9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1"

Transkript

1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

2 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod A till dess katod B är: där V k är batteriets spänning. Kirchhoffs II lag: dw k = dq V k (9.1) E + i V k,i = j V j (9.2) Om all resistans kan kombineras till en enda resistor: så att V k = E + RI (9.3) dw k = dq V k = dq( E + RI) = Idt( E + RI) = IdtE + RI 2 dt (9.4) Elektrodynamik, vt 2013, Kai Nordlund 9.2

3 Faradays lag ger E = dφ dt (9.5) dw k = IdΦ + RI 2 dt (9.6) Batteriets arbete går alltså till att bygga upp ett magnetiskt flöde Φ och därmed motverka den bromsande inducerade spänningen, och att dissipera värme-energi i resistorn. Om vi kan ignorera denna sistnämnda Joule-uppvärmning så får vi energin som går in i magnetfältet. Om inget annat förändras i kretsen, t.ex. kretsen behåller sin stela form och befinner sig hela tiden i vila, så har det utförda arbetet bara gått åt att öka på kretsens magnetiska energi: du M = IdΦ (9.7) Elektrodynamik, vt 2013, Kai Nordlund 9.3

4 9.2. Magnetisk energi för kopplade kretsar Låt oss nu bestämma den magnetiska energin för N st kopplade kretsar. Arbetet som kretsarnas batterier utför är då Joule-uppvärmningen inte beaktas. dw k = N I i dφ i (9.8) i=1 Vi utför nu integreringen under antagande att strömmarna och flödena ökar samtidigt i alla kretsar, så att den tillfälliga strömmen i krets i är Detta ger I i αi i (9.9) För linjära magnetiska media gäller att Φ i I i, så induktansen di i = I idα (9.10) L i = dφ i di i = Φ i I i (9.11) Elektrodynamik, vt 2013, Kai Nordlund 9.4

5 som ger I i L i = Φ i. Vi får nu att di i = Φ i L i dα (9.12) Men L i = L i = dφ i di i (9.13) så att dφ i = Φ idα (9.14) Vi har nu W k = = dw k = N 1 i=1 0 N i=1 I i αφ i dα I i dφ i Elektrodynamik, vt 2013, Kai Nordlund 9.5

6 = = 1 2 N 1 I i Φ i dαα i=1 0 N I i Φ i (9.15) i=1 För ett system av N st kopplade, stationära och stela kretsar har vi alltså att den lagrade magnetiska energin är U M = 1 2 N I i Φ i (9.16) i=1 Om inge yttre fält är närvarande är flödesförändringarna orsakade av de övriga kretsarna. Då gäller dφ i = N dφ ij = j=1 N j=1 dφ ij di j di j = N M ij di j (9.17) j=1 Elektrodynamik, vt 2013, Kai Nordlund 9.6

7 Vi får: U = dw b = N I i N M ij di j i=1 j=1 = N i=1 I i N j=1 1 M ij I j dαα 0 = 1 2 = 1 2 N i=1 N i=1 N M ij I i I j j=1 L i I 2 i +M 12 I 1 I 2 + M 13 I 1 I M 1N I 1 I N +M 23 I 2 I 3 + M 24 I 2 I M 2N I 2 I N M N 1,N I N 1 I N (9.18) Vi använde L i = M ii och M ij = M ji. Elektrodynamik, vt 2013, Kai Nordlund 9.7

8 Exempel 1: En isolerad krets: Φ = LI (9.19) U = 1 2 IΦ = 1 2 LI2 = 1 2 Φ 2 L (9.20) Exempel 2: Två kopplade kretsar: Beteckna x = I 1 /I 2. Eftersom U 0 får vi U = 1 2 L 1I L 2I M 12I 1 I 2 (9.21) U = 1 2 I2 2 (L 1x 2 + L 2 + 2M 12 x) 0 (9.22) Nu kan vi beräkna minimi-energin som funktion av förhållandet mellan strömmarna x genom att derivera parentesen och sätta uttrycket till noll, x = M 12 L 1 (9.23) Elektrodynamik, vt 2013, Kai Nordlund 9.8

