Gamla tentor (forts) ( x. x ) ) 2 x1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Gamla tentor (forts) ( x. x ) ) 2 x1"

Transkript

1 Gamla tentor (forts) ( x ) x1 x ) ( 1 x 1

2 En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån hos patienter med något förhöjt blodsockervärde. Härvid görs ett slumpmässigt urval av individer som vid rutinmätningar av blodsockernivån visat sig ha ett lätt förhöjt värde. Mätning av blodsockernivå görs både före träning+kost-intervention ( Före ) och efter ( Efter ) en tid då programmet, enligt förhandshypoteser, skulle ha gett tydlig effekt. Erfarenheten säger att blodsockernivåerna är approximativt normalfördelade. OBS! Även om du är intresserad av att se om behandlingen sänker blodsockernivå kan du inte helt säkert utesluta att den faktiskt kan motsatt effekt, något som du behöver tänka på vid dina statistiska analyser. (1 p) c) Vi antar nu istället att blodsockernivåerna INTE är normalfördelade. Upprepa hypotesprövningen under dessa ändrade förutsättningar medan andra förutsättningar kvarstår oförändrade. Ange beteckningen på den metod du nu använder. Vilken blir slutsatsen avseende effekten av behandlingen när du använder denna metod? (4 p) Fortfarande är förstås data parade men då populationerna inte är normalfördelade kan t-test ej användas. Vi använder därför den icke-parametriska motsvarigheten för parade variabler, nämligen Wilcoxon s teckenrangtest. Genomförande enligt nedan: Nollhypotes: Ingen skillnad i median före och efter Alternativ hypotes (tvåsidig): högre eller lägre blodsockernivå efteråt. Signifikansnivå: Vi väljer 0.05 Rangordna värdena från lägst till högst absolutvärde och summera sedan rangtalen för negativ (T - ) respektive positiv (T + ) förändring. Samma värden ger medeltal för de två möjliga rangtalen: T - = =0 T + =1 n=6 då differensen noll inte förekommer. Titta nu på det kritiska värdet som den lägsta rangsumman högst får anta för tvåsidigt test med signifikansnivå 0.05 och n=6. Detta blir T 0.05 (6)=0. Då den lägsta rangsumman är 1 kan vi inte förkasta nollhypotesen. Vi kan alltså inte påvisa någon effekt av livsstilsinterventionen. d) Vilka av metoderna i b och c kan förväntas ha högst styrka (power) och hur stämmer detta med dina fynd? Motivera ditt svar och definiera även begreppet power. ( p) Power (styrka) är sannolikheten att förkasta en nollhypotes som verkligen är falsk. Den parametriska metoden (t-testen) kan förväntas ha högst styrka då den utnyttjar all kvantitativ information i data avseende storleken på alla individuella förändringar. Den icke-parametriska metoden utnyttjar enbart information om rangordningar. Detta stämmer väl med fynden ovan då jag kan förkasta nollhypotesen med användande av t-testen men ej med Wilcoxon s teckenrangtest.

3 Choosing test-statistic in Wilcoxon signed rank test For a two tailed test the test statistic is the smaller of T + and T - For a one tailed test, where the alternative hypothesis is that the median is greater than a given value, the test statistic is T - For a one tailed test, where the alternative hypothesis is that the median is less than a given value, the test statistic is T +. N? Ignore equal values reduces n to be used in table 3. Antag att du, i en specifik statistisk hypotesprövning, finner att p = 0. men du har valt signifikansnivån p<0.05. Vad står sannolikheten p<0.05 för. Dvs. vad innebär sannolikheten att begå ett typ I fel vid statistisk hypotesprövning. (1 p) Svar: Maximalt acceptabla sannolikheten att nollhypotesen förkastas om den är sann är 5 %. 4. Antag att 30 % är rökare av personerna i en grupp på 100 personer som fått hjärtinfarkt. Motsvarande siffra är 10 % i en grupp på 150 personer som inte fått hjärtinfarkt. Ange ett lämpligt statistiskt test som kan används för att testa om proportionen rökare skiljer sig mellan grupperna med och utan hjärtinfarkt. (1 p) Z-test för proportioner 5. Du har en samvariation mellan två slumpvariabler x och y enligt följande tabell. (3 p) a) Ange regressionskoefficient och korrelationskoefficient. ( p) x y Svar: Regressionskoefficienten (lutningen) =-4/=- Korrelationskoefficienten = -1 då alla punkter ligger perfekt på en linje b) Hur är determinationskoefficienten relaterad till korrelationskoefficienten? (1 p) Svar: Determinationskoefficienten är korrelationskoefficienten (r) i kvadrat. 3

