjälp av ett s.k. χ 2 test. I Excel gör ni detta med hjälp av funktionen =CHISQ.TEST(obs;obs;exp;exp), där obs och exp representerar två cellområden där ni skrivit in de observerade resp. förväntade antalen honor/hanar. Funktionen CHISQ.TEST (Excel 2003 CHITEST) skriver då ut det aktuella p-värdet. Vilken är nollhypotesen (H 0 )? Könskvoten i populationen är jämn (P honor = P hanar = 0.5) Vilken är alternativhypotesen (H 1 )? Könskvoten i populationen är inte jämn (P honor P hanar ) Vad blev p-värdet (använd det exakta värdet ni får från Excel)? 0,16 Vilken slutsats drar ni? Det går inte att förkasta hypotesen att könskvoten i populationen är jämn (P>0.05) 5. Linjär regression Finns det ett samband mellan kroppslängd och -vikt (WEIGHT och LENGTH)? En naturlig startpunkt för att analysera denna typ av frågeställning är att först illustrera sina data grafiskt. Under datorlaboration 1 gjorde ni ett punktdiagram över dessa variabler, vilket bör ha sett ut så här (den räta linjen får man genom att högerklicka på någon av punkterna i diagrammet och därefter välja "infoga trendlinje"):

6 6. Föreligger ett verkligt (linjärt) samband mellan variablerna kroppslängd och vikt i populationen? Eller är det synbarliga sambandet i ovanstående figur endast orsakat av slumpen i ett stickprov av begränsad storlek? Åter bör frågan analyseras statistiskt, och vi gör det denna gång med hjälp av s.k. linjär regression. Använd modulen Dataanalysis och välj alternativet Regression. Följande dialogruta öppnas: I fälten Input Y Range och Input X Range skriver ni in de cellområden (-referenser) som innehåller längder respektive vikter. Innan ni trycker OK och utför testet, svara på följande: Vilken är nollhypotesen (H 0 )? Det råder inget (linjärt) samband mellan variablerna x och y (vikt och längd), d.v.s. β=0 Vilken är alternativhypotesen (H 1 )? Det råder ett (linjärt) samband mellan variablerna x och y (vikt och längd), d.v.s. β 0 Tryck OK. Vilket blev resultatet? (Bry er endast om det p-värde som står utskrivet på nedersta raden i nedersta deltabellen, d.v.s. raden märkt X-variabel 1). p-värde: 2,4x10-34 Föreligger det ett statistiskt signifikant (linjärt) samband mellan vikt och längd? Ja! (p<<0.05, H 0 förkastas)

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp

Läs mer

*****************************************************************************

***************************************************************************** Statistik, 2p ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om

Läs mer

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel

Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om ni tycker att

Läs mer

Datorlaboration 7. Simuleringsbaserade tekniker

Datorlaboration 7. Simuleringsbaserade tekniker Datorlaboration 7 Simuleringsbaserade tekniker 2. DATORLABORATION 7 Under denna laboration ska ni få prova några enklare datorbaserade statistiska tester. Vi använder PopTools - en så kallad "add-in" till

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1 Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Föreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 6 Statistik; teori och tillämpning i biologi 1 Analysis of Variance (ANOVA) (GB s. 202-218, BB s. 190-206) ANOVA är en metod som används när man ska undersöka skillnader mellan flera olika

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

Hur skriver man statistikavsnittet i en ansökan?

Hur skriver man statistikavsnittet i en ansökan? Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test och konfidensintervall för två

Läs mer

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14

Läs mer

Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens

Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

STATISTISK POWER OCH STICKPROVSDIMENSIONERING

STATISTISK POWER OCH STICKPROVSDIMENSIONERING STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund

Höftledsdysplasi hos dansk-svensk gårdshund Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

Temperatur (grader Celcius) 4 tim. och 32 min tim. och 12 min tim. och 52 min tim. och 1 min tim. och 4 min.

Temperatur (grader Celcius) 4 tim. och 32 min tim. och 12 min tim. och 52 min tim. och 1 min tim. och 4 min. Hypotesprövning 1. En biolog undersöker om förekomsten av parasiten Gyrodactylus salaris är vanligare hos lax i södra Östersjön jämfört med norra. Han fångar in 111 laxar i norra Östersjön av vilka 56

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av

Läs mer

Grundläggande statistik kurs 1

Grundläggande statistik kurs 1 Grundläggande statistik kurs 1 Problem 1 Arbeta med frekvenstabeller Sid 2: Så här ser sidan 2 ut. Vi har alltså en delad sida med kalkylbladet till vänster och en Data&Statistik-sida till höger. I den

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

Datorövning 1 Enkel linjär regressionsanalys

Datorövning 1 Enkel linjär regressionsanalys Datorövning 1 Enkel linjär regressionsanalys Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Excel och Minitab för att 1. få en visuell uppfattning om vad ett regressionssamband

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab

F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab Repetition: Gnuer i (o)skyddade områden χ 2 -metoder, med koppling till binomialfördelning och genetik. Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 Endast 2 av de 13 observationerna

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

Skrivning/skriftlig eksamen till statistikdelen av kursen i forskningsmetodik maj 2002

Skrivning/skriftlig eksamen till statistikdelen av kursen i forskningsmetodik maj 2002 Skrivning/skriftlig eksamen till statistikdelen av kursen i forskningsmetodik maj 2002 Skriv läsligt! Utrymmet/pladsen på pappret bör räcka att svara på. Om du fortsätter på något annat ställe, ange detta

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa. Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16 Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare

Läs mer

Laboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA

Laboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 3 Övningsuppgifter Baserade på datasetet energibolag.rdata

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Laboration 3 Inferens fo r andelar och korstabeller

Laboration 3 Inferens fo r andelar och korstabeller S0005M Statistik2 Lp 4 2016 Laboration 3 Inferens fo r andelar och korstabeller Laborationen behandlar Test av andelar med konfidensintervall och hypotestest Chi två test av oberoende mellan kvalitativa

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

SF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test

SF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test SF1915 Sannolikhetsteori och statistik 6 hp Föreläsning 12 χ 2 -test Jörgen Säve-Söderbergh Anpassningstest test av given fördelning n oberoende försök med r möjliga olika utfall Händelse A 1 A 2... A

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare.

Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare. STOCKHOLMS UNIVERSITET Statistiska institutionen VT 2009 Tatjana Pavlenko och Bertil Wegmann OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, VT 2009 Den obligatoriska inlämningsuppgiften,

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Medicinsk statistik VT-2013 Tre stycken

Läs mer

Föreläsning 5. Kapitel 6, sid Inferens om en population

Föreläsning 5. Kapitel 6, sid Inferens om en population Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning

Läs mer

EXTRA ÖVNINGSUPPGIFTER MED SVAR

EXTRA ÖVNINGSUPPGIFTER MED SVAR EXTRA ÖVNINGSUPPGIFTER MED SVAR 1.Vilka av följande variabler anser du vara kvalitativa respektive kvantitativa? a) Antal åskådare b) Fingerlängd c) Bilmärke d) Tjänstekategori e) Chokladkonsumtion 2.Vilka

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Föreläsningsanteckningar till kapitel 9, del 2

Föreläsningsanteckningar till kapitel 9, del 2 Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:

χ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier: Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n

Läs mer

kodnr: 2) OO (5p) Klassindelningar

kodnr: 2) OO (5p) Klassindelningar kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer