Gamla tentor (forts) ( x. x ) ) 2 x1

Storlek: px
Starta visningen från sidan:

Download "Gamla tentor (forts) ( x. x ) ) 2 x1"

Transkript

1 Gamla tentor (forts) ( x ) x1 x ) ( 1 x 1

2 En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån hos patienter med något förhöjt blodsockervärde. Härvid görs ett slumpmässigt urval av individer som vid rutinmätningar av blodsockernivån visat sig ha ett lätt förhöjt värde. Mätning av blodsockernivå görs både före träning+kost-intervention ( Före ) och efter ( Efter ) en tid då programmet, enligt förhandshypoteser, skulle ha gett tydlig effekt. Erfarenheten säger att blodsockernivåerna är approximativt normalfördelade. OBS! Även om du är intresserad av att se om behandlingen sänker blodsockernivå kan du inte helt säkert utesluta att den faktiskt kan motsatt effekt, något som du behöver tänka på vid dina statistiska analyser. (1 p) c) Vi antar nu istället att blodsockernivåerna INTE är normalfördelade. Upprepa hypotesprövningen under dessa ändrade förutsättningar medan andra förutsättningar kvarstår oförändrade. Ange beteckningen på den metod du nu använder. Vilken blir slutsatsen avseende effekten av behandlingen när du använder denna metod? (4 p) Fortfarande är förstås data parade men då populationerna inte är normalfördelade kan t-test ej användas. Vi använder därför den icke-parametriska motsvarigheten för parade variabler, nämligen Wilcoxon s teckenrangtest. Genomförande enligt nedan: Nollhypotes: Ingen skillnad i median före och efter Alternativ hypotes (tvåsidig): högre eller lägre blodsockernivå efteråt. Signifikansnivå: Vi väljer 0.05 Rangordna värdena från lägst till högst absolutvärde och summera sedan rangtalen för negativ (T - ) respektive positiv (T + ) förändring. Samma värden ger medeltal för de två möjliga rangtalen: T - = =0 T + =1 n=6 då differensen noll inte förekommer. Titta nu på det kritiska värdet som den lägsta rangsumman högst får anta för tvåsidigt test med signifikansnivå 0.05 och n=6. Detta blir T 0.05 (6)=0. Då den lägsta rangsumman är 1 kan vi inte förkasta nollhypotesen. Vi kan alltså inte påvisa någon effekt av livsstilsinterventionen. d) Vilka av metoderna i b och c kan förväntas ha högst styrka (power) och hur stämmer detta med dina fynd? Motivera ditt svar och definiera även begreppet power. ( p) Power (styrka) är sannolikheten att förkasta en nollhypotes som verkligen är falsk. Den parametriska metoden (t-testen) kan förväntas ha högst styrka då den utnyttjar all kvantitativ information i data avseende storleken på alla individuella förändringar. Den icke-parametriska metoden utnyttjar enbart information om rangordningar. Detta stämmer väl med fynden ovan då jag kan förkasta nollhypotesen med användande av t-testen men ej med Wilcoxon s teckenrangtest.

3 Choosing test-statistic in Wilcoxon signed rank test For a two tailed test the test statistic is the smaller of T + and T - For a one tailed test, where the alternative hypothesis is that the median is greater than a given value, the test statistic is T - For a one tailed test, where the alternative hypothesis is that the median is less than a given value, the test statistic is T +. N? Ignore equal values reduces n to be used in table 3. Antag att du, i en specifik statistisk hypotesprövning, finner att p = 0. men du har valt signifikansnivån p<0.05. Vad står sannolikheten p<0.05 för. Dvs. vad innebär sannolikheten att begå ett typ I fel vid statistisk hypotesprövning. (1 p) Svar: Maximalt acceptabla sannolikheten att nollhypotesen förkastas om den är sann är 5 %. 4. Antag att 30 % är rökare av personerna i en grupp på 100 personer som fått hjärtinfarkt. Motsvarande siffra är 10 % i en grupp på 150 personer som inte fått hjärtinfarkt. Ange ett lämpligt statistiskt test som kan används för att testa om proportionen rökare skiljer sig mellan grupperna med och utan hjärtinfarkt. (1 p) Z-test för proportioner 5. Du har en samvariation mellan två slumpvariabler x och y enligt följande tabell. (3 p) a) Ange regressionskoefficient och korrelationskoefficient. ( p) x y Svar: Regressionskoefficienten (lutningen) =-4/=- Korrelationskoefficienten = -1 då alla punkter ligger perfekt på en linje b) Hur är determinationskoefficienten relaterad till korrelationskoefficienten? (1 p) Svar: Determinationskoefficienten är korrelationskoefficienten (r) i kvadrat. 3

4 Du har gjort mätningar av en läkemedels effekt hos en grupp personer och vill nu presentera dina data med ett lägesmått (ett genomsnittsvärde) och ett spridningsmått. Vad gäller genomsnittsvärden funderar du på att använda antingen median eller aritmetiskt medelvärde och vad gäller spridningsmått funderar du på antingen standardavvikelse eller kvartilavstånd. Dina data visar sig ha ett medelvärde som är avsevärt högre än medianvärdet. a) Hur beräknas (definieras) aritmetiskt medelvärde respektive median? (1 p) Medelvärdet beräknas som summan av mätvärdena delat med antalet värden. Medianvärdet är det värde som ligger i mitten, dvs det finns lika många mätvärden som är mindre och som är större. Om vi har ett jämnt antal mätvärden beräknas medianvärdet som medelvärdet av de två mätvärdena i mitten. 6. Du har gjort mätningar av en läkemedels effekt hos en grupp personer och vill nu presentera dina data med ett lägesmått (ett genomsnittsvärde) och ett spridningsmått. Vad gäller genomsnittsvärden funderar du på att använda antingen median eller aritmetiskt medelvärde och vad gäller spridningsmått funderar du på antingen standardavvikelse eller kvartilavstånd. Dina data visar sig ha ett medelvärde som är avsevärt högre än medianvärdet. b) Vad menas med kvartilavstånd? (1 p) Detta är, när det används som spridningsmått, skillnaden mellan första och tredje kvartilgränserna (ibland lite slarvigt mellan första och tredje kvartilen ). Inom kvartilavståndet finns 50 % av alla mätdata och det är de data som är mest centrala. De tre kvartilgränserna delar ett material i 4 olika delar. Här är första kvartilgränsen det värde för vilket 5 % av alla mätvärden är lägre. Den andra kvartilgränsen är lika med medianen och, således, det värde för vilket 50 % av mätvärden är lägre. Slutligen, tredje kvartilgränsen är det värde för vilket 5 % av mätvärdena är högre och alltså 75 % av mätvärdena lägre. 6. Du har gjort mätningar av en läkemedels effekt hos en grupp personer och vill nu presentera dina data med ett lägesmått (ett genomsnittsvärde) och ett spridningsmått. Vad gäller genomsnittsvärden funderar du på att använda antingen median eller aritmetiskt medelvärde och vad gäller spridningsmått funderar du på antingen standardavvikelse eller kvartilavstånd. c) Hur väljer du lämpligen att presentera dina data? MOTIVERA SVARET! ( p) Då medianvärdet är avsevärt lägre än medelvärdet tyder detta på att fördelningen av mätvärdena är skev med en lång svans uppåt (en positivt sned fördelning). Därför är det lämpligt att presentera data med median som lägesmått och kvartilavstånd som spridningsmått. Medianvärdet säger i detta fall mer om var tyngdpunkten av mätvärdena finns och interkvartilavståndet kräver inte förekomsten av en symmetrisk fördelning för att tolkas på adekvat sätt. 4

5 Uttryck i ord, skillnaden mellan den typ av information som rapporteras av standardavvikelsen respektive medelvärdets medelfel ( standard error of the mean ; SEM). ( p) -Standardavvikelsen ger information om spridningen i en population eller ett stickprov medan -SEM ger information om hur noggrant medelvärdet bestämts. SEM är standardavvikelsen för distributionen av medelvärdet. En sådan distribution fås om medelvärdet bestäms ett stort antal gånger genom slumpmässiga stickprov med visst antal observationer (n) från en given population. 8. Antag att du önskar designa en studie för att undersöka om en given koncentration av ett nytt läkemedel sänker blodtrycket hos en viss typ av försöksdjur. Det är lämpligt att överväga statistisk metod före studien sätter igång. Du funderar över att designa studien för att kunna använda ett parat t-test eller Wilcoxon s tecken-rangtest (Wilcoxon signed rank test). a) Hur kan studien praktiskt genomföras för att möjliggöra användande av något av dessa tester? (1 p) Varje djur får vara sin egen kontroll, dvs blodtrycket mäts både före och efter läkemedelsbehandlingen. Alternativt används matchade kontroller, dvs. varje individ i kontrollgruppen matchas mot en individ i testgruppen med avseende på exv kön, vikt och andra egenskaper. 8. Antag att du önskar designa en studie för att undersöka om en given koncentration av ett nytt läkemedel sänker blodtrycket hos en viss typ av försöksdjur. Det är lämpligt att överväga statistisk metod före studien sätter igång. Du funderar över att designa studien för att kunna använda ett parat t-test eller Wilcoxon s tecken-rangtest (Wilcoxon signed rank test). b) Vilken blir noll-hypotesen, respektive den alternativa (forskningshypotesen) i den aktuella studien. (1 p) Nollhypotes: Läkemedlet ändrar inte blodtrycket Alternativ hypotes: Läkemedlet ändrar blodtrycket 5

6 Antag att du önskar designa en studie för att undersöka om en given koncentration av ett nytt läkemedel sänker blodtrycket hos en viss typ av försöksdjur. Det är lämpligt att överväga statistisk metod före studien sätter igång. Du funderar över att designa studien för att kunna använda ett parat t-test eller Wilcoxon s tecken-rangtest (Wilcoxon signed rank test). c) Vilka förhållanden avgör om du kommer att välja t-test eller Wilcoxon s tecken-rangtest och varför ska det senare testet användas i sista hand? Ge ett detaljerat svar då beslutet inte är trivialt det finns många faktorer att ta hänsyn till. (4 p) Utifrån, exv pilotstudier eller tidigare erfarenhet vet jag kanske om materialet är normalfördelat (krävs för t-test) eller ej. Om det inte är normalfördelat kan jag använda n> approx. 30 då även icke normalfördelade populationer ger approximativt normalfördelade stickprovsmedelvärden. Alternativt, om distributionen är sned uppåt kan kanske logaritmering används för att transformera distributionen till en normalfördelning med möjlighet att använda t-test. Om inget av ovanstående är möjligt måste det icke-parametriska Wilcoxon-testet användas. Detta gör dock att man förlora styrka hos testet då all tillgänglig information inte kan användas. I detta senare test utgår man ju bara från rangordningen av förändringarna och inte de riktiga numeriska värdena. 9. Tabellen nedan beskriver hur förekomst av en viss sjukdom fördelar sig mellan tre olika patientgrupper. Beskriv proceduren för att testa hypotesen att det finns olika proportioner av sjuka patienter I de olika grupperna A - C. Beskriv proceduren inklusive angivande av nollhypotes och alternative hypotes samt val av testfunktion. Beräkna sedan värdet på denna funktion och drag statistiska slutsatser (fatta ett statistiskt beslut). (5 p) H 0 Patientgrupperna skiljer sig inte år. H 1 Patientgrupperna skiljer sig åt. α = 0.05 Test χ Patient Patientg Patientg gruppa rupp B rupp C Total t Friska Sjuka Totalt antal PatientgruppA Patientgrupp B Patientgrupp C Totalt Obs Friska 00 Expe cted Obs Exp. Obs Exp. (400/ 500)* 30= Sjuka Totalt antal (O E) (00 184) (30 46) ( ) (7 1.4) ( ) (63 3.6) E d.f. (r-1) (k-1) = Critical value: 0,05 () = och faktiskt gäller även att 0,001 () = Alltså, det finns en skillnad mellan grupperna (p<0.001) 6