4 Du har gjort mätningar av en läkemedels effekt hos en grupp personer och vill nu presentera dina data med ett lägesmått (ett genomsnittsvärde) och ett spridningsmått. Vad gäller genomsnittsvärden funderar du på att använda antingen median eller aritmetiskt medelvärde och vad gäller spridningsmått funderar du på antingen standardavvikelse eller kvartilavstånd. Dina data visar sig ha ett medelvärde som är avsevärt högre än medianvärdet. a) Hur beräknas (definieras) aritmetiskt medelvärde respektive median? (1 p) Medelvärdet beräknas som summan av mätvärdena delat med antalet värden. Medianvärdet är det värde som ligger i mitten, dvs det finns lika många mätvärden som är mindre och som är större. Om vi har ett jämnt antal mätvärden beräknas medianvärdet som medelvärdet av de två mätvärdena i mitten. 6. Du har gjort mätningar av en läkemedels effekt hos en grupp personer och vill nu presentera dina data med ett lägesmått (ett genomsnittsvärde) och ett spridningsmått. Vad gäller genomsnittsvärden funderar du på att använda antingen median eller aritmetiskt medelvärde och vad gäller spridningsmått funderar du på antingen standardavvikelse eller kvartilavstånd. Dina data visar sig ha ett medelvärde som är avsevärt högre än medianvärdet. b) Vad menas med kvartilavstånd? (1 p) Detta är, när det används som spridningsmått, skillnaden mellan första och tredje kvartilgränserna (ibland lite slarvigt mellan första och tredje kvartilen ). Inom kvartilavståndet finns 50 % av alla mätdata och det är de data som är mest centrala. De tre kvartilgränserna delar ett material i 4 olika delar. Här är första kvartilgränsen det värde för vilket 5 % av alla mätvärden är lägre. Den andra kvartilgränsen är lika med medianen och, således, det värde för vilket 50 % av mätvärden är lägre. Slutligen, tredje kvartilgränsen är det värde för vilket 5 % av mätvärdena är högre och alltså 75 % av mätvärdena lägre. 6. Du har gjort mätningar av en läkemedels effekt hos en grupp personer och vill nu presentera dina data med ett lägesmått (ett genomsnittsvärde) och ett spridningsmått. Vad gäller genomsnittsvärden funderar du på att använda antingen median eller aritmetiskt medelvärde och vad gäller spridningsmått funderar du på antingen standardavvikelse eller kvartilavstånd. c) Hur väljer du lämpligen att presentera dina data? MOTIVERA SVARET! ( p) Då medianvärdet är avsevärt lägre än medelvärdet tyder detta på att fördelningen av mätvärdena är skev med en lång svans uppåt (en positivt sned fördelning). Därför är det lämpligt att presentera data med median som lägesmått och kvartilavstånd som spridningsmått. Medianvärdet säger i detta fall mer om var tyngdpunkten av mätvärdena finns och interkvartilavståndet kräver inte förekomsten av en symmetrisk fördelning för att tolkas på adekvat sätt. 4

5 Uttryck i ord, skillnaden mellan den typ av information som rapporteras av standardavvikelsen respektive medelvärdets medelfel ( standard error of the mean ; SEM). ( p) -Standardavvikelsen ger information om spridningen i en population eller ett stickprov medan -SEM ger information om hur noggrant medelvärdet bestämts. SEM är standardavvikelsen för distributionen av medelvärdet. En sådan distribution fås om medelvärdet bestäms ett stort antal gånger genom slumpmässiga stickprov med visst antal observationer (n) från en given population. 8. Antag att du önskar designa en studie för att undersöka om en given koncentration av ett nytt läkemedel sänker blodtrycket hos en viss typ av försöksdjur. Det är lämpligt att överväga statistisk metod före studien sätter igång. Du funderar över att designa studien för att kunna använda ett parat t-test eller Wilcoxon s tecken-rangtest (Wilcoxon signed rank test). a) Hur kan studien praktiskt genomföras för att möjliggöra användande av något av dessa tester? (1 p) Varje djur får vara sin egen kontroll, dvs blodtrycket mäts både före och efter läkemedelsbehandlingen. Alternativt används matchade kontroller, dvs. varje individ i kontrollgruppen matchas mot en individ i testgruppen med avseende på exv kön, vikt och andra egenskaper. 8. Antag att du önskar designa en studie för att undersöka om en given koncentration av ett nytt läkemedel sänker blodtrycket hos en viss typ av försöksdjur. Det är lämpligt att överväga statistisk metod före studien sätter igång. Du funderar över att designa studien för att kunna använda ett parat t-test eller Wilcoxon s tecken-rangtest (Wilcoxon signed rank test). b) Vilken blir noll-hypotesen, respektive den alternativa (forskningshypotesen) i den aktuella studien. (1 p) Nollhypotes: Läkemedlet ändrar inte blodtrycket Alternativ hypotes: Läkemedlet ändrar blodtrycket 5

6 Antag att du önskar designa en studie för att undersöka om en given koncentration av ett nytt läkemedel sänker blodtrycket hos en viss typ av försöksdjur. Det är lämpligt att överväga statistisk metod före studien sätter igång. Du funderar över att designa studien för att kunna använda ett parat t-test eller Wilcoxon s tecken-rangtest (Wilcoxon signed rank test). c) Vilka förhållanden avgör om du kommer att välja t-test eller Wilcoxon s tecken-rangtest och varför ska det senare testet användas i sista hand? Ge ett detaljerat svar då beslutet inte är trivialt det finns många faktorer att ta hänsyn till. (4 p) Utifrån, exv pilotstudier eller tidigare erfarenhet vet jag kanske om materialet är normalfördelat (krävs för t-test) eller ej. Om det inte är normalfördelat kan jag använda n> approx. 30 då även icke normalfördelade populationer ger approximativt normalfördelade stickprovsmedelvärden. Alternativt, om distributionen är sned uppåt kan kanske logaritmering används för att transformera distributionen till en normalfördelning med möjlighet att använda t-test. Om inget av ovanstående är möjligt måste det icke-parametriska Wilcoxon-testet användas. Detta gör dock att man förlora styrka hos testet då all tillgänglig information inte kan användas. I detta senare test utgår man ju bara från rangordningen av förändringarna och inte de riktiga numeriska värdena. 9. Tabellen nedan beskriver hur förekomst av en viss sjukdom fördelar sig mellan tre olika patientgrupper. Beskriv proceduren för att testa hypotesen att det finns olika proportioner av sjuka patienter I de olika grupperna A - C. Beskriv proceduren inklusive angivande av nollhypotes och alternative hypotes samt val av testfunktion. Beräkna sedan värdet på denna funktion och drag statistiska slutsatser (fatta ett statistiskt beslut). (5 p) H 0 Patientgrupperna skiljer sig inte år. H 1 Patientgrupperna skiljer sig åt. α = 0.05 Test χ Patient Patientg Patientg gruppa rupp B rupp C Total t Friska Sjuka Totalt antal PatientgruppA Patientgrupp B Patientgrupp C Totalt Obs Friska 00 Expe cted Obs Exp. Obs Exp. (400/ 500)* 30= Sjuka Totalt antal (O E) (00 184) (30 46) ( ) (7 1.4) ( ) (63 3.6) E d.f. (r-1) (k-1) = Critical value: 0,05 () = och faktiskt gäller även att 0,001 () = Alltså, det finns en skillnad mellan grupperna (p<0.001) 6

7 Korrelation och regression Ibland måste korrelationskoefficienten räknas ut som Spearman s r snarare än Pearson s r. Under vilka förhållanden gäller detta, dvs. nämn något om de antaganden som ligger till grund för Pearson s r. ( p) För Pearson s r krävs ett tvådimensionellt normalfördelat material, vilket innebär att residualerna mellan data och linjen också är normalfördelade. I övrigt gäller både för Spearman s och Pearson s r att man måste ha oberoende slumpmässig stickprov och annat självklart. 11. Vad är en box-and-whisker plot och vilken information ger en sådan? När är den lämplig att använda istället för ett sk spridningsdiagram ( scatter plot ) (3 p) En box and whisker plot illustrerar data (utspridda längs y- axeln) med en central horisontell linje motsvarande medianen och en box (rektangel) som täcker det område längs y-axeln där de mittersta två kvartilerna (de 50 % av data som finns närmast medianen) är lokaliserade. Slutligen illustreras hela variationsbredden (range) med whiskers (T-formade linjer) som sticker ut från rektanglarna. Box-and-whisker plots är användbara för stora datamaterial (istället för spridningsdiagram vid små datamaterial) som inte är symmetriskt fördelade för at illustrera distributionens ungefärliga utseende. 7

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Hur skriver man statistikavsnittet i en ansökan?

Hur skriver man statistikavsnittet i en ansökan? Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

7.3.3 Nonparametric Mann-Whitney test

7.3.3 Nonparametric Mann-Whitney test 7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:

Läs mer

a) Facit till räkneseminarium 3

a) Facit till räkneseminarium 3 3.1 Fig 1. Sammanlagt 30 individer rekryteras till studien. Individerna randomiseras till en av de fyra studiearmarna (1: 500 mg artemisinin i kombination med piperakin, 2: 100 mg AMP1050 i kombination

Läs mer

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14

Läs mer

1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)

1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) 1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna

Läs mer

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler

Innehåll. Steg 4 Statistisk analys. Skillnader mellan grupper. Skillnader inom samma grupp över tid. Samband mellan variabler Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig steg 1 5 Steg 4 Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 Hypotesprövning

Läs mer

Hypotestestning och repetition

Hypotestestning och repetition Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att

Läs mer

Hur man tolkar statistiska resultat

Hur man tolkar statistiska resultat Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?

Läs mer

Medicinsk statistik I

Medicinsk statistik I Medicinsk statistik I Läkarprogrammet T5 VT 2013 Susanna Lövdahl, Msc, Doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Medicinsk statistik VT-2013 Tre stycken

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci

LYCKA TILL! Omtentamen i Statistik A1, Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Institutionen för Farmaceutisk Biovetenskap Institutionen för Farmaci Omtentamen i Statistik A1, 2013 08 15 Skrivtid: 3 timmar (08:00 11:00) Ansvarig lärare: Åsa Johansson poäng = 45 p Betyg (U/G/VG):

Läs mer

Kursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)

Kursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument) Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats

Läs mer

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa. Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten

Läs mer

Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens

Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

Sänkningen av parasitnivåerna i blodet

Sänkningen av parasitnivåerna i blodet 4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer

Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll

Läs mer

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Statistik och epidemiologi T5

Statistik och epidemiologi T5 Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer

Läs mer

Deskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Deskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Tabeller Figurer Sammanfattande mått Vilken

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Uppgift 1. Produktmomentkorrelationskoefficienten

Uppgift 1. Produktmomentkorrelationskoefficienten Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill

Läs mer

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera)

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera) KLEINLEKTION Område statistik. Lämplig inom kurserna Matematik 2b och 2c. Centralt innehåll i Matematik 2b och 2c: Statistiska metoder för rapportering av observationer och mätdata från undersökningar

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner

Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner . Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%

Läs mer

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c) 1a) F1 och F3 nominalskala, enbart olika saker F kvotskala, Riktiga siffror, 0 betyder att man inte finns och avståndet mellan två värden är exakt definierat F4 och F5 ordinalskala, vi kan ordna svaren

Läs mer

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4 MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas

Läs mer

SOPA62 - Kunskapsproduktion i socialt arbete

SOPA62 - Kunskapsproduktion i socialt arbete SOPA62 - Kunskapsproduktion i socialt arbete 1. Beskrivande statistik och lite hypotesprövning 1 Kvantitativ vs Kvalitativ metod Kvantitativt: Man definierar precisa begrepp och ställer därefter frågor

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110319)

EXAMINATION KVANTITATIV METOD vt-11 (110319) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna

Läs mer

Icke-parametriska/fördelningsfria test. Finansiell statistik, vt-05. Teckentest. Teckentest. Vi gör observationer för =1,, på variablerna.

Icke-parametriska/fördelningsfria test. Finansiell statistik, vt-05. Teckentest. Teckentest. Vi gör observationer för =1,, på variablerna. Ickeparametriska/fördelningsfria test Vi gör observationer för,, på variablerna,,, eller Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt05 F0 ickeparametriska

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Kapitel 10 Hypotesprövning

Kapitel 10 Hypotesprövning Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik

Statistik. Statistik. Statistik. Lars Walter Fil.lic. Statistik Statistik Lars Walter Fil.lic. Statistik Linköping universitet Stockholms universitet Karolinska sjukhuset Sveriges Lantbruksuniversitet Linköpings universitet Folkhälsocentrum, LiÖ FoU-enheten, LiÖ Statistik

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 2015-08-18 kl. 8.30-13.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 031-7723546 Hjälpmedel:

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Laboration 4 Statistiska test

Laboration 4 Statistiska test Matematikcentrum Matematisk statistik Lunds universitet MASB11 HT14, lp2 Laboration 4 Statistiska test 2015-01-09 Del I: Styrkefunktion Del II: Standardtest Syftet med laborationen är att ni ska bekanta

Läs mer

Föreläsning 5. Kapitel 6, sid Inferens om en population

Föreläsning 5. Kapitel 6, sid Inferens om en population Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning

Läs mer

Att välja statistisk metod

Att välja statistisk metod Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1 Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Skriv tydligt. Besvara inte frågor med lösryckta ord, utan sammanhängande och tydligt. Visa även dina beräkningar.

Skriv tydligt. Besvara inte frågor med lösryckta ord, utan sammanhängande och tydligt. Visa även dina beräkningar. KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Ansvarig lärare: Magnus Lindwall Tentamensdatum: 2013-04-20 kl. 09:00 13:00 Tillåtna hjälpmedel: Miniräknare Tentan består

Läs mer

Studietyper, inferens och konfidensintervall

Studietyper, inferens och konfidensintervall Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten

Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande

Läs mer

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion Matematikcentrum Matematisk statistik Lunds universitet MASB11 VT15, lp3 Laboration 4 Statistiska test 2015-03-06 Del I: Standardtest Del II: Styrkefubktion Syftet med laborationen är att ni ska bekanta

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Provmoment: Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna hjälpmedel: Miniräknare Tentan består av

Läs mer

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng. UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:

Läs mer

Statistik Termin 10, Läkarprogrammet, HT16

Statistik Termin 10, Läkarprogrammet, HT16 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -

Läs mer

ordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)

ordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng) 1 F1 ordinalskala F2 kvotskala F65A nominalskala F65B kvotskala F81 nominalskala (motivering krävs för full poäng) b) Variabler som används är F2 och F65b. Eftersom det är kvotskala på båda kan vi använda

Läs mer

Föreläsning 2. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Laboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA

Laboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 3 Övningsuppgifter Baserade på datasetet energibolag.rdata

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018

Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018 Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

Tentamen består av 9 frågor, totalt 34 poäng. Det krävs minst 17 poäng för att få godkänt och minst 26 poäng för att få väl godkänt.

Tentamen består av 9 frågor, totalt 34 poäng. Det krävs minst 17 poäng för att få godkänt och minst 26 poäng för att få väl godkänt. KOD: Kurskod: PX1200 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sara Landström Tentamensdatum: 2017-01-14 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Korrelation och autokorrelation

Korrelation och autokorrelation Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.

Läs mer

Kent W. Nilsson. Falun

Kent W. Nilsson. Falun Kent W. Nilsson Falun 2016 10 05 Att tänka statistiskt Förr, kunskap baserades på auktoriteter; Kungen, krykan m.m. Industriell- och teknisk revolution De som inte har möjlighet och kunskap att ta till

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning

Läs mer

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson

January 3, Statistiska metoder vid kvantitativa. undersökningar. Jan-Olof Johansson January 3, 2017 January 3, 2017 1 / 84 January 3, 2017 2 / 84 Part I Lärandemål Kvantitativ undersökning Insamling av kvantitativa data Inledning January 3, 2017 3 / 84 Lärandemål Lärandemål definiera

Läs mer

Studentens namn: Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens namn: Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetoder Provmoment: Vetenskapsteori respektive forskningsmetod Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 2015-09-29

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:

Läs mer