Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt"

Transkript

1 Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt

2 På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer Dimensionsanalys Bestämning av konstanter

3 Fysikaliska modeller En fysikalisk modell är en beskrivning av verkligheten som kan användas för att göra förutsägelser. En fysikalisk modell är ofta i form av matematiska formler som kan användas för att göra beräkningar. Det finns ofta olika modeller för samma fysikaliska verklighet.

4 Experiment och teori De fysikaliska modellerna vi har funnit har hittats genom experiment. Härledningar kan göras för att ta fram samband utifrån lagar som anses vara verifierade. Våra modeller används för att göra förutsägelser, men säger egentligen inget annat om verkligheten.

5 Olika modeller Observera att det ofta finns olika modeller av samma fenomen! Exempel, bollkast En boll kastas och landar sträckan L från kastarens fötter. Kvalitativ modell: L beror av utgångshastigheten och utgångsvinkeln. Mycket enkel matematisk modell: L 0 Utan luftmotstånd: L = v 0 sin2a g Med luftmotstånd: datorberäkning

6 Förenklingar Mycket ofta behöver förenklingar och restriktioner göras för under vilka förutsättningar en modell gäller med god precision. L = v 0 sin2a g Denna modell har bland annat ej tagit hänsyn till: bollens höjd när den släpps, luftmotstånd, eventuell bollskruv etc. Vi kanske skulle vilja generalisera situationen för att täcka in mycket höga hastigheter så gravitation varierar, vilket skulle kräva en annan modell för att göra bra förutsägelser.

7 Modellbygge För att skapa en matematisk modell behöver vi definiera de variabler som ingår. Vi behöver även fundera på avgränsningar och idealiseringar. Om vi skall bygga en modell genom experiment är det lämpligt att studera en variabel åt gången och hålla allt annat konstant. Vi skapar en hypotes och prövar den.

8 Arbetsexempel Vi skall skapa en modell över hur hastigheten varierar hos en kropp vid fritt fall med hjälp av mätningar. h (m) v (m/s)

9 Variabler Tänkbara variabler: v (m/s) sluthastigheten h (m) fallhöjd (uppenbart) M(kg) massa Luftmotstånd? Övrigt?

10 Mätningar Vi gör mätningar där endast en variabel varierar Hastightens beroende av fallhöjden Hastighetens beroende av massan 4,50 6 v (m/s) 4,00 3,50 v (m/s) 5 3,00 4 2,50 2,00 3 1,50 2 1,00 0,50 1 0,00 0 0,2 0,4 0,6 0,8 1 h (m) 0 0 0,2 0,4 0,6 0,8 1 1,2 h (m) Massan tycks inte påverka hastigheten så mycket!

11 En enkel kvalitativ modell Hastigheten ökar med fallhöjden.

12 En första matematisk modell Vi kan bygga en enkel matematisk modell med en linjär funktion. v (m/s) 5,00 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 Modell med linjär funktion 0 0,2 0,4 0,6 0,8 1 h (m) Modell: v = C h, C konstant Rimligt att kräva att v = 0 då h = 0

13 Modell med potensfunktion v (m/s) 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 Hastightens beroende av fallhöjden 0 0,2 0,4 0,6 0,8 1 h (m) Potensfunktioner är vanliga i fysikaliska sammanhang. Hypotes: V = C h k, C konstant Hur kan vi bestämma k?

14 Linjärisering med logaritmer Vi skall kombinera: Räta linjens ekvation: y = kx + m Logaritmlagarna: lg (ab) = lg (a) + lg (b) lg (a k ) = k lg (a)

15 Linjärisering med logaritmer Hypotes: V = C h k Logaritmera båda leden: lg (v) = lg (C h k ) lg (v) = lg (C) + lg (h k ) lg (v) = lg (C) + k lg (h) lg (v) = k lg (h) + lg (C)

16 Linjärisering med logaritmer Hypotes: V = C h k lg (v) = k lg (h) + lg (C) samma form som en rät linje! y = k x + m Rita en graf med: lg (v) på y-axeln lg (h) på x-axeln Då är lutningen k den sökta exponenten!

17 Linjärisering med logaritmer lg (v) 0,7 logaritmerade mätvärden 0,6 0,5 0,4 Δy = 0,45 0,3 0,2 0,1-1 -0,8-0,6-0,4-0,2 0 lg (h) Δx = 0,95 k = Dy Dx = 0, 45 0,95» 0, 47» 1 2

18 Linjärisering med logaritmer Hypotes: V = C h k k = 1/2 ger modellen: v= Ch 1/2 = C h C är en konstant som ännu inte är bestämd.