9 och efter verifiering att andra derivatan är positiv. Minimi-energin: så att U min = I2 2 (M 12 + L 2 2 M 2 12 ) = 1 L 1 L 2 M 2 L 1 L 1 2 I (9.24) L 1 M L 1L 2 0 (9.25) eller ett uttryck som vi använde oss av tidigare. L 1 L 2 M 2 12 (9.26) Elektrodynamik, vt 2013, Kai Nordlund 9.9

10 9.3. Det magnetiska fältets energi Som för elektriska laddningsfördelningar kan vi generalisera energin för magnetiska kretsar med hjälp av det fält dessa kretsar ger upphov till. Betrakta ett system av kretsar i ett linjärt magnetiskt medium. Flödet genom en av dessa kretsar är Φ i = A i da i B (9.27) En komplicerad krets kan delas upp i ett flertal slutna slingor. Detta gjorde vi redan tidigare när vi granskade kretsar med Kirchhoffs lagar. Vi kan nu skriva Φ i = da i B = da ij B A i j A ij = da ij ( A) j A ij = dr ij A (9.28) j C ij Elektrodynamik, vt 2013, Kai Nordlund 9.10

11 Totala energin för det magnetiska fältet är nu U = 1 2 = 1 2 = 1 2 = 1 2 I i Φ i i I i i j C ij dr ij A I i dr ij A i j C ij i j V ij dv ij J ij A (9.29) Låt volymerna vara sådana att deras summa fyller upp hela volymen V. Vi får då där J = ij J ij. U = 1 2 V dv J A (9.30) Elektrodynamik, vt 2013, Kai Nordlund 9.11

12 Fältekvationen för H är ju H = J (9.31) så vi får Med hjälp av U = 1 2 V dv ( H) A (9.32) (F G) = ( F) G ( G) F (9.33) fås nu U = 1 2 = 1 2 = 1 2 dv ( (H A) + ( A) H) V da (H A) + 1 dv ( A) H A 2 V da (H A) + 1 dv B H (9.34) A 2 V Elektrodynamik, vt 2013, Kai Nordlund 9.12

13 Om strömmar inte förekommer i oändligheten och de magnetiska materialen inte är oändligt stora dör A bort som 1/r, och H som B som A som 1/r 2 p.g.a. magnetiskt material och som 1/r 2 p.g.a. strömmar. Kombinationen av H och A dör alltså bort som 1/r 3. da är proportionell mot r 2, så yt-integralen dör bort som 1/r och försvinner i oändligheten. Vi sitter nu kvar med U M = 1 2 V dv B H (9.35) där V omfattar hela rummet. Detta är energin för ett linjärt magnetiskt system. Energitätheten för isotropiska linjära media är u M = 1 2 B H = 1 2 µh2 = 1 2µ B2 (9.36) Elektrodynamik, vt 2013, Kai Nordlund 9.13

14 9.4. Krafter och vridmoment på stela kretsar Vi betraktar nu ett magnetiskt system där en komponent tillåts röra sig under inverkan av magnetfältet. Strömmen i systemet hålls konstant Det arbete som den magnetiska kraften F utför på en rörlig komponent är dw I = F dr = dw k du M (9.37) där dw k är arbetet som utförs av externa batterier för att hålla strömmen konstant, och du M är förändringen i systemets magnetiska energi. Uttrycket för energin ger genast att du M = 1 2 I i dφ i (9.38) i Å andra sidan, batteriets arbete är dw k = i IdΦ i = 2dU M (9.39) Elektrodynamik, vt 2013, Kai Nordlund 9.14

15 enligt första sektionen. Vi får nu att så att den magnetiska kraften på komponenten är dw I = du M (9.40) För vridmoment fås F = ( U M ) I (9.41) τ = ( θ U M ) I (9.42) Elektrodynamik, vt 2013, Kai Nordlund 9.15

16 Flödet genom systemet hålls konstant Fortfarande gäller dw k = i IdΦ i (9.43) som nu är noll. Vi får då att dw Φ = du M (9.44) och F = ( U M ) Φ (9.45) Motsvarande, τ = ( θ U M ) Φ (9.46) Elektrodynamik, vt 2013, Kai Nordlund 9.16

17 Exempel 1: Bestäm kraften mellan två stela kretsar som bär de konstanta strömmarna I 1 och I 2. Låt krets 1 utöva en kraft på krets 2, som flyttas som helhet. De flöden som kretsarna ger upphov till genom sig själva ändras inte, eftersom strömmarna och tvärsnittsytorna är oföränderliga. Det enda som ändrar är kretsarnas inbördes position. Alltså ändrar endast det ömsesidiga flödet, och vi får F 2 = 2 U = 2 ( 1 2 L 1I L 2I MI 1I 2 ) = I 1 I 2 2 M (9.47) där enligt Neumanns formel vi har att M = µ 0 4π C 1 dr 1 dr 2 C 2 r 1 r 2 (9.48) Elektrodynamik, vt 2013, Kai Nordlund 9.17

18 Skriv om: r 1 = r 1,0 + s 1 (9.49) r 2 = r 2,0 + s 2 (9.50) Här är r i,0 (i = 1, 2) nån fixerad punkt för kretsen, t.ex. dess massmedelpunkt. Denna rör sig om kretsen rör sig. s i är en vektor som löper över kretsens kontur, och vars origo är i massmedelpunkten. I uttrycket för den ömsesidiga induktansen löper integreringen över konturerna: M = µ 0 4π C 1 ds 1 ds 2 C 2 s 2 s 2 + r 1,0 r 2,0 (9.51) Derivering med avseende på r 2 betyder för stela kretsar att vi deriverar med avseende på massmedelpunkten för krets 2: F 2 = 2 U = I 1 I 2 r2,0 µ 0 4π C 1 ds 1 ds 2 C 2 s 1 s 2 + r 1,0 r 2,0 Elektrodynamik, vt 2013, Kai Nordlund 9.18

19 = I 1 I 2 µ 0 4π = I 1 I 2 µ 0 4π C 1 C 1 1 ds 1 ds 2 r2,0 C 2 s 1 s 2 + r 1,0 r 2,0 s 1 s 2 + r 1,0 r 2,0 ds 1 ds 2 (9.52) C 2 s 1 s 2 + r 1,0 r 2,0 3 Å andra sidan, Biot-Savarts lag säger att F 2 = µ 0 4π I dr 2 (dr 1 (r 2 r 1 )) 1I 2 (9.53) C 1 C 2 r 1 r 2 3 Vi kan nu för att vara konsekventa använda samma variabler i Biot-Savarts lag som i den tidigare ekvationen, men noteringarna blir lättare om vi istället återgår till r 1, r 2 : F 2 = I 1 I 2 µ 0 4π Detta uttryck och Biot-Savarts lag måste vara samma. Vi bevisar detta! C 1 C 2 (dr 1 dr 2 )(r 2 r 1 ) r 1 r 2 3 (9.54) Elektrodynamik, vt 2013, Kai Nordlund 9.19

20 Vi har: dr 2 (dr 1 (r 2 r 1 )) = dr 1 (dr 2 (r 2 r 1 )) (r 2 r 1 )(dr 2 dr 1 ) (9.55) enligt BAC-CAB-regeln. Sista termen ger oss det F 2 -uttryck vi härlett ovan, så vi visar att första termen försvinner. Denna term ger integralen C 1 C 2 dr 1 (dr 2 (r 2 r 1 )) r 1 r 2 3 = C 1 dr 1 C 2 dr 2 (r 2 r 1 ) r 2 r 1 3 (9.56) Utför integralen över C 2 först. I integranden kommer r 1 att vara en konstant, så att vi kan införa variabeln v = r 2 r 1 med dv = dr 2 : C 1 dr 1 C 2 dv v v 3 = = C 1 dr 1 C 1 dr 1 dvv dv = dr C 2 v 3 1 C 1 C 2 v 2 ( ) 1 = dr 1 0 (9.57) v C 1 C 2 d för att en sluten kurvintegral över bara en variabel säkert blir 0. Elektrodynamik, vt 2013, Kai Nordlund 9.20

21 OK! Elektrodynamik, vt 2013, Kai Nordlund 9.21

22 Exempel 2: Låt en solenoid med längden L och N st lindningar av en tråd som bär strömmen I vara nästan fylld med en järnstav med den konstanta permabiliteten µ och den konstanta tvärsnittsarean A = πa 2. Låt solenoiden ha sin symmetriaxel parallell med z-axeln. Approximera att magnetfältet är konstant i all riktningar som är vinkelräta mot z, inom solenoiden. Låt solenoidens ändpunkter vara z = 0 och z = L. Om nu staven dras ut så att ena änden är i 0 < z < L medan den andra är utanför solenoiden, bestäm den kraft som påverkar staven i det nya läget. Strömmen hålls konstant under utdragandet. Elektrodynamik, vt 2013, Kai Nordlund 9.22

23 Från tidigare vet vi att B z (z) = µ 0NI 2L (cos α 1 + cos α 2 ) = µ ( 0NI z 2L z2 + a + 2 = µ 0NI 2L ( ) L z (z L)2 + a 2 ) z z 2 + f + 1 z 2 (z 1) 2 + f 2 (9.58) med beteckningarna z = z/l och f = a/l. Elektrodynamik, vt 2013, Kai Nordlund 9.23

24 Om solenoidens radie är 10% av dess längd, d.v.s. f = 0, 1 fås ett B z (z) beroende som i figuren. Från detta ser vi att B z utanför staven är mycket svagt, så vi kan ignorera fältet där ute i våra räkningar. Den magnetiska energin är nu U = 1 2 dv µh 2 = 1 2 V = 1 ( z 2 A dz µ 0 H z dz AµH 2 L z dz µh 2 ) (9.59) Elektrodynamik, vt 2013, Kai Nordlund 9.24

25 Kraften är F = z U = 1 2 A z = 1 2 A ( z ( z dz µ 0 H L z dz µh 2 ) dz µ 0 z H2 (z ) + µ 0 H 2 (z = z) z z µ 0H 2 (z = 0) ) z ( L 2 A dz µ z H2 (z ) + µh 2 (z = L) z L µh2 (z = z) )(9.60) z z z Här användes Leibniz integralregel: u [ ] b(u) dxf(x, u) a(u) = b(u) a(u) dx f(x, u) u +f(b(u), u) u b(u) f(a(u), u) a(u) (9.61) u Elektrodynamik, vt 2013, Kai Nordlund 9.25

26 Observera att z i integralerna är en hjälpvariabel som integreras bort och inte syns utanför integralen. Vi får inte derivera med avseende på denna! Nu försvinner de flesta termerna för derivatorna med avseende på z på termer som inte beror på denna variabel blir noll, och vi får F = 1 ) (µ 2 A 0 H 2 (z = z) µh 2 (z = z) = 1 2 A(µ 0 µ)h 2 (z = z) = 1 2 A(µ 0 µ 0 (1 + χ M ))H 2 (z = z) = 1 2 Aχ Mµ 0 H 2 (z = z) (9.62) Kraften är riktad till vänster i figuren, d.v.s. solenoiden vill dra in staven. Elektrodynamik, vt 2013, Kai Nordlund 9.26

27 Exempel 3: Bestäm den cylinderradiella kraften på en solenoids lindningar, per längd. Antalet lindningar är N, strömmen i dessa är I, solenoidens radie är R och dess längd är L. Ignorera fältet utanför solenoiden. Energin är U M = 1 dv µh 2 2 = 1 ( ) NI 2 2 µ dv L = 1 ( ) NI 2 2 µπr2 L (9.63) L enligt tidigare approximation. Kraften i den cylinderradiella riktningen är, om strömmen hålls konstant: F ρ = ( U M ) ρ = ρ U M = 1 ( ) NI 2 2 µπ2rl (9.64) L Elektrodynamik, vt 2013, Kai Nordlund 9.27

28 Den sökta kraften per längd är F ρ 2πRN = 1 2 µni2 L (9.65) Om i stället flödet hålls konstant får vi ett minustecken. Elektrodynamik, vt 2013, Kai Nordlund 9.28

Elektromagnetisk induktion och induktans. Emma Björk

Elektromagnetisk induktion och induktans. Emma Björk Elektromagnetisk induktion och induktans Emma Björk Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna

Läs mer

8. Elektromagnetisk induktion

8. Elektromagnetisk induktion [RM] 8. Elektromagnetisk induktion problematiskt både i att det inte är fråga om en kraft i enheter av Newton, dels för att termen har många olika, delvis inkonsistenta definitioner (se wikipedia:electromotive

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Tid och plats: januari 2, kl. 4.9., i MA. Kursansvarig lärare: Christian Sohl, tel. 222 34 3. Tillåtna hjälpmedel: Formelsamling i elektromagnetisk

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

Motorprincipen. William Sandqvist

Motorprincipen. William Sandqvist Motorprincipen En strömförande ledare befinner sig i ett magnetfält B (längden l är den del av ledaren som befinner sig i fältet). De magnetiska kraftlinjerna får inte korsa varandra. Fältet förstärks

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ 1 Föreläsning 10 7.3.1-7.3.3, 7.3.6, 8.1.2 i Griffiths Maxwells ekvationer (Kap. 7.3) åra modellagar, som de ser ut nu, är E(r,t) = B(r,t) Faradays lag H(r,t) = J(r,t) Ampères lag D(r,t) = ρ(r,t) Gauss

Läs mer

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv 1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3)

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3) 18. Sammanfattning 18.2. Ursprung och form av fältena Elektriska laddningar (monopoler) i vila ger upphov till elfält Elektriska laddningar i rörelse ger upphov till magnetfält Elektriska laddningar i

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika [RMC] 3. Lösning av elektrostatiska problem för dielektrika Eftersom de minsta beståndsdelarna i ett dielektrikum är molekyler kan man definiera ett molekylärt dipolmoment Nu gäller p m = mol dqr (3.3)

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

5. Elektrisk ström Introduktion

5. Elektrisk ström Introduktion 5. Elektrisk ström [RMC] Elektrodynamik, ht 2005, Krister Henriksson 5.1 5.1. ntroduktion Hittills har vi granskat egenskaper hos statiska laddningsfördelningar, d.v.s. laddningar i vila. Vi ska nu undersöka

Läs mer

5. Elektrisk ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 5.1

5. Elektrisk ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 5.1 5. Elektrisk ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 5.1 5.1. Introduktion Hittills har vi granskat egenskaper hos statiska laddningsfördelningar, d.v.s. laddningar i vila. Vi ska nu undersöka

Läs mer

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika 3. Lösning av elektrostatiska problem för dielektrika [RMC] Elektrodynamik, vt 2013, Kai Nordlund 3.1 3.1. Dielektrika Ett perfekt dielektrikum (isolator) är ett material som inte innehåller några fria

Läs mer

5. Elektrisk ström [RMC] Elektrodynamik, vt 2013, Kai Nordlund 5.1

5. Elektrisk ström [RMC] Elektrodynamik, vt 2013, Kai Nordlund 5.1 5. Elektrisk ström [RMC] Elektrodynamik, vt 2013, Kai Nordlund 5.1 5.1. Introduktion Hittills har vi granskat egenskaper hos statiska laddningsfördelningar, d.v.s. laddningar i vila. Vi ska nu undersöka

Läs mer

Inlämningsuppgift nr 2, lösningar

Inlämningsuppgift nr 2, lösningar UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

5. Elektrisk ström Introduktion

5. Elektrisk ström Introduktion 5. Elektrisk ström [RMC] Elektrodynamik, vt 2013, Kai Nordlund 5.1 5.1. Introduktion Hittills har vi granskat egenskaper hos statiska laddningsfördelningar, d.v.s. laddningar i vila. Vi ska nu undersöka

Läs mer

11. Maxwells ekvationer och vågekvationen

11. Maxwells ekvationer och vågekvationen 11. Maxwells ekvationer och vågekvationen [RMC] Elektrodynamik, vt 2013, Kai Nordlund 11.1 11.1. Förskjutningsströmmen Skotten James Clerk Maxwell (1831-1879) noterade år 1864 att Ampères lag dr H = C

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Tentamen i ELEKTROMAGNETISM I, 05-06-04 för F och Q (FA54) Skrivtid: 5 tim Kan även skrivas av studenter på andra program där FA54 ingår Hjälpmedel:

Läs mer

11. Maxwells ekvationer och vågekvationen

11. Maxwells ekvationer och vågekvationen 11. Maxwells ekvationer och vågekvationen [RMC] Elektrodynamik, vt 2013, Kai Nordlund 11.1 11.1. Förskjutