Introduktion och laboration : Minitab

Storlek: px
Starta visningen från sidan:

Download "Introduktion och laboration : Minitab"

Transkript

1 Robert Parviainen, Tel E-post: Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt programpaket, Minitab, och att göra en del enkla praktiska övningar. Programmet är ett av många statistiska paket. Andra kända statistiska program är SPSS, SAS, och R. Vi har valt att använda Minitab på grund av att det är relativt lätt att arbeta och komma igång med. Frågor att besvara är skrivna i italics. Svaren ska helst skriva direkt i dessa papper. Notera att många frågor är subjektiva! Det finns alltså inget rätt svar. (En kort kommentar räcker som svar.) Avsnitt med *rubrik* inom *-or är frivilliga, och kan hoppas över. Det första du skall göra är att starta programpaketet Minitab. När du gjort det visar sig något som ser ut så här. Figur 1: Så här ser det ut då du startat Minitab. I Figur 1 ser du att Minitab visar två fönster. Ett kallat Session och ett kallat Worksheet/Data. I Datafönstret kan du skriva in tal som du vill att Minitab skall bearbeta. Datafönstret används också för att lagra resultat som Minitab räknat fram. Sessionfönstret kan användas för att skriva kommandon till Minitab. Vi kommer dock framför allt att ge kommandon via rullgardinsmenyer. 1 Slumptal och dataanalys Vi ska börja med att låta Minitab generera ett datamaterial. Minitab klarar att generera slumptal från de flesta fördelningarna, och vi ska börja med att låta Minitab kasta tärning. Minitab kan utföra dina tärningskast genom att du utför följande moment. Klicka på rubriken Calc i menyn. Då fälls en rullgardin ned och du kan välja rubriken Random Data och klicka på

2 den. En ny rullgardin uppenbaras och du väljer nu alternativet Integer. Om allt är som det skall så visas nu en meny som liknar den i Figur 2. Figur 2: Fönster efter sekvensen Calc Random Data Integer. Minitab kommer nu att generera lika många tärningskast som du skriver i rutan vid Generate... rows of data. Prova först att göra 60 tärningskast. Resultatet lagras i kolumnen som du skriver i den stora rutan vid Store in column(s). Från början heter kolumnerna C1, C2, osv, men man kan också namnge kolumnerna själv. För att verkligen generera tärningskast skriver du värdet 1 vid Minimum value och värdet 6 vid Maximum value. Ett sätt att titta på det genererade datamaterialet är att låta Minitab göra en grafisk illustration. Sekvensen Graph Histogram ger dig fönstret i Figur 3. Anm. Om man vill upprepa föregående kommando, t.ex. om man vill ändra lite i indata, kan man använda kortkommandot CTRL E. Figur 3: Fönster efter sekvensen Graph Histogram. Välj Project under rubriken Display och välj den kolumn som du sparat dina tärningsvärden i under X. Nu ritar Minitab ett stolpdiagram över ditt datamaterial. Stämmer resultatet med vad du förväntade dig att se? Hur många 1:or, 2:or osv borde det bli?

3 Prova också att välja andra saker än Project för att se lite av de olika sätten man kan rita histogram på. Man kan också i Edit Attributes ändra diverse andra saker. (Man kan också snygga till diagram efteråt genom att högerklicka i ett diagram.) Undersök hur stolpdiagrammet ser ut om du gör 600 tärningskast. Hur blir det vid 6000 tärningskast? 1.1 Egendefinierad sannolikhetsfördelning Om man vill ha slumptal från en diskret fördelning som inte finns i Minitab går det också lätt att få. Anta att vår diskreta stokastiska variabel X har sannolikhetsfunktionen P (X = k) = p(k) = 12, k = 0, 1, 2, 3. 25(k + 1) För att generera data från den fördelningen konstaterar vi först att p(0) = 0.48, p(1) = 0.24, p(2) = 0.16 och p(3) = Skriv in följande värden i datafönster i kolumn C1 och C2. Observera att Minitab använder decimalkomma och inte decimalpunkt! C1 C2 0 0,48 1 0,24 2 0,16 3 0,12 Generera 10 slumptal från denna fördelning genom att använda sekvensen Calc Random Data Discrete. I Values in skriver du C1, och i Probabilities in C2. Kontrollera att resultatet är rimligt genom att göra ett stolpdiagram. (Kom ihåg sekvensen Graph Histogram.) Väntevärdet för variabeln X är µ = E(X) = 0.92, och standardavvikelsen σ = V (X) Dessa kan uppskattas från slumptalen. Utför Stat Basic Statistics Display Descriptive Statistics. Medelvärdet (mean) ger en skattning av µ. Ligger det nära 0.92? Varför? Varför inte? Generera 100 observationer i stället. Hamnar medelvärdet närmare 0.92? Hur blir det med om du genererar 1000 observationer? Vad händer och vilken teoretisk sats är det som ger detta resultat?

4 Stickprovsstandardavvikelsen ger (inte så förvånande) en skattning av standardavvikelsen, och ges under StDev. Generera n slumptal för små och stora n (t.ex. n = 10, 50, 100, 500, 1000,...). Undersök när skattningen ligger nära det teoretiska värdet ( 1.055). 2 Binomialfördelningen Vi ska nu titta lite närmare på Binomialfördelningen. Börja med att generera 1000 slumptal från Bin(n = 10, p = 0.3)-fördelningen. Använd sekvensen Calc Random Data Binomial. Gör ett stolpdiagram över slumptalen. Öka nu n:et i Bin(n, p = 0.3) i några steg, t.ex. n = 10, 20, 50, 100, 200,.... När n växer kan vi approximera Binomialfördelningen med Normalfördelningen. Vilket villkor brukar används för när approximationen är användbar? Villkoret säger här att n ska vara större än ungefär 50. Liknar ditt histogram för n = 50 en normalfördelningstäthet? Vid vilket n tycker du att histogrammet liknar en normalfördelningstäthet? Anm. För att ha något att jämföra med, se t.ex. figuren på sid 138 i boken. Generera 1000 slumptal från en binomialfördelning (välj n och p själv). Beräkna en skattning av p för varje slumptal genom Calc Calculator. I Store result in variable väljer du någon kolumn för skattningarna, och i Expression skriver du t.ex. C1/78 om C1 innehåller slumptalen och ditt n är 78. Beräkna medelvärdet av skattningarna. Är det nära ditt p? Vilken egenskap hos skattningen säger att medelvärdet av skattningarna går mot p? 2.1 Binomialfördelningens sannolikhets- och fördelningsfunktion Det som visades i stolpdiagrammen är inte sannolikhetsfunktionens värden utan hur 1000 slumptal från fördelningen råkar fördela sig. För att verkligen se hur sannolikhetsfunktionen till X Bin(n = 10, p = 0.3) ser ut kan vi låta Minitab rita upp den. Mata in talen 0, 1, 2,..., 10 i en kolumn. Du kan antingen göra det för hand eller via sekvensen Calc Make Patterned Data Simple Set of Numbers. När detta är klart använder du sekvensen Calc Probability Distributions Binomial. Välj kolumnen med talen 0, 1, 2,..., 10 i Input column. Lagra data i en ny kolumn med hjälp av

5 Optional storage. För att titta på denna sannolikhetsfunktion i ett stolpdiagram måste du använda en ny sekvens. Utför följden Graph Plot, försök förstå vad som skall vara X och Y och välj slutligen Display Project. Påminner detta om ditt stolpdiagram över 1000 slumptal från X Bin(n = 10, p = 0.3)? Blir skillnaden stor? Rita upp sannolikhetsfunktionen också för Bin(10,0.7). Tänk efter först hur den borde se ut. Jämför med bilden för Bin(10,0.3). Utför sekvensen Calc Probability Distributions Binomial igen. Välj n = 10 och p = 0.3 och markera Cumulative probability. Vad har du nu beräknat? Anm. Jämför med Binomialfördelningstabellen (tabell 8) i boken för n = 10 och p = Addition av slumpvariabler Generera 1000 slumptal från en Po(1) fördelning, dvs slumptal som är Poissonfördelade med väntevärde 1. Lägg resultatet i kolumn C1 i datafönstret. Titta på datamaterialet med hjälp av ett histogram. Anm. Använd Graph Histogram med Display Bar. Minitab väljer antalet staplar själv, och ibland kan det bli för få staplar, och ibland för många. Pröva att ändra antalet staplar själv. Under Options klickar du i Number of intervals och skriver i en siffra. Detta gäller speciellt nedan, där 20 intervall tycks ge bra indelning. Generera ytterligare 1000 Po(1)-fördelade slumptal och lägg dessa i kolumn C2. Nu skall du addera slumptalen i kolumn C1 och C2. Detta görs enklast med sekvensen Calc Calculator. Skriv in C1+C2 och lägg resultatet i kolumn C3. Titta på datamaterialet i kolumn C3 med hjälp av ett histogram. Generera ytterligare 3 kolumner med 1000 Po(1)-fördelade slumptal i kolumnerna C3, C4 och C5. (Kom ihåg CTRL E. Man kan också skriva in flera kolumner i Store in column(s).) Addera kolumnerna C1-C5 och lägg resultatet i kolumn C6. Titta på datamaterialet i kolumn C6 med hjälp av ett histogram. Generara ytterligare 5 kolumner med Po(1)-fördelade slumptal och lägg dessa i kolumn C6-C10. Adderakolumnerna, och lägg resultatet i C11. Titta på datamaterialet i kolumn C11 med hjälp av ett

6 histogram. Generara ytterligare 10 kolumner med Po(1)-fördelade slumptal och lägg dessa i kolumn C10-C20. Sumera kolumnerna, och lägg resultatet i C21. Från vilken fördelning borde de slumptalen approximativt komma från? Titta på datamaterialet i kolumn C21 med hjälp av ett histogram. Ser histogrammet ut som förväntat? Vilken viktig sats ger resultatet? 4 Statistisk Inferens 4.1 *Skattningar* Vi ska här jämföra 2 skattningar av variansen i en Exponetialfördelning. Börja med att generera 1000 observationer från Exp(1) (Calc Random Data Exponential). Spara dessa i C1. Sedan ska vi generara indikatorer i C2. Välj Calc Make Patterned Data Simple Set of Numbers. I Store in... väljer du C2. Välj att göra tal från 1 till 100 i steg om 1, och att lista varje värde 10 gånger. Nu borde C2 ge Härnäst ska vi skatta variansen (som alltså är 1 2 = 1), med stickprovsvariansen s 2. Välj Stat Basic Statistics Store Descriptive Statistics. Variables ska vara C1, och i By Variables skriver du C2. Under Statistics kryssar du i endast Variance. Detta ger 100 skattningar av variansen, alla gjorda med 10 observationer. Nu ska vi skatta variansen med ( x) 2 (eftersom variansen i Exp(m) är m 2 ). Välj Stat Basic Statistics Store Descriptive Statistics. Variables ska vara C1, och i By Variables skriver du C2. Under Statistics kryssar du i endast Mean. Med hjälp av Calculator beräknar du nu kvadraten av de erhållna medelvärdena. Spara dessa i en ny kolumn, säg C10. Dessa tal är alltså 100 skattningar av variansen, alla gjorda med 10 observationer. För att jämföra de två skattningarna, välj Stat Basic Statistics Display Descriptive Statistics. (Välj kolumnerna Variance1 och C10 i Variables.) Är skattningarna bra? Vilken verkar vara bäst (effektivast)? 4.2 Ett normalfördelat stickprov I Kapitel 13 i läroboken visas hur konfidensintervall för ett väntevärde µ bildas i fallen då σ 2 är känt eller okänt. Vi börjar med fallet att σ 2 är känt. Utgå från följande datamaterial som är 9 termometrars mätningar av temperaturen. Resultatet blev

7 Figur 4: Fönster efter sekvensen Stat Basic Statistics 1-Sample-t. som kan anses vara ett stickprov från en normalfördelning med okänt väntevärde µ och känd standardavvikelse σ = 0.2. Hur ett konfidensintervall för µ beräknas beskrivs i boken (sid ). Vi skall nu låta Minitab beräkna konfidensintervallet. Börja därför med att mata in datamaterialet i kolumn C1. Utför därefter sekvensen Stat Basic Statistics 1-Sample-z. Då får du upp ett fönster som liknar fönstret i Figur 4. I rutan kan du välja den kända standardavvikelsen σ under rubriken Sigma och vilket datamaterial (kolumn) som intervallet skall baseras på under Variables och under Options kan konfidensgraden specificeras under rubriken Level. Lämna Test mean rutan blank än så länge. Beräkna med Minitab ett 95% konfidensintervall för µ. Prova nu att variera konfidensgraden. Starta med en låg konfidensgrad t.ex 50% och öka i några steg till 99.99%. Vad händer med intervallet då konfidensgraden ökar? Att standardavvikelsen σ är känd är ovanligt. Om i stället σ vore okänt skulle formeln på sidan 231 använts för att bilda konfidensintervallet för µ. I Minitab görs denna beräkning via kommandot Stat Basic Statistics 1-Sample-t. Resultatet av kommandosekvensen visas i Figur 4. Bilda ett 95% konfidensintervall för µ. Jämför med intervallet när σ var känt. Är det längre eller kortare? Vad är skillnaden mellan formlerna då σ är känt/okänt?

8 4.3 Två normalfördelade stickprov Skriv in följande siffror i två kolumner: och som är temperaturen mätt med termometrar av två olika märken. För att se om det är skillnad mellan märkena ska vi göra ett konfidensintervall för skillnaden i väntevärdena. Vi antar att vi har två stickprov från normalfördelningar, med samma okända varians. I Minitab görs denna beräkning via kommandot Stat Basic Statistics 2-Sample-t. Markera att vi har data i 2 kolumner, och att vi antagit att lika varianser. Vad blir intervallet? Är skillnaden signifikant? 4.4 Konfidensgrad Vi ska nu undersöka konfidensgradens innebörd vidare, genom att göra många konfidensintervall av samma paramater. Börja med att generera 50 kolumner med 10 observationer från N(0,1) (Calc Random Data Normal. Skriv c1-c50 i Store in column(s). Variansen behöver inte vara 1, men det kommer att förenkla fortsättningen att ha väntevärdet 0.) Välj nu Stat Basic Statistics 1-sample t, och skriv c1-c50 i Variables. Välj konfidensnivån 0.50 under Options. Detta ger en utskrift av 50 80%-KI. Räkna hur många som inte innehåller 0. (Detta görs snabbt genom att se vilka undre gränser som är positiva, och vilka övre gränser som är negativa. Hur många intervall innehåller inte 0? Hur många kan man förvänta sig? Vilken fördelning borde X = antal intervall som inte innehåller 0 ha? Upprepa med kkonfidensnivån Kvantiler Kvantiler bstämms lätt i Minitab. Det görs med sekvensen Calc Probability Distributions X, där X är den önskade fördelningen. I det erhållna fönstret väljs Inverse cumulative probability. Skriv värdet 1 α efter Input constant för att få Minitab att beräkna en α-kvantil.

9 Beräkna följande värden med Minitab, och kontrollera med Tabell 2 och 3 i boken eller formelsamlingen: λ = λ = t (13) = t (9) = 5 *Hypotestest* I läroboken (sid 261) beskrivs hur hypotesen H 0 : µ = µ 0 testas beroende på om standardavvikelsen är känd eller ej med testvariablerna z = x µ 0 σ/ n t = x µ 0 s/ n Låt oss utföra ett sådant test där σ är okänt. Datamaterialet är , nollhypotesen är H 0 : µ = 2.40, mothypotesen är H 1 : µ 2.40, och signifikansnivån är α = För att få Minitab att utföra testet används sekvensen Stat Basic Statistics 1-Sample-t. I rutan som uppenbaras väljer du Test mean och skriver in värdet µ = Eftersom mothypotesen är H 1 : µ 2.40 väljer du under Options alternativet not equal under rubriken Alternative (mothypotes heter också alternativ hypotes). (Konfindensnivån under Options används bara indirekt för testet, genom att ett konfidensintervall med den nivån också skrivs ut.) Minitab ger oss följande information One-Sample T: C2 Test of mu = 2,4 vs mu not = 2,4 Variable N Mean StDev SE Mean C2 7 2,5143 0,2545 0,0962 Variable 95,0% CI T P C2 ( 2,2789; 2,7497) 1,19 0,280 T (=1.19) ger det observerade värdet på test-variabeln. I vårt fall ska det värdet jämföras med t-kvantilen t (7 1) = Eftersom 1.19 < 2.45 kan nollhypotesen ej förkastas. Denna slutsats kan också dras direkt ur Minitabs utskrift. Värdet under P (0.280) är den observerade signifikansnivån, också kallat p-värdet. Ett test på signifikansnivån α är signifikant om och endast om p-värdet är mindre än α. Då p-värdet = är större än α = 0.05, kan nollhypotesen ej förkastas. Om motsvarande hypotesprövning skall utföras och standardavvikelsen σ är känd används sekvensen Stat Basic Statistics 1-Sample-z. Utför testet med σ = 0.2 och jämför med resultatet då standardavvikelsen var okänd. Vad förändrades? Varför?

10 Gör testet igen (σ okänt). Notera att Minitab också skriver ut ett konfidensintervall för varje test. Detta har nivån som väljs under Options. Låt konfidensnivån nu vara Ändra värdet på µ 0 (låt t.ex. µ 0 = 2.5, 2.6,...) tills du får ett p-värdet som är mindre än 0.01, och undersök för varje test hurvida värdet på µ 0 ligger i det erhållna kofidensintervallet. Ligger värdena på µ 0 då p-värdet är större än 0.01 innanför eller utanför intervallet? Ligger värdena på µ 0 då p-värdet är mindre än 0.01 innanför eller utanför intervallet? Vad säger detta oss om relationen mellan hypotestest och konfidensintervall? (Se också sid 260 i boken.) Anm. I läroboken jämförs alltid det observerade värdet på testvariabeln med kvantiler från tabeller. Så görs inte i Minitab, utan ett p-värde beräknas med hjälp av direktmetoden. 6 Övrigt Minitab klarar mycket mer än det vi hunnit gå igen hittills. Bland annat kan Minitab utföra samtliga icke-parametriska test som gås igenom i kursen, med det möjliga undantaget anpassningstest (det går, men kräver lite extra arbete). Under Stat Non-parametrics finns t.ex. 1-sample sign (teckentest), 1-sample Wilcoxon (teckenrangtest), Mann-Whitney (rangsummetest). Under Stat Tables finns Chi-square Test, som kan användas för oberoende/homogenitetstest. Namn:

Laboration med Minitab

Laboration med Minitab MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

LABORATION 1. Syfte: Syftet med laborationen är att

LABORATION 1. Syfte: Syftet med laborationen är att LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg

LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar

Läs mer

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa. Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.

7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9. Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman

STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman STOCKHOLMS UNIVERSITET HT 2006 Statistiska institutionen Jan Hagberg, Bo Rydén, Christian Tallberg, Jan Wretman OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, HT 2006 Den obligatoriska

Läs mer

DATORÖVNING 2: STATISTISK INFERENS.

DATORÖVNING 2: STATISTISK INFERENS. DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt

Läs mer

7.3.3 Nonparametric Mann-Whitney test

7.3.3 Nonparametric Mann-Whitney test 7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16 Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

DATORÖVNING 4: DISKRETA

DATORÖVNING 4: DISKRETA IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. STATISTISK INFERENS MED DATORNS HJÄLP Vi fortsätter att arbeta med datamaterialet från datorävning 2: HUS.xls. Som vi sett

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Laboration 2 Inferens S0005M VT18

Laboration 2 Inferens S0005M VT18 Laboration 2 Inferens S0005M VT18 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 20 september 2017 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/20 : Poisson & Binomial för diskret data Johan

Läs mer

2.1 Minitab-introduktion

2.1 Minitab-introduktion 2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner

Datorövning Power curve 0,0305 0, Kvantiler, kritiska regioner . Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%

Läs mer

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel

Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Uppgift a b c d e Vet inte Poäng

Uppgift a b c d e Vet inte Poäng TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på

Läs mer

Föreläsning 12, FMSF45 Hypotesprövning

Föreläsning 12, FMSF45 Hypotesprövning Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt

Läs mer

Laboration 2: Statistisk hypotesprövning

Laboration 2: Statistisk hypotesprövning STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 2: Statistisk hypotesprövning Huvudsyftet med denna andra datorlaboration är

Läs mer

F22, Icke-parametriska metoder.

F22, Icke-parametriska metoder. Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS

Målet för D2 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS Datorövning 2 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare.

Del 2 tillsammans med förberedelsefrågor - tid för inlämning och återlämning meddelas senare. STOCKHOLMS UNIVERSITET Statistiska institutionen VT 2009 Tatjana Pavlenko och Bertil Wegmann OBLIGATORISK INLÄMNINGSUPPGIFT STATISTISK TEORI, GK 10 och GK 20:2, heltid, VT 2009 Den obligatoriska inlämningsuppgiften,

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN

Läs mer

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS

Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap

Läs mer

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig

Läs mer

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems

MINITAB i korthet. release 16. Jan-Eric Englund. SLU Alnarp Kompendium 2011. Swedish University of Agricultural Sciences Department of Agrosystems MINITAB i korthet release 16 Jan-Eric Englund SLU Alnarp Kompendium 2011 Område Agrosystem Course notes Swedish University of Agricultural Sciences Department of Agrosystems Jan-Eric Englund är universitetslektor

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

π = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.

π = proportionen plustecken i populationen. Det numeriska värdet på π är okänt. Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test

TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö8

Läs mer

2. Test av hypotes rörande medianen i en population.

2. Test av hypotes rörande medianen i en population. Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting

Läs mer

DATORÖVNING 2: BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. STATISTISK INFERENS.

DATORÖVNING 2: BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. STATISTISK INFERENS. DATORÖVNING 2: BESKRIVANDE STATISTIK. SANNOLIKHETSLÄRA. STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning).

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).

Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

3.1 Beskrivande statistik

3.1 Beskrivande statistik 3.1 Beskrivande statistik En sammanställning av beskrivande statistik Summary for Vikt A nderson-darling Normality Test A -Squared 0.24 P-V alue 0.771 Mean 9.9294 StDev 1.7603 V ariance 3.0988 Skew ness

Läs mer

TAMS65 - Föreläsning 12 Test av fördelning

TAMS65 - Föreläsning 12 Test av fördelning TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det

Läs mer

DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR

DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR STICKPROVSMEDELVÄRDEN I denna datorövning ska du använda Minitab för att slumpmässigt dra ett mindre antal observationer från ett större antal, och studera hur

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Laboration 2 Inferens S0005M VT16

Laboration 2 Inferens S0005M VT16 Laboration 2 Inferens S0005M VT16 Allmänt Arbeta i grupper om 2-3 personer. Flertalet av uppgifterna är tänkta att lösas med hjälp av Minitab. Ett lärarlett pass i datorsal finns schemalagt. Var gärna

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 2 Syfte: 1. Lära sig presentera data i tabeller 2. Lära sig beskriva data numeriskt 3. Lära sig presentera data i grafer 4.

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

TMS136. Föreläsning 11

TMS136. Föreläsning 11 TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för

Läs mer