19 Generalisering Kan vi generalisera vår modell? Fallhastigheten skulle säkert vara annorlunda om vi hade en annan tyngdacceleration (exempelvis på månen)! Kan vi få in även detta i vår modell? Men vi kan ju inte göra ett experiment här på jorden där vi varierar g. Hur gå vidare?

20 Dimensionsanalys Vi mäter i SI- systemets enheter. Det använder sju fysikaliska grundenheter. Storhet Beteckning Enhet Längd l m Massa m kg Tid t s Elektrisk ström I A Temperatur T K Ljusstyrka L cd Substansmängd n mol

21 SI-grundenheter Storhet (enhet) Definition Längd (m) Massa (kg) Sträckan som ljuset färdas under 1/ s i vacuum. Massan av massprototypen som finns i ett valv utanför Paris. Tid (s) perioder av strålning från en viss övergång hos Cs 133 Elektrisk ström (A) Temperatur (K) Ljusstyrka (cd) Materiemängd (mol) Strömmen som genererar en kraft på 2*10-7 newton för varje meter ledare strömmen flyter igenom. Ledarna är parallella, raka och placerade en m från varandra i vacuum. 1/273,16 av den termodynamiska temperaturen vid vattnets trippelpunkt. Ljusstyrkan i en given riktning från en källa som sänder ut monokromatisk strålning på 540*10 12 Hz och som har en strålningsstyrka på 1/683 W per steradian i denna riktning. Materiamängden i ett system med samma antal systemelement som antalet atomer i 0,012 kilogram C 12.

22 Härledda storheter Från de grundläggande sju storheterna definieras övriga enheter utifrån fysikaliska eller matematiska samband. Vissa har fått egna namn, men alla kan uttryckas i de sju grundenheterna i SI-systemet. Exempel på härledda enheter Storhet Beteckning Enhet Hastighet v m s -1 Acceleration a m s -2 Kraft F N (kg m s -2 ) Tryck P Pa (kg m -1 s -2 ) Frekvens f Hz (s -1 ) Energi E J (m 2 kg s -2 )

23 Dimensionsanalys I ett fysikaliskt samband måste alltid enheterna vara samma i alla led om vi uttrycker enheterna i de sju grundenheterna. Exempel: s = vt s (m) v (m s -1 ) t (s) Enhet i vänster led: m Enhet i höger led: m s -1 s = m VL = HL Detta kan utnyttjas för att hitta de samband som är fysikaliskt möjliga!

24 Dimensionsanalys Vi antar att g ingår som en potensfunktion i sambandet: v = C h 1/2 g a vi söker a.

25 Dimensionsanalys v = C h 1/2 g a Om C är enhetslös gäller för enheterna: v h 1/2 g a Variabel Enhet v m s -1 h m g m s -2 m s -1 = (m) 1/2 (m s -2 ) a m s -1 = m 1/2 m a s -2a m s -1 = m 1/2+a s -2a Stämmer om a = 1/2 Generaliserad modell: v = C hg v = C h 1/2 g 1/2

26 Konstanten C För att kunna göra beräkningar med modellen behövs ett numeriskt värde på konstanten C. v = C hg C = v hg v h g C 1,41 0,1 9,82 1,42 2,07 0,2 9,82 1,48 2,33 0,3 9,82 1,36 2,86 0,4 9,82 1,44 3,14 0,5 9,82 1,42 3,35 0,6 9,82 1,38 3,52 0,7 9,82 1,34 3,84 0,8 9,82 1,37 3,94 0,9 9,82 1,33 Medelvärde 1,42 1,48 1,36 1,44 1,42 1,38 1,34 1,37 1,33 C 9 1,4

27 Prövning av modell Modell v 1, 4 hg v (m/s) 4,50 Jämförelse av modell och mätningar 4,00 3,50 3,00 2,50 Mätdata Modell 2,00 1,50 1,00 0 0,2 0,4 0,6 0,8 1 h (m)

28 Prövning av modell v (m/s) 4,50 4,00 Oberoende mätningar 3,50 3,00 2,50 Mätserie 2 Modell 2,00 1,50 1,00 0 0,2 0,4 0,6 0,8 1 h (m) Modellen skall kunna verifieras av nya oberoende mätningar!