7 Korrelation och regression Ibland måste korrelationskoefficienten räknas ut som Spearman s r snarare än Pearson s r. Under vilka förhållanden gäller detta, dvs. nämn något om de antaganden som ligger till grund för Pearson s r. ( p) För Pearson s r krävs ett tvådimensionellt normalfördelat material, vilket innebär att residualerna mellan data och linjen också är normalfördelade. I övrigt gäller både för Spearman s och Pearson s r att man måste ha oberoende slumpmässig stickprov och annat självklart. 11. Vad är en box-and-whisker plot och vilken information ger en sådan? När är den lämplig att använda istället för ett sk spridningsdiagram ( scatter plot ) (3 p) En box and whisker plot illustrerar data (utspridda längs y- axeln) med en central horisontell linje motsvarande medianen och en box (rektangel) som täcker det område längs y-axeln där de mittersta två kvartilerna (de 50 % av data som finns närmast medianen) är lokaliserade. Slutligen illustreras hela variationsbredden (range) med whiskers (T-formade linjer) som sticker ut från rektanglarna. Box-and-whisker plots är användbara för stora datamaterial (istället för spridningsdiagram vid små datamaterial) som inte är symmetriskt fördelade för at illustrera distributionens ungefärliga utseende. 7

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

7.3.3 Nonparametric Mann-Whitney test

7.3.3 Nonparametric Mann-Whitney test 7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

a) Facit till räkneseminarium 3

a) Facit till räkneseminarium 3 3.1 Fig 1. Sammanlagt 30 individer rekryteras till studien. Individerna randomiseras till en av de fyra studiearmarna (1: 500 mg artemisinin i kombination med piperakin, 2: 100 mg AMP1050 i kombination

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera)

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera) KLEINLEKTION Område statistik. Lämplig inom kurserna Matematik 2b och 2c. Centralt innehåll i Matematik 2b och 2c: Statistiska metoder för rapportering av observationer och mätdata från undersökningar

Läs mer

SOPA62 - Kunskapsproduktion i socialt arbete

SOPA62 - Kunskapsproduktion i socialt arbete SOPA62 - Kunskapsproduktion i socialt arbete 1. Beskrivande statistik och lite hypotesprövning 1 Kvantitativ vs Kvalitativ metod Kvantitativt: Man definierar precisa begrepp och ställer därefter frågor

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna

Läs mer

Icke-parametriska/fördelningsfria test. Finansiell statistik, vt-05. Teckentest. Teckentest. Vi gör observationer för =1,, på variablerna.

Icke-parametriska/fördelningsfria test. Finansiell statistik, vt-05. Teckentest. Teckentest. Vi gör observationer för =1,, på variablerna. Ickeparametriska/fördelningsfria test Vi gör observationer för,, på variablerna,,, eller Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt05 F0 ickeparametriska

Läs mer

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Kapitel 10 Hypotesprövning

Kapitel 10 Hypotesprövning Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Laboration 4 Statistiska test

Laboration 4 Statistiska test Matematikcentrum Matematisk statistik Lunds universitet MASB11 HT14, lp2 Laboration 4 Statistiska test 2015-01-09 Del I: Styrkefunktion Del II: Standardtest Syftet med laborationen är att ni ska bekanta

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion Matematikcentrum Matematisk statistik Lunds universitet MASB11 VT15, lp3 Laboration 4 Statistiska test 2015-03-06 Del I: Standardtest Del II: Styrkefubktion Syftet med laborationen är att ni ska bekanta

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng. UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Kent W. Nilsson. Falun

Kent W. Nilsson. Falun Kent W. Nilsson Falun 2016 10 05 Att tänka statistiskt Förr, kunskap baserades på auktoriteter; Kungen, krykan m.m. Industriell- och teknisk revolution De som inte har möjlighet och kunskap att ta till

Läs mer

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson January 3, 2017 January 3, 2017 1 / 84 January 3, 2017 2 / 84 Part I Lärandemål Kvantitativ undersökning Insamling av kvantitativa data Inledning January 3, 2017 3 / 84 Lärandemål Lärandemål definiera

Läs mer

Mata in data i Excel och bearbeta i SPSS

Mata in data i Excel och bearbeta i SPSS Mata in data i Excel och bearbeta i SPSS I filen enkät.pdf finns svar från fyra män taget från en stor undersökning som gjordes i början av 70- talet. Ni skall mata in dessa uppgifter på att sätt som är

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

2.1 Minitab-introduktion

2.1 Minitab-introduktion 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Medicinsk statistik Varför behöver Ni kunskap i medicinsk statistik? Självständigt arbete Framtida

Läs mer

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!! Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-09-19 kl. 09:00 13:00

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-11-16 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

Population. Observationsenhet. Stickprov. Variabel Ålder Kön. Blodtryck 120/80. Värden. 37 år. Kvinna

Population. Observationsenhet. Stickprov. Variabel Ålder Kön. Blodtryck 120/80. Värden. 37 år. Kvinna Varför statistik Vi vill sammanfatta stora mängder av data i syfte att: Kvantitativt beskriva fenomen Undersöka samband mellan variabler Undersöka skillnader mellan grupper i något avseende Undersöka skillnader

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt.

Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt. Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-09-23 kl. 09:00 13:00

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer

Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

TAMS65 - Föreläsning 6 Hypotesprövning

TAMS65 - Föreläsning 6 Hypotesprövning TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33

Läs mer

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor

Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta

Läs mer

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-09-27 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att

Läs mer

Föreläsning 5 och 6.

Föreläsning 5 och 6. Föreläsning 5 och 6. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Icke-parametriska metoder Föreläsningarnas innehåll: Allmänt, icke-parametrisk

Läs mer

Konfidensintervall, Hypotestest

Konfidensintervall, Hypotestest Föreläsning 8 (Kap. 8, 9): Konfidensintervall, Hypotestest Marina Axelson-Fisk 11 maj, 2016 Konfidensintervall För i (, ). Hypotestest Idag: Signifikansnivå och p-värde Test av i (, ) när är känd Test

Läs mer

Bearbetning och Presentation

Bearbetning och Presentation Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.

Läs mer

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )

TENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller ) TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare

Läs mer

BIOSTATISTIK OCH EPIDEMIOLOGI

BIOSTATISTIK OCH EPIDEMIOLOGI BIOSTTISTIK OCH EPIDEMIOLOGI 1. DTTYPER... 3 1.1. Kvalitativa data... 3 1.2. Kvantitativa data... 3 2. DESKRIPTIV STTISTIK... 5 2.1. Lägesmått... 5 2.2. Spridningsmått... 6 2.3. Grafisk beskrivning...

Läs mer

Sannolikheter och kombinatorik

Sannolikheter och kombinatorik Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod:

Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod: Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod: 61ST01 Tentamen ges för: GSJUK12h SSK11 VHB 7,5 Hp (2hp) Tentamenskod: Tentamensdatum: 2015-02-20 Tid: 09-12 Hjälpmedel: Inga hjälpmedel Totalt

Läs mer

Kursnamn: Vetenskapsteori och grundläggande forskningsmetod

Kursnamn: Vetenskapsteori och grundläggande forskningsmetod KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Ansvarig lärare: Magnus Lindwall Tentamensdatum: 2013-10-02 kl. 12:30 16:30 Tillåtna hjälpmedel: Miniräknare Tentan består

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Examinationsuppgift 2014

Examinationsuppgift 2014 Matematik och matematisk statistik 5MS031 Statistik för farmaceuter Per Arnqvist Examinationsuppgift 2014-10-09 Sid 1 (5) Examinationsuppgift 2014 Hemtenta Statistik för farmaceuter 3 hp LYCKA TILL! Sid

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur

Läs mer