F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab
|
|
- Oskar Lind
- för 5 år sedan
- Visningar:
Transkript
1 Repetition: Gnuer i (o)skyddade områden χ 2 -metoder, med koppling till binomialfördelning och genetik. Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 Endast 2 av de 13 observationerna härstammade från oskyddade områden. Hur pass osannolikt är detta från perspektivet att tätheten av gnuer inte skiljer sig åt mellan de två typerna av områden?, vt12 (1 : 33), vt12 (2 : 33) Svar Sannolikheten Pr(Y 2) då Y Bi(13, 0.5) ges av p 0 + p 1 + p 2 = Binomialtest Föregående resonemang är ett exempel på ett så kallat binomialtest: Med andra ord, det är 1.1% chans att få 0, 1 eller 2 krona då man singlar slant 13 gånger. Utgående från modellen Y Bi(n, p) testar vi hypotesen H 0 : p = 1/2 mot en alternativ (enkelsidig) beskrivning H 1 : p < 1/2 Testvariabel: ˆp = Y /n (observerad frekvens). Motsvarande p-värde Pr(ˆp 2/13) = 1.1% utgår från nollhypotesen och anger sannolikheten att få minst lika signifikant utfall till fördel för mothypotesen., vt12 (3 : 33), vt12 (4 : 33)
2 Standardiserad jämförelse Dubbelsidig hypotesprövning I föreläsning 2 kallade vi följande slumpvariabel standardiserad relativt Y Bi(13, 0.5): Z = (Y 6.5)/ 13/4. Utifrån modellen Y Bi(n, p) är det vanligare att testa hypotesen Genom denna omskrivning kan man uttrycka föregående p-värde: Pr(ˆp 2/13) = Pr(Z (2 6.5)/ 13/4) = Pr(Z 2.50) = Pr(Z Z obs ) H 0 : p = p 0 mot en tvåsidig beskrivning H 1 : p p 0. Detta är mer neutralt och kräver inte att man specificerar alternativhypotesens riktning. Normalapproximation Med standardiserade variabler uttrycks motsvarande dubbelsidiga p-värde: Pr( Z Z obs ) = Pr(Z 2 Z 2 obs ), vt12 (5 : 33), vt12 (6 : 33) χ 2 -test χ 2 -test för anpassning I denna situation är χ 2 -testet inget annat än en omskrivning av den dubbelsidiga jämförelsen med normalapproximation. Med andra ord, vi utgår från följande testvariabel: Z 2 obs = (Y 6.5)2 13/4 Denna kan skrivas om genom att låta o 1 = Y beteckna antalet observationer i oskyddade områden och o 2 = 13 Y antalet observationer i skyddade områden: Z 2 obs = (o 1 6.5) (o 2 6.5) Statistisk programvara beräknar därefter motsvarande sannolikhet relativt antagandet att Z är normalfördelad:, vt12 (7 : 33) Pr( Z Z obs ) = Pr(Z 2 Z 2 obs ) Som en generalisering av binära utfall, antag att n stycken observationer fördelar sig över k stycken grupper. Detta ger observerade frekvenser o 1,..., o k vars summa är n: k o i = n i=1 En nollhypotes ger därefter predikterade frekvenser e 1,..., e k vars summa är n: k e i = n i=1 Hur god är anpassningen mellan observerade och förväntade frekvenser?, vt12 (8 : 33)
3 Testvariabel Testvariabelns fördelning under nollhypotesen Fördelning vid korrekt anpassning: Med ett χ 2 -test för anpassning utvärderas avvikelsen mellan observerade och förväntade frekvenser genom följande testvariabel: k (o i e i ) 2 i=1 e i Testvariabeln är χ 2 -fördelad med k 1 frihetsgrader vid korrekt anpassning., vt12 (9 : 33) χ 2 -fördelningar med olika antal frihetsgrader., vt12 (10 : 33) Motsvarande p-värde Kritiska värden för testvariabeln Statistisk programvara beräknar p-värdet Pr(χ 2 χ 2 obs ) relativt antagandet att χ 2 är χ 2 -fördelad med k 1 frihetsgrader. Höga värden på χ 2 obs motsvarar dålig anpassning. Kvantilen χ 2 α(f ) anger det kritiska värde som χ 2 överstiger med sannolikhet α, relativt f frihetsgrader. Hittas i tabell. Höga värden på χ 2 obs ger låga p-värden. Höga värden på χ 2 obs ger anledning att ifrågasätta nollhypotesen. Exempel: χ (4) = 9.49., vt12 (11 : 33), vt12 (12 : 33)
4 Roberts råttförsök Testvariabel Mendel Inom Mendelsk genetik predikteras förekomsten av olika genetiska särdrag i populationer baserat på antaganden om genetisk dominans. Vid ett försök (1939) med fem genetiska faktorer hos 551 råttor var det möjligt att observera och prediktera förekomsten av antalet dominanta gener enligt följande: Σ o e , vt12 (13 : 33) I exemplet finns k = 6 möjliga utfall. en mellan observerade och förväntade frekvenser testas genom, vt12 (14 : 33) 6 (o i e i ) 2 i=1 e i ( )2 ( )2 ( )2 = ( )2 ( )2 ( ) = 6.75 Utvärdering Faktoriella beskrivningar Observerat värde på testvariabeln 6.75 Motsvarande antal frihetsgrader: 5 Kritiskt värde på testvariabeln (signifikansnivå 5%): χ (5) = 11.1 Föregående exempel kan beskrivas som att vi undersöker hur en uppsättning individer fördelar sig över de olika nivåerna på en given faktor. I detta fall var individerna råttor, faktorn var antalet dominanta gener och de olika nivåerna var 0, 1,..., 5. Slutsats: χ 2 obs < χ (5) gör att vi inte kan ifrågasätta anpassningen. : p-värdet 24%. Chansen att få ett minst lika extremt utfall med testvariabeln vid perfekt teoretisk anpassning är alltså cirka 1/4. I nästa steg ska vi istället utgå från två faktorer A och B med tillhörande nivåer. Med andra ord, vi undersöker hur en uppsättning individer fördelar sig över motsvarande kategorier., vt12 (15 : 33), vt12 (16 : 33)
5 Paddor och inälvsparasiter Analys 20 paddor undersöktes på var och en av 3 olika platser i Queesland, Australien. Antalet som drabbats av inälvsparasiter fördelade sig enligt följande: I detta fall finns det två faktorer att ta hänsyn till, A = plats, B = sjukdomstillstånd., vt12 (17 : 33) Rockhampton Bowen Mackay Inf Ej Inf Faktor A förekommer på 3 nivåer, medan Faktor B förekommer på 2 nivåer. Totalt finns det därmed 6 kategorier. Fördelningen av individer redovisas i föregående korstabell., vt12 (18 : 33) s-antagande χ 2 -test för homogenitet En bra fråga som kan ställa är: Två faktorer A och B med vardera k respektive r nivåer. Är det samma andel smittade paddor på alla tre platser som undersökts? Ett anna sätt att uttrycka frågan är: Fördelar sig andelen smittade paddor homogent över de tre platser som undersökts? Detta ger observerade frekvenser o i,j vars summa är n: r i=1 j=1 k o i,j = n innebär att förväntade frekvenser ges av: Mer abstrakt kan man formulera detta som: Inverkar faktor B homogent över de olika nivåerna på faktor A? e i,j = Radsumma nr i Kolumnsumma nr j n Hur god är anpassningen mellan observerade och förväntade frekvenser?, vt12 (19 : 33), vt12 (20 : 33)
6 Testvariabel Tillämpning: homogenitetstest Analogt med χ 2 -test för anpassning utvärderas avvikelsen mellan observerade och förväntade frekvenser genom följande testvariabel: r i=1 j=1 k (o i,j e i,j ) 2 e i,j Observerade frekvenser ges av: Rockhampton Bowen Mackay Σ Inf Ej Inf Σ Förväntade frekvenser ges av: Testvariabeln är χ 2 -fördelad med frihetsgrader: vid korrekt anpassning. f = (r 1)(k 1) Rockhampton Bowen Mackay Σ Inf Ej Inf Σ , vt12 (21 : 33), vt12 (22 : 33) Tillämpning: Testvariabel Utvärdering Observerat värde på testvariabeln 2 i=1 j=1 3 (o i,j e i,j ) 2 e i,j (12 11)2 (7 11)2 (14 11)2 = (8 9)2 (13 9)2 (6 9) = 5.25 Motsvarande antal frihetsgrader: f = (2 1)(3 1) = Motsvarande antal frihetsgrader: 2 Kritiskt värde på testvariabeln (signifikansnivå 5%): χ (2) = 5.99 Slutsats: χ 2 obs < χ (2) gör att vi inte kan ifrågasätta anpassningen. : p-värdet 7%. Detta är i närheten av vad som brukar anses signifikant. Det finns alltså viss evidens för att ifrågasätta anpassningen., vt12 (23 : 33), vt12 (24 : 33)
7 Förekomst av bananflugor Analys Fritt levande bananflugor (Drosophila subobcura) fångades i agnade fällor på tre olika platser och könsbestämdes därefter. Återigen finns det två faktorer att ta hänsyn till, A = plats, B = kön., vt12 (25 : 33) Skog 1 Skog 2 Öppet område Hannar Honor Faktor A förekommer på 3 nivåer, medan Faktor B förekommer på 2 nivåer. Totalt finns det därmed 6 kategorier. Fördelningen av individer redovisas i föregående korstabell., vt12 (26 : 33) Hypotes om oberoende Skillnad mellan homogenitet och oberoende En bra fråga som kan ställa är: Är det samma könsfördelning på alla tre platser som undersökts? Ett annat sätt att uttrycka frågan är: För en slumpmässigt vald individ, är sannolikheten för manligt/kvinligt kön oberoende av platsen den fångats på? Mer abstrakt kan man formulera detta som: Inverkar faktorerna A och B oberoende av varandra? Begreppen homogenitetstest och test av oberoende är nära besläktade i detta sammanhang. Statistiskt behandlar man motsvarande korstabeller på exakt samma sätt. Skillnaden ligger i försöksupplägget. I det första exemplet var faktor A inte slumpmässig, i meningen att man på förhand bestämt sig för att undersöka 20 paddor på vardera ställe. I det andra exemplet visste man inte på förhand hur många individer som skulle ingå från vardera plats. Därför kan det vara mer lämpligt att tala om två slumpmässiga faktorer och att man undersöker huruvida de inverkar oberoende av varandra., vt12 (27 : 33), vt12 (28 : 33)
8 Tillämpning: test av oberoende Tillämpning: Testvariabel Observerade frekvenser ges av: Skog 1 Skog 2 Öppet område Σ Hannar Honor Σ Förväntade frekvenser ges av: 2 3 i=1 j=1 Motsvarande antal frihetsgrader: (o i,j e i,j ) 2 e i,j = 49.7 Skog 1 Skog 2 Öppet område Σ Hannar Honor Σ f = (2 1)(3 1) = 2., vt12 (29 : 33), vt12 (30 : 33) Utvärdering Observerat värde på testvariabeln 49.7 Motsvarande antal frihetsgrader: 2 Kritiskt värde på testvariabeln (signifikansnivå 5%): χ (2) = 5.99 Slutsats: χ 2 obs > χ (2) gör att vi kan ifrågasätta anpassningen. : p-värdet Detta är med all önskvärd tydlighet signifikant. Det finns alltså klar evidens för att ifrågasätta anpassningen. Vi har sett tre olika metoder (χ 2 -test) som är relevanta för analyser av hur individer fördelar sig över olika kategorier. Testen utvärderar anpassningen mellan observerade frekvenser och förväntade frekvenser. Förväntade frekvenser kan uppstå exempelvis ur genetisk teori. De kan också uppstå när man undersöker samband mellan två faktorer. Med homogenitet avses att en faktor inverkar på samma sätt oavsett vilken nivå som valts på en annan faktor. Om båda faktorerna betraktas som slumpmässiga brukar man använda termen oberoende istället för homogenitet., vt12 (31 : 33), vt12 (32 : 33)
9 χ 2 -test återfinns genom att klicka: Stat Tables Vid oberoende/homogenitetstest matar man in motsvarande korstabell direkt i arbetsfältet. OBS: räknar själv ut radsummor och kolumnsummor. Ett anpassningstest kräver att man specificerar förväntade frekvenser, exempelvis i en separat kolumn i arbetsfältet., vt12 (33 : 33)
Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test och konfidensintervall för två
Läs merF2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Läs merFöreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merSF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test
SF1915 Sannolikhetsteori och statistik 6 hp Föreläsning 12 χ 2 -test Jörgen Säve-Söderbergh Anpassningstest test av given fördelning n oberoende försök med r möjliga olika utfall Händelse A 1 A 2... A
Läs merFöreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merFöreläsningsanteckningar till kapitel 9, del 2
Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs merIntroduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Läs merχ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:
Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n
Läs merSF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande
Läs merFöreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 6 Statistik; teori och tillämpning i biologi 1 Analysis of Variance (ANOVA) (GB s. 202-218, BB s. 190-206) ANOVA är en metod som används när man ska undersöka skillnader mellan flera olika
Läs merFuktighet i jordmåner. Variansanalys (Anova) En statistisk fråga. Grafisk sammanfattning: boxplots
Fuktighet i jordmåner Variansanalys (Anova) Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 A 1 A 2 A 3 12.8 8.1 9.8 13.4 10.3 10.6 11.2 4.2 9.1 11.6 7.8 4.3 9.4 5.6 11.2 10.3
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att
Läs merSF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merFöreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Läs merFöreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Läs merSF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall
Läs merTemperatur (grader Celcius) 4 tim. och 32 min tim. och 12 min tim. och 52 min tim. och 1 min tim. och 4 min.
Hypotesprövning 1. En biolog undersöker om förekomsten av parasiten Gyrodactylus salaris är vanligare hos lax i södra Östersjön jämfört med norra. Han fångar in 111 laxar i norra Östersjön av vilka 56
Läs merOm statistisk hypotesprövning
Statistikteori för F2 vt 2004 2004-01 - 30 Om statistisk hypotesprövning 1 Ett inledande exempel För en tillverkningsprocess är draghållfastheten en viktig aspekt på de enheter som produceras. Av erfarenhet
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merTAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33
Läs merTAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning p-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/36
Läs merTvå innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Läs merKapitel 10 Hypotesprövning
Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.
Läs merπ = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
Läs merTMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Läs merStatistiska analyser C2 Inferensstatistik. Wieland Wermke
+ Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga
Läs merFöreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merTMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merFöreläsning 8. Kapitel 9 och 10 sid Samband mellan kvalitativa och kvantitativa variabler
Föreläsning 8 Kapitel 9 och 10 sid 230-284 Samband mellan kvalitativa och kvantitativa variabler 2 Agenda Samband mellan kvalitativa variabler Chitvåtest för analys av frekvenstabell och korstabell Samband
Läs merF22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Läs merLTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merFACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs mer8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Läs merUppgift 1. Produktmomentkorrelationskoefficienten
Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Läs merSTA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merb) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)
Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-
Läs merFöreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Läs merDel I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
Läs merÄR OBSERVERAT SKILJT FRÅN FÖRVÄNTAT? (CHI2, χ 2 )
ÄR OBSERVERAT SKILJT FRÅN FÖRVÄNTAT? (CHI2, χ 2 ) NBIB44 Lars Westerberg INNEHÅLLSFÖRTECKNING Introducera en metod att statistiskt testa: avvikelser från förväntat, eller samband mellan parametrar När
Läs merLaboration 3 Inferens fo r andelar och korstabeller
S0005M Statistik2 Lp 4 2016 Laboration 3 Inferens fo r andelar och korstabeller Laborationen behandlar Test av andelar med konfidensintervall och hypotestest Chi två test av oberoende mellan kvalitativa
Läs merSF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Läs mera) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merBestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Läs merSTA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merLösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
Läs merStockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Läs merStockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-03-16 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Läs merSF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merFöreläsning 5: Hypotesprövningar
Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merHur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merFöreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Läs merUppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:
Läs merTabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll
Läs merExempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
Läs merUppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Läs merSyfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen
Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merSTATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 24 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 24 e mars 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merMatematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett
Läs merOmtentamen i Metod C-kurs
Omtentamen i Metod C-kurs Kurskoder: PSGC20 och PSGCVA Datum: 2014-04-16 kl 08.15-13.15 Tillåtna hjälpmedel: Valfri modell av miniräknare Formelsamling med tillhörande tabeller (Sid 524-545 ur kursbok)
Läs merJörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Läs merHur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merFöreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,
Läs merLösningar till tentamen i Matematisk Statistik, 5p
Lösningar till tentamen i Matematisk Statistik, 5p LGR98 27 oktober, 2001 kl. 9.00 13.00 Kursansvarig: Eric Järpe Maxpoäng: 30 Betygsgränser: 12p: G, 22p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling
Läs merFöreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merMatematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Läs merJesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014
Föreläsning 7. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 χ 2 -metoder Några varianter: Test av helt given fördelning [A & B, 8.2.1]
Läs merBIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta
Läs merLaboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Läs mer