29 I laboratoriet Nu är det er tur att bygga en modell i laboratoriet. Ha kul och fråga när ni behöver hjälp. Lycka till!

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/9 2009 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Laboration 1 Nedslagskratrar

Laboration 1 Nedslagskratrar Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter;

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter; Konsoliderad version av Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter; Ändring införd: t.o.m. STAFS 2015:5 1 Dessa föreskrifter ska tillämpas på mätdon som används vid mätning

Läs mer

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen Chalmers Teknisk fysik Teknisk matematik Arkitektur och teknik Matematik- och fysikprovet 2009 Fysikdelen Provtid: 2h. Hjälpmedel: inga. På sista sidan finns en lista över fysikaliska konstanter som eventuellt

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 2. Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6

Ingenjörsmetodik IT & ME 2010 Föreläsning 2. Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6 Ingenjörsmetodik IT & ME 2010 Föreläsning 2 Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6 1 Frågor från förra gången? 2 Likabehandling Funktionsnedsättning Har du en funktionsnedsättning och behöver

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys

Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys Lektion 5 Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys 005-10-04 Fysikexperiment, 5p 1 Pullfördelningen Mätningen av tyngdaccelerationen:

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft.

Allmänt om kraft. * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. Kraft Allmänt om kraft * Man kan inte se, känna eller ta på en kraft, men däremot kan man se verkningarna av en kraft. * Det finns olika krafter t ex; tyngdkraft, friktionskraft, motkraft. * Krafter kan

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

M0038M Differentialkalkyl, Lekt 4, H15

M0038M Differentialkalkyl, Lekt 4, H15 M0038M Differentialkalkyl, Lekt 4, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 28 Lekt 3 Om f (x) = 2 x 2 och g(x) = x + 2, bestäm nedanstående funktion och dess definitionsmängd.

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

9 Storheter och enheter

9 Storheter och enheter 9 Storheter och enheter 9.1 SI - DET INTERNATIONELLA ENHETSSYSTEMET SI (Systeme Internationale d'unites), det internationella måttenhetssystemet, är inte ett helt nytt måttsystem. Det bygger på tidigare

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2 Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

FRÅN MASSA TILL TYNGD

FRÅN MASSA TILL TYNGD FRÅN MASSA TILL TYNGD Inledning När vi till vardags pratar om vad något väger använder vi orden vikt och tyngd på likartat sätt. Tyngd associerar vi med tung och söker vi på ordet tyngd i en synonymordbok

Läs mer

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm Ingenjörsmetodik IT & ME 2007 Föreläsare Dr. Gunnar Malm 1 Frågor från förra gången Datorer kan beställas på: http://www.kth.se/student/support/ict/ 2.739/1.11102 (bärbar dator vid ICT) U9200 kostar 7

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Kapitel 1. Kemiska grundvalar

Kapitel 1. Kemiska grundvalar Kapitel 1 Kemiska grundvalar Kapitel 1 Innehåll 1.1 Kemi: en översikt 1.2 Den vetenskapliga metoden 1.3 Storheter och enheter 1.4 Osäkerheter i mätningar 1.5 Signifikanta siffror och beräkningar 1.6 Enhetskonvertering

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

TMFT13 Fö: Temperaturmätning

TMFT13 Fö: Temperaturmätning TMFT13 Fö: Temperaturmätning Per Sandström Institutionen för Fysik, Kemi och Biologi Grundenheterna i Si-systemet Massa 1 kg Massan av en platina vikt som förvaras i Frankrike. Längd 1 m Det avstånd som

Läs mer

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar

Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Att använda accelerationssensorn i en smarttelefon/surfplatta för att göra mätningar Mats Braskén (Åbo Akademi) och Ray Pörn (Yrkeshögskolan Novia) Accelerationssensorn Accelerationssensorn mäter accelerationen

Läs mer

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist

6/4/2012 The Mad Mathematician s Mathematic Consultancy Bureau Gustav Stenkvist Undersökning av hur kastlängden varierar i kulstötning Längden på en kulstöt beror på olika variabler. Höjden, hastigheten, kastvinkeln samt tyngdsaccelerationen spelar roll. Dessa varibler ska varieras

Läs mer

Förmågor och Kunskapskrav

Förmågor och Kunskapskrav Fysik Årskurs 7 Förmågor och Kunskapskrav Använda kunskaper i fysik för att granska information, kommunicera och ta ställning i frågor som rör energi, teknik, miljö och samhälle F Y S I K Använda fysikens

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

Välkommentill Fysik1!

Välkommentill Fysik1! Välkommentill Fysik1! Vad är fysik? Enligt Nationalencyklopedin är fysik den vetenskap som studerar materiens strukturpå grundläggande nivå och dess uppträdandeunder skilda betingelser. Genom den nära

Läs mer

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

Final i Wallenbergs fysikpris

Final i Wallenbergs fysikpris Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

1. Mekanisk svängningsrörelse

1. Mekanisk svängningsrörelse 1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik: Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest

Läs mer

Laboration 2 Mekanik baskurs

Laboration 2 Mekanik baskurs Laboration 2 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Friktionskraft är en förutsättning för att våra liv ska fungera på ett mindre omständigt sätt. Om friktionskraften

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

RÖRELSE. - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. RÖRELSE Inledning När vi går, springer, cyklar etc. förflyttar vi oss en viss sträcka på en viss tid. Ibland, speciellt när vi har bråttom, tänker vi på hur fort det går. I det här experimentet undersöker

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Inför provet mekanik 9A

Inför provet mekanik 9A Inför provet mekanik 9A Pär Leijonhufvud BY: $ \ 10 december 2014 C Provdatum 2014-12-12 Omfattning och provets upplägg Provet kommer att handla om mekaniken, det vi gått igenom sedan vi började med fysik.

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

Fysik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret

Fysik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret Fysik Balderskolan, Uppsala musikklasser 2009 Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret känna till några vanliga energikällor och deras påverkan på miljön kunna redogöra för vattnets

Läs mer

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1:

f(t 2 ) f(t 1 ) = y 2 y 1 Figur 1: Som en inledning till begreppet derivata, ska vi här diskutera genomsnittlig förändingshastighet. Utan att veta vad som hänt mellan två givna tider t 1 och t 2 kan vi läsa av temperaturen, beloppet, hastigheten,

Läs mer

Förslag till EUROPAPARLAMENTETS OCH RÅDETS DIREKTIV. om tillnärmning av medlemsstaternas lagstiftning för måttenheter.

Förslag till EUROPAPARLAMENTETS OCH RÅDETS DIREKTIV. om tillnärmning av medlemsstaternas lagstiftning för måttenheter. EUROPEISKA KOMMISSIONEN Förslag till Bryssel den 27.9.2010 KOM(2010) 507 slutlig 2010/0260 (COD) C7-0287/10 EUROPAPARLAMENTETS OCH RÅDETS DIREKTIV om tillnärmning av medlemsstaternas lagstiftning för måttenheter

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Skriv gärna på provpapperet

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

LÄRARHANDLEDNING Harmonisk svängningsrörelse

LÄRARHANDLEDNING Harmonisk svängningsrörelse LÄRARHANDLEDNING Harmonisk svängningsrörelse Utrustning: Dator med programmet LoggerPro LabQuest eller LabPro Avståndsmätare Kraftgivare Spiralfjäder En vikt Stativmateriel Kraftgivare Koppla mätvärdesinsamlaren

Läs mer

Basåret, Fysik 2 25 februari 2014 Lars Bergström

Basåret, Fysik 2 25 februari 2014 Lars Bergström Basåret, Fysik 2 25 februari 2014 Lars Bergström Alla bilder finns på kursens hemsida www.physto.se/~lbe/bas_fysik_2_lbe.html (nås via Mondo - Fysik 2) Del 1 byte byte Kursens innehåll, från hemsidan:

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Elektroakustik Något lite om analogier

Elektroakustik Något lite om analogier Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka

Läs mer

Theory Swedish (Sweden)

Theory Swedish (Sweden) Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

FK2005 Datorövning 3

FK2005 Datorövning 3 FK2005 Datorövning 3 Den här övningen vänder sig endast till lärarstudenter (FK2005). Målet är att lära sig hur man gör en minsta kvadrat anpassning med hjälp av OpenOffice Calc. Laboration 2 kräver att

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 5

Ingenjörsmetodik IT & ME 2010 Föreläsning 5 Ingenjörsmetodik IT & ME 010 Föreläsning 5 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Frågor från

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination

Läs mer

Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår

Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår Datum: 03-12-20 Skrivtid: 9.00-15.00 Hjälpmedel: Räknare, formelsamling Lärare: J. Gustafsson, M. Hamrin, P. Norqvist, A. Reiniusson och L.-E. Svensson

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer