34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

Storlek: px
Starta visningen från sidan:

Download "34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD"

Transkript

1 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller den, behöver man utvärdera möjligheten av fel som betingats av det att man i st f hela populationen endast undersökt en del av den. Därefter kan man ta ställning till vilka resultat som har betydelse = statistisk signifikans * om man undersökt hela populationen (t ex alla anställda i ett företag) behöver man inte undersöka resultatens statistiska signifikans vi vet hur hela populationen ser ut - I andra fall kan problemet uttryckas så här: hur mycket av de resultat som vi fått kan bero på slumpen? 1) Om vi samlat in data från ett stickprov som gjorts med hjälp av sannolikhetsurval, kan vi försöka utvärdera sannolikheten av att resultaten inte stämmer i hela populationen. Detta när man gör univariat analys 2) Om stickprovet uppvisar skillnader mellan sina olika delar (t ex män/kvinnor, människor i olika ålder, respondenter som är olika med avseende på andra variabler), gäller frågan om skillnaderna är verkliga eller förorsakade av slumpen. Dvs: är de statistiskt signifikanta? Det här gäller i bivariat och multivariat analys - Den sk. normalfördelningen (Gauss kurva) upptäcktes redan tidigare, men användes t ex när astronomen Carl Friedrich Gauss ( ) undersökte fel, som man gjorde när man skulle bestämma stjärnornas läge. * kurvan har klockform och är fullständigt symmetrisk. M = Me = Mo. Grafiskt kan den framställas på olika sätt, men proportionerna består. # fördelningen av de olika värdena kan jämföras med standardavvikelsen s (= SD) (Rowntree 70): 34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD - OBS: benämningen normalfördelning betyder inte, att de flesta variablerna skulle fördelas enligt den. Den beskriver en slumpmässig fördelning. (Men många gånger stämmer den ganska bra t ex människornas längd, skonummer, vissa attitydfrågor (inte alla)... (?)) 1

2 - En tomte uppenbarar sig (Rowntree 83-86). Den är 10 cm lång. Eftersom vi inte sett några andra exemplar, är urvalets storlek 1 st. Vad kan vi säga om populationens medellängd? * Det säkraste antagandet är 10 cm. Men hur säkert är det? - Om vi börjar med antagandet, att tomtarnas längd varierar som normalfördelningen, skulle det vara osannolikt med en fördelning (i bilden: A) där medellängden M = 6 cm och standardavvikelsen SD = 1 cm. Då skulle värdet 10 cm vara mer är 3 SD över medellängden, och endast 0.15% av tomtarna skulle vara så långa. Det skulle också vara osannolikt med en fördelning (i bilden: B) där M = 30 cm och SD = 10 cm då skulle det exemplar som vi såg höra till den kortaste 2.5% inom populationen. Bättre gissning: M = 10 (i bilden: C1-C3) men vi vet fortfarande ingenting om variationen. A B C1 C C3 - om ytterligare 4 tomtar visar sig, kan vi göra en ny estimering av deras medellängd. De fyra nya fallen är 9.2, 9.6, 10.3 och 10.5 cm långa medellängden blir 9.9 cm och N = 5. Standardavvikelsen (s eller SD) blir ca. 0.5 cm, vilket betyder att endast en liten andel (0.3%) tomtar kan förväntas vara längre än 11.5 cm eller kortare än 8.5 cm (dvs att deras längd inte ryms inom gränserna för M + 3SD). - idén med exemplet: när urvalet blir större, växer vår kunskap om egenskaperna hos populationen, men vi kan fortfarande inte vara säkra på hur bra urvalet motsvarar den. Vi kan emellertid estimera hur stort det möjliga felet kan vara. Om någon annan skulle träffa och mäta 5 andra tomtar, hur sannolikt skulle det vara att deras medellängd skulle vara just 9.9 cm? * dvs, om vi hade flera olika urval att jämföra emellan, hur stor kunde variationen vara mellan deras medelvärden? - Om vi tänker att man gör ett stort antal mätningar som alla gäller samma variabel i samma population, kan man anta, att medelvärden blir något olika, men samtidigt att de fördelas på ett sätt som påminner om normalfördelningen eftersom skillnaderna antas bero på slumpmässiga faktorer, inte på några systematiska skillnader mellan urvalen: 2

3 - Vi behöver alltså räkna standardavvikelsen av olika medelvärden. Namnet för denna indikator är standardfelet (standard error, SF) M som beräknas som standardavvikelse (s) dividerad med kvadratroten av urvalets storlek: s N (OBS: egentligen borde man använda standardavvikelsen hos hela populationen ( ) som vi kanske inte vet, men om antalet observationer är större än ca 30 kan man använda urvalets standardavvikelse (s) i stället). * standardfelet beror alltså på tre faktorer: 1) standardavvikelsen i urvalet. Ju mera variabeln varierar inom det, desto större möjlighet finns det för att även medelvärdet hos de olika urvalen avviker sig från varandra; 2) ju större urval vi har, desto närmare borde dess medelvärde stå för populationens verkliga medelvärde, dvs desto mindre blir standardfelet; 3) MEN eftersom vi i våra kalkyler använder kvadratroten av N, har urvalets storlek ändå överraskande liten betydelse! # t ex: vi undersöker resultat som elever i vissa skolor får i något visst test. Vi har ett urval av 100 observationer, standardavvikelsen är 15 poäng. M = => M = 15 = 15 = 1.5 poäng Men för att halvera standardfelet, borde vi ha ett fyrdubbelt antal mätningar: M = 15 = 15 = 0.75 poäng % av normalfördelningen faller inom M + 1 SD. Vi kan alltså säga, att 68% av medelvärden hos de olika tänkbara urvalen faller inom M + 1 M. På motsvarande sätt faller 32% utanför. * Vi återgår till det första exemplet om skolelevernas testresultat (N = 100). Om medelvärdet var 50.0 poäng, kan vi säga att populationens medelvärde med en sannolikhet av 68% faller inom gränserna för M, eller , dvs. mellan 48.5 och # det här kallas för konfidensintervall. Den är förknippad med viss signifikansnivå, som uttrycks i % eller som decimaltal (t ex 5% eller 0.05) - Vanligtvis använder man signifikansnivåerna 5% och 1%. De motsvaras av konfidensintervallen + 2 M samt M (närmare sagt 1.96 och 2.58 M ). - Många frågor som vi undersöker gäller skillnader mellan olika grupper i vårt urval. Man ritar korstabeller och ser, att medelvärden för olika grupper inom vårt urval blir olika. Det kan vara att vår hypotes gäller just dessa skillnader. Vi vill veta om de är slumpmässiga => även här behövs normalfördelningen. 3

4 * De slumpmässiga skillnaderna mellan de olika mätningarna följer alltså normalfördelningen: Urval A och B har samma medelvärde Urval A har större medelvärde Urval B har större medelvärde stor skillnad mindre skillnad 0 mindre skillnad. stor skillnad - Vår fråga blir alltså: utgående från det vi vet om egenskaperna (variabelns medelvärde, storlek, varians) hos urvalen A och B, hur stor är möjligheten att skillnaden i den undersökta variabelns medelvärde beror på en slump? * i det här fallet beräknar man standardfelet för skillnaderna i variabelns medelvärde i de olika urvalen (SF diff ): SF diff = (SF A ) 2 + (SF B ) 2 => ALLTSÅ: om skillnaden i variabelns medelvärde i de två urvalen är t ex större än + 2 SF diff, finns det en sannolikhet på 5%, att den beror på slumpen. - den statistiska signifikansen av skillnader mellan olika medelvärden utges i %. Vanligtvis hänvisar man till sannolikheter av 1% (eller 0.01) eller 5% (0.05), som betyder möjligheten för att skillnaden kunde vara slumpmässig. - Det här testet kallas för z-test. Det finns andra tester där man inte använder normalfördelningen, pga att urvalet är för litet (<30) (t ex Students t-test, t-testet ). - om man har tre eller flera grupper som man jämför emellan, används den s k. F-testet - När man jämför procent, används oftast det sk. 2 (chi-kvadrat) (chi-square) testet. Där behöver variabeln inte vara metrisk man kan använda testet för signifikansprövning av t ex skillnaderna i hur en variabel på nominalskala fördelar sig i de olika delarna av urvalet dvs cellerna i en korstabell. En av de mest använda testerna för statistisk signifikans. * i princip jämför man den faktiska fördelningen med den fördelning som skulle vara att förväntas, om fördelningen skulle vara oberoende av den variabel som vi tror vara orsaken till skillnaderna. 4

5 - Några anmärkningar till slut: a) statistisk signifikans är inte samma som teoretisk signifikans: teoretiskt signifikant teoretiskt icke signifikant statistiskt signifikant (1) (2) statistiskt icke signifikant (3) (4) (1) är bra: man har hittat en statistiskt signifikant skillnad som har teoretisk betydelse. (4) är bra. (2) är ett trivialt resultat eller en tautologi (t ex de som tycker om konst i allmänhet tycker också om modern konst mer än de andra). (3) betyder att man inte hittade de skillnader man var ute efter. Man kan förkasta hypotesen; eller det fanns ett fel i metoden (reliabiliteten är så låg att de verkliga skillnaderna inte blir statistiskt signifikanta); eller det finns någon samverkande variabel som blandar bort skillnaderna. I det senare fallet kan man ännu undersöka mindre delar av urvalet (t ex män och kvinnor i åldern 21-35) och kontrollera, om skillnaden man var ute efter (t ex mellan män och kvinnor) skulle bli statistiskt signifikant inom den. Eller man kan göra ett nytt försök med större urval. b) man har inget objektivt sätt att bestämma, hur hög statistisk signifikans (hurdan signifikansnivå) som krävs * man kan fundera på de möjliga följderna av att man drar fel slutsatser. Hurdan risk av felbedömning kan man stå ut med? * ofta presenterar man resultaten på så sätt, att man t ex med hjälp av ett varierande antal asterisker (*, **, ***...) i tabellen visar vilka skillnader som är signifikanta på vilka nivåer c) ett statistiskt test säger ingenting om kausalitet, och kan inte heller bevisa att en teori är sann. 5

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Statistiska analyser C2 Inferensstatistik. Wieland Wermke

Statistiska analyser C2 Inferensstatistik. Wieland Wermke + Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Datorlaboration 2 Konfidensintervall & hypotesprövning

Datorlaboration 2 Konfidensintervall & hypotesprövning Statistik, 2p PROTOKOLL Namn:...... Grupp:... Datum:... Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta den statistiska

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

FACIT (korrekta svar i röd fetstil)

FACIT (korrekta svar i röd fetstil) v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Inferensstatistik. Hypostesprövning - Signifikanstest

Inferensstatistik. Hypostesprövning - Signifikanstest 011-11-04 Inferensstatistik En uppsättning metoder för att dra slutsatser om populationers egenskaper (parametrar) med hjälp av stickprovs egenskaper (statistik) Hypostesprövning - Signifikanstest Ett

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

EXAMINATION KVANTITATIV METOD

EXAMINATION KVANTITATIV METOD ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-09 (090209) Examinationen består av 8 frågor, några med tillhörande följdfrågor. Frågorna 4-7 är knutna till

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna

Läs mer

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK

VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

Kvantitativ forskning C2. Viktiga begrepp och univariat analys

Kvantitativ forskning C2. Viktiga begrepp och univariat analys + Kvantitativ forskning C2 Viktiga begrepp och univariat analys + Delkursen mål n Ni har grundläggande kunskaper över statistiska analyser (univariat, bivariat) n Ni kan använda olika programvaror för

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Statistiska analyser C2 Bivariat analys. Wieland Wermke

Statistiska analyser C2 Bivariat analys. Wieland Wermke + Statistiska analyser C2 Bivariat analys Wieland Wermke + Bivariat analys n Mål: Vi vill veta något om ett samband mellan två fenomen n à inom kvantitativa strategier kan man undersöka detta genom att

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Differentiell psykologi

Differentiell psykologi Differentiell psykologi Torsdag 8 september 2011 Reliabilitet Dagens agenda MDI skattningsövning resultat av kriterietolkning Värt att veta om normalfördelningen Frågesport Kort info om kursboken : Personality

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Gamla tentor (forts) ( x. x ) ) 2 x1

Gamla tentor (forts) ( x. x ) ) 2 x1 016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån

Läs mer

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14

KA RKUNSKAP. Vad vet samhällsvetarna om sin kår? Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc STAA31 HT14 KA RKUNSKAP Julius Schmidt, Hannes Jägerstedt, Hanna Johansson, Miro Beríc Vad vet samhällsvetarna om sin kår? STAA31 HT14 Handledare: Peter Gustafsson Ekonomihögskolan, Statistiska institutionen Innehållsförteckning

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Kursnamn: Vetenskapsteori och grundläggande forskningsmetod

Kursnamn: Vetenskapsteori och grundläggande forskningsmetod KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Ansvarig lärare: Magnus Lindwall Tentamensdatum: 2014-02-18 kl. 13:30 17:30 Tillåtna hjälpmedel: Miniräknare Tentan består

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Tidigare exempel. Några beteckningar. Stratifierat urval

Tidigare exempel. Några beteckningar. Stratifierat urval Tidigare exempel F4 Urvalsmetoder: (kap 9.5) Ursprung: Linda Wänström Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

ANOVA Mellangruppsdesign

ANOVA Mellangruppsdesign ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,

Läs mer

Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt.

Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt. Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-09-23 kl. 09:00 13:00

Läs mer

Översikt. Experimentell metodik. Mer exakt. Människan är en svart låda. Exempel. Vill visa orsakssamband. Sidan 1

Översikt. Experimentell metodik. Mer exakt. Människan är en svart låda. Exempel. Vill visa orsakssamband. Sidan 1 Översikt Experimentell metodik Vad är ett kognitionspsykologiskt experiment? Metod Planering och genomförande av experiment Risker för att misslyckas Saker man måste tänka på och tolkning av data 2 Människan

Läs mer

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning.

Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning. Biostatistik: Begrepp & verktyg Kvantitativa Metoder II: teori och tillämpning Lovisa.Syden@ki.se BIOSTATISTIK att hantera slumpmässiga variationer! BIO datat handlar om levande saker STATISTIK beskriva

Läs mer

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test

Läs mer

Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval

Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta

Läs mer

SOPA62 - Kunskapsproduktion i socialt arbete

SOPA62 - Kunskapsproduktion i socialt arbete SOPA62 - Kunskapsproduktion i socialt arbete 2. Mer hypotesprövning och något om rapporten 1 Evidensbaserad behandling Behandling bygger på vetenskap och beprövad erfarenhet. "Beprövad erfarenhet" får

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 8 Statistiska metoder 1 Dagens föreläsning o Chi-två-test Analys av enkla frekvenstabeller Analys av korstabeller (tvåvägs-tabeller) Problem med detta test o Fishers exakta test 2 Analys av

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

Föreläsning 7 FK2002

Föreläsning 7 FK2002 Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har

Läs mer

Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: Tid:

Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB. TentamensKod: Tentamensdatum: Tid: Vetenskaplig teori och metod Provmoment: Tentamen 2 Ladokkod: 61ST01 Tentamen ges för: SSK06 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-11-09 Tid: 09.00-11.00 Hjälpmedel: Inga hjälpmedel

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Statistik Lars Valter

Statistik Lars Valter Lars Valter LARC (Linköping Academic Research Centre) Enheten för hälsoanalys, Centrum för hälso- och vårdutveckling Statistics, the most important science in the whole world: for upon it depends the applications

Läs mer

SOPA62 - Kunskapsproduktion i socialt arbete

SOPA62 - Kunskapsproduktion i socialt arbete SOPA62 - Kunskapsproduktion i socialt arbete 1. Beskrivande statistik och lite hypotesprövning 1 Kvantitativ vs Kvalitativ metod Kvantitativt: Man definierar precisa begrepp och ställer därefter frågor

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Urvalsmetoder: Stratifierat urval (kap 9.5)

Urvalsmetoder: Stratifierat urval (kap 9.5) F4 Urvalsmetoder: Stratifierat urval (kap 9.5) Tidigare exempel Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

7.3.3 Nonparametric Mann-Whitney test

7.3.3 Nonparametric Mann-Whitney test 7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi

Läs mer

Statistisk signifikans och effektstorlek. Ett bildspel av Horst LöfgrenL 2009

Statistisk signifikans och effektstorlek. Ett bildspel av Horst LöfgrenL 2009 Statistisk signifikans och effektstorlek Ett bildspel av Horst LöfgrenL 2009 Varför r används nds signifikansbegreppet alltför r ofta vid rapportering av forskningsresultat och effektstorlek alltför r

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Bakgrund Introduktion till test Introduktion Formulera lämplig hypotes Bestäm en testvariabel Bestäm en beslutsregel Fatta ett beslut När det

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Elementa om Variansanalys

Elementa om Variansanalys Elementa om Variansanalys för kursen sf9, Statistik för bioteknik Harald Lang 06 Envägs variansanalys. Kapitel tio beskrev metoder för att testa om x,, xk och y, ym kommer från fördelningar med samma väntevärde

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 29 oktober, 2016 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer