Datorlaboration 2 Konfidensintervall & hypotesprövning

Storlek: px
Starta visningen från sidan:

Download "Datorlaboration 2 Konfidensintervall & hypotesprövning"

Transkript

1 Statistik, 2p PROTOKOLL Namn: Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska bearbetningen av samma öringdata som under laboration 1. Denna gång kommer ni att prova på några vanligt förekommande statistiska tester och skattningsmetoder. Mer information om dessa finns under flik 13 i kurspärmen samt i "röda boken" (Vejde & Leander, 2000). Arbeta gärna två och två. Öppna er datafil som ni sparade under första datorlaborationen, eller hämta en ny kopia av filen från samma adress som förut: Utför nedanstående uppgifter och svara på frågorna. Även denna gång ska protokollet lämnas in. Uppgifter/frågor 1. Konfidensintervall för en kontinuerlig variabel. Följande formel används: 1a. Beräkna ett 95 % konfidensintervall för variabeln WEIGHT (kroppsvikt). Använd totalmaterialet, d.v.s. alla fiskar (=n). Börja med att räkna ut medelvärde ("x-bar") och stickprovsvarians (s 2 ) för denna variabel (repetition från laboration 1): Stickprovsstorlek:... Medelvärde:... Varians:... 1b. Beräkna därefter standard error (S.E.), d.v.s. följande del av ovanstående uttryck: S.E. för WEIGHT (kroppsvikt) är:......

2 2. Tips: För att dra kvadratroten ur ett tal används funktionen =ROT(tal), där tal representerar det värde man vill dra roten ur. Prova t.ex. att skriva =ROT(9) i någon valfri cell (följt av ENTER) och kontrollera att det stämmer... 1c. Ta nu reda på värdet av t df, d.v.s. "t-faktorn" för det aktuella antalet frihetsgrader (df = n 1) och den önskade konfidensnivån. Detta gör ni antingen genom att använda funktionen =TINV(sannolikhet; frihetsgrader) i Excel, där sannolikhet representerar den sökta konfidensgränsen (i detta fall 5 %, skriv in 0,05), eller med hjälp av en t-tabell. Vad är df respektive t df i det aktuella fallet? Observera att stickprovsstorleken (n) är det totala antalet fiskar i stickprovet (d.v.s. honor+hanar). df : t df : d. Ni har nu den information som behövs för att räkna ut ett 95 % konfidensintervall för kroppsvikt med hjälp av formeln på föregående sida. Vad blev resultatet? nedre 95% gräns: övre 95% gräns:.... 1e. Beskriv innebörden av det konfidensintervall ni just räknat ut: Hypotesprövning - test för medelvärdesskillnad (två medelvärden, t-test) 2a. Beräkna medellängden bland öringarna (båda könen) fångade i Blanktjärnen respektive i Flyn (repetition från laboration 1). Medellängder (mm): Blanktjärnen:.... Flyn:.... 2b. Återspeglar den observerade medellängdsskillnaden i stickprovet en verklig ("sann") skillnad mellan de båda tjärnarnas öringar? För att angripa denna fråga statistiskt ska vi utföra ett så kallat t-test. I Excel används modulen Dataanalys (den som ni använde för att framställa histogram tidigare; återfinns under menyn Verktyg). "Rulla" ner mot slutet av listan med alternativ och välj t-test: Två sampel antar lika varians.

3 3. Tryck OK och följande dialogruta öppnas: I fälten Variabel 1 område och Variabel 2 område skriver ni in de cellområden som innehåller kroppslängderna för Blanktjärnen respektive för Flyn (era data måste alltså vara sorterade med avseende på lokal). I rutan märkt Alfa står inskrivet 0.05 (5 %). Detta är den signifikansnivå som t-testet kommer att utföras på, och detta värde kan ändras om man så önskar (men låt det stå denna gång). Innan ni trycker OK och utför testet, svara på följande : Vilken är nollhypotesen (H 0 ) som skall testas? Vilken är alternativhypotesen (H 1 ) vid ett dubbelsidigt test? Tryck på OK. Vilket blev resultatet? Vi bryr oss endast om det som står på följande rader i tabellen: Antal frihetsgrader ("fg"):..... t-värde ("t-kvot"):.... p-värde, dubbelsidigt test ("P(T<=t) tvåsidig"):..

4 4. Föreligger det en statistiskt signifikant skillnad i medellängd mellan insamlingslokalerna? 3. Konfidensintervall för en relativ frekvens. Följande formel används: 3a. Beräkna konfidensintervall för andelen honor i totalmaterialet. Under laboration 1 (fråga 5) beräknade ni ett punktestimat för denna relativa frekvens i ert stickprov. Vilket var detta estimat? Andelen honor i stickprovet (p honor ) är:... Beräkna ett 95% resp. 99% konfidensintervall. (Se fråga 1 för hur man med hjälp av Excel drar kvadratroten ur tal och bestämmer värdet för t df.) Åter är antalet frihetsgrader df = n 1. 95% konfidensintervall för andelen honor: % konfidensintervall för andelen honor:.... 3b. Vilket av intervallen är "bredast" och varför?... 3c. Fundera över om det verkar troligt att den sanna frekvensen honor (P honor ) är 0.5, d.v.s. att jämn könskvot råder i populationen:.....

5 5. 4. Hypotesprövning test av relativa frekvenser (χ 2 "a priori") Testa de observerade absoluta frekvenserna honor/hanar mot de som förväntas vid jämn könskvot med hjälp av ett s.k. χ 2 test. I Excel gör ni detta med hjälp av funktionen =CHI2TEST(obs;förv), där obs och förv representerar två cellområden där ni skrivit in de observerade resp. förväntade antalen honor/hanar. Funktionen CHI2TEST skriver då ut det aktuella p-värdet. Vilken är nollhypotesen (H 0 )? Vilken är alternativhypotesen (H 1 )? Vad blev p-värdet?... Vilken slutsats drar ni? Hypotesprövning Linjär regression Finns det ett samband mellan kroppslängd och -vikt (WEIGHT och LENGTH)? En naturlig startpunkt för att analysera denna typ av frågeställning är att först illustrera sina data grafiskt. Under datorlaboration 1 gjorde ni ett punktdiagram över dessa variabler, vilket bör ha sett ut så här (den räta linjen får man genom att högerklicka på någon av punkterna i diagrammet och därefter välja "infoga trendlinje"):

6 6. Föreligger ett verkligt (linjärt) samband mellan variablerna kroppslängd och vikt i populationen? Eller är det synbarliga sambandet i ovanstående figur endast orsakat av slumpen i ett stickprov av begränsad storlek? Åter bör frågan analyseras statistiskt, och vi gör det denna gång med hjälp av s.k. linjär regression. Använd modulen Dataanalys och välj alternativet Regression. Följande dialogruta öppnas: I fälten Y-indataområde och X-indataområde skriver ni in de cellområden (-referenser) som innehåller längder respektive vikter. Innan ni trycker OK och utför testet, svara på följande: Vilken är nollhypotesen (H 0 )? Vilken är alternativhypotesen (H 1 )? Tryck OK. Vilket blev resultatet? (Bry er endast om det p-värde som står utskrivet på nedersta raden i nedersta deltabellen, d.v.s. raden märkt X-variabel 1). p-värde: Föreligger det ett statistiskt signifikant (linjärt) samband mellan vikt och längd? Glöm ej att lämna in protokollet!

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Datorlaboration 7. Simuleringsbaserade tekniker

Datorlaboration 7. Simuleringsbaserade tekniker Datorlaboration 7 Simuleringsbaserade tekniker 2. DATORLABORATION 7 Under denna laboration ska ni få prova några enklare datorbaserade statistiska tester. Vi använder PopTools - en så kallad "add-in" till

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Datorövning 1 Statistik med Excel (Office 2010, svenska)

Datorövning 1 Statistik med Excel (Office 2010, svenska) Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Datorövning 1 Statistik med Excel (Office 2007, svenska)

Datorövning 1 Statistik med Excel (Office 2007, svenska) Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Datorövning 1 Statistik med Excel (Office 2007, svenska)

Datorövning 1 Statistik med Excel (Office 2007, svenska) Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14 KA RKUNSKAP Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc Vad vet samhällsvetarna om sin kår? STAA31 HT14 Handledare: Peter Gustafsson Ekonomihögskolan, Statistiska institutionen Innehållsförteckning

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Datorövning 2 Statistik med Excel (Office 2007, svenska) Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 (2016-05-02) OCH INFÖR ÖVNING 9 (2016-05-09) Aktuella avsnitt i boken är Kapitel 7. Lektionens mål: Du

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

TENTAMEN KVANTITATIV METOD (100205)

TENTAMEN KVANTITATIV METOD (100205) ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod TENTAMEN KVANTITATIV METOD (205) Examinationen består av 11 frågor, några med tillhörande följdfrågor. Besvara alla frågor i direkt anslutning

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

MSG830 Statistisk analys och experimentplanering - Lösningar

MSG830 Statistisk analys och experimentplanering - Lösningar MSG830 Statistisk analys och experimentplanering - Lösningar Tentamen 15 Januari 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel:

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera

Läs mer

Repetition och ANOVA. nbib44

Repetition och ANOVA. nbib44 Repetition och ANOVA nbib44 Repetition: Labb 2 Du har observerat: f(aa)=0.36, f(aa+aa)=0.64 Kan man testa om fenotypfrekvensen är i Hardy Weinberg jämvikt? Nej! Kan man testa om f(aa) är skiljt från någonting

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2 Rapporten till den här laborationen skall lämnas in senast den 19e December 2014.

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Histogram, pivottabeller och tabell med beskrivande statistik i Excel

Histogram, pivottabeller och tabell med beskrivande statistik i Excel Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.

Läs mer

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU

Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV.

DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2014 Avd. Matematisk statistik GB 2014-03-17 DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV. Till den här datorlaborationen

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att

Läs mer

PLATINA 1(23) Platina, för nya nämndsekreterare

PLATINA 1(23) Platina, för nya nämndsekreterare 1(23) Platina, för nya nämndsekreterare 2(23) INNEHÅLLSFÖRTECKNING NAVIGERING PÅ STARTSIDAN ------------------------------------------------------------ 3 HANTERA INSTANS ----------------------------------------------------------------------------

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Lösningar till Tentafrågor

Lösningar till Tentafrågor Lösningar till Tentafrågor 1. I en stor studie skattade man nedre och övre kvartilen till 100 resp 140. Hur många kan man därmed anse har värden över 140? Övre kvartilen år 75% percentil, vilket betyder

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Statistik 1 för biologer, logopeder och psykologer Paul Blomstedt Innehåll 1 Inledning 2 2 Deskriptiv statistik 2 2.1 Variabler och datamaterial...................... 2 2.2 Tabulering och grask beskrivning.................

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Excel-guide. Introduktion

Excel-guide. Introduktion Excel-guide Introduktion I denna laboration kommer ni få använda några grundfunktioner i Microsoft Excel. Laborationen utgår ifrån Excel 2010, men om ni vill använda ett annat program för att lösa uppgifterna

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin Rolf Larsson rolf.larsson@math.uu.se Jesper Rydén jesper.ryden@math.uu.se Senast uppdaterad 27 januari 2016 Diskussionsproblem till Lektion 3

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Instruktion arbeta med rapportmallen

Instruktion arbeta med rapportmallen Instruktion arbeta med rapportmallen 29 oktober, 2015 INNEHÅLLSFÖRTECKNING 1 BÖRJA ANVÄNDA MALLEN 3 1.1 FYLLA I INFORMATION 3 1.2 INSTÄLLNING VISA /DÖLJ 3 1.3 INSTÄLLNING VISA TABELLSTÖDLINJER 3 2 FORMATMALLAR

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Datorövning 2 Statistik med Excel (Office 2003, engelska)

Datorövning 2 Statistik med Excel (Office 2003, engelska) Datorövning 2 Statistik med Excel (Office 2003, engelska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter

Läs mer

Survey&Report steg för steg: Skapa rapport 2013-05-13

Survey&Report steg för steg: Skapa rapport 2013-05-13 1 Survey&Report steg för steg: Skapa rapport 2013-05-13 Ola Stjärnhagen 2 Skapa rapport 1. Klicka på Enkät > Hitta enkät. Listan som dyker upp visar endast de 50 senast skapade enkäterna. Klicka på Sök

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24)

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1 Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1. Variabler och tänkt modell Data simulerar de som använts i följande studie (se Appendix A): Hull, J. G., & Mendolia, M. (1991). Modeling

Läs mer

Inferensstatistik. Hypostesprövning - Signifikanstest

Inferensstatistik. Hypostesprövning - Signifikanstest 011-11-04 Inferensstatistik En uppsättning metoder för att dra slutsatser om populationers egenskaper (parametrar) med hjälp av stickprovs egenskaper (statistik) Hypostesprövning - Signifikanstest Ett

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test

Läs mer

Tentamen för kursen Statististik för naturvetare 16 januari 2004 9 14

Tentamen för kursen Statististik för naturvetare 16 januari 2004 9 14 STOCKHOLMS UNIVERSITET MS1130 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 16 januari 2004 Tentamen för kursen Statististik för naturvetare 16 januari 2004 9 14 Examinator: Louise af Klintberg,

Läs mer

Forskarutbildningskurs DATAHANTERING OCH DATABEARBETNING

Forskarutbildningskurs DATAHANTERING OCH DATABEARBETNING Forskarutbildningskurs DATAHANTERING OCH DATABEARBETNING Preliminärt schema Tid 060918-22, 40 timmar Plats Hälsa och Samhälle Lokaler Måndag hela dagen och fredag eftermiddag U 417 Övriga dagar U 202,U

Läs mer

Intro till SPSS Kimmo Sorjonen (0811)

Intro till SPSS Kimmo Sorjonen (0811) 1 Intro till SPSS Kimmo Sorjonen (0811) 1. Att mata in data i SPSS 1. Klicka på ikonen för SPSS. 2. Välj alternativet Type in data och klicka på OK. 3. Databladet har två flikar: Data view och Variable

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel

Läs mer

Multipel regression och Partiella korrelationer

Multipel regression och Partiella korrelationer Multipel regression och Partiella korrelationer Joakim Westerlund Kom ihåg bakomliggande variabelproblemet: Temperatur Jackförsäljning Oljeförbrukning Bakomliggande variabelproblemet kan, som tidigare

Läs mer

Statistik Lars Valter

Statistik Lars Valter Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications

Läs mer

CSN-rapportering, gymnasiet

CSN-rapportering, gymnasiet CSN-rapportering, gymnasiet Förutsättning, modul CSN. Förberedelser Göra inställningar i enhetsregistret 1. Välj Organisation Enhet 2. Sök efter rätt enhet, dvs den enhet eleverna som ska rapporteras tillhör.

Läs mer

Lösningar till SPSS-övning: Analytisk statistik

Lösningar till SPSS-övning: Analytisk statistik UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Att göra investeringskalkyler med hjälp av

Att göra investeringskalkyler med hjälp av MIO040 Industriell ekonomi FK 2013-02-21 Inst. för Teknisk ekonomi och Logistik Mona Becker Att göra investeringskalkyler med hjälp av Microsoft Excel 2007 Förord Föreliggande PM behandlar hur man gör

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett

Läs mer

SurveyXact version 6.10

SurveyXact version 6.10 SurveyXact version 6.10 SurveyXact har uppdaterats med kraftigt förbättrade möjligheter för att redigera analysresultat i analysen. Det har blivit enklare att analysera data och hitta de intressanta analysresultaten.

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Diagram. I detta kapitel lär du dig: m Diagrammets beståndsdelar. m Att skapa både inbäddat diagram och diagramblad. m Att ändra diagramform.

Diagram. I detta kapitel lär du dig: m Diagrammets beståndsdelar. m Att skapa både inbäddat diagram och diagramblad. m Att ändra diagramform. 1 Diagram Med diagram kan du presentera information på ett effektivt sätt. Eftersom datan visas grafiskt så kan betraktaren ta till sig mycket information på en gång. Microsoft Excel har ett kraftfullt

Läs mer

Handledning för utskrift av Grafisk antavla

Handledning för utskrift av Grafisk antavla Handledning för utskrift av Grafisk antavla Med Bengt Samuelsson som centrumperson klickar du på längst upp t.v. i menyraden. Bild 1 Utskrift Välj utskriftsform I rutan Antavla klickar du på Grafisk och

Läs mer

Installationsanvisning för Su Officemallar 2003 För PC

Installationsanvisning för Su Officemallar 2003 För PC 1 (11) INSTALLATIONSANVISNING MS Office 2003 - Windows 2013-11-26 Installationsanvisning för Su Officemallar 2003 För PC Word och PowerPoint Innehållsförteckning Var hittar jag Su Officemallar?... 2 Är

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Namn: Pers.nr: G: Minst 65 % Kod: T5V16 -

Namn: Pers.nr: G: Minst 65 % Kod: T5V16 - TENTAMEN TEORI - EXAMENSARBETE 1 (LÄLA53/LÄMA53) TERMIN 5, VT 2016 2016-04-19 Kl. 09.00-11.00 Namn: Pers.nr: Ma: 63 poäng G: Minst 65 % Kod: T5V16 - Poäng: VIKTIGT! Skriv ovannämnda kodkombination överst

Läs mer

Datoro vning 1-2 Statistisk analys av kodade svar

Datoro vning 1-2 Statistisk analys av kodade svar Datoro vning 1-2 Statistisk analys av kodade svar 732G19 Utredningskunskap I Denna datorövning utförs i grupper om 2-4 personer och ska ses som en instruktion i att analysera resultaten av en enkät. Ingen

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

Lär dig sökmöjligheterna i Disgen 8

Lär dig sökmöjligheterna i Disgen 8 Det har blivit dags att titta på sökmöjligheterna i Disgen. Det finns egentligen två olika sökfunktioner i Disgen, Välj person och Sök personer. Här behandlas dessa båda funktioner. Välj person och Sök

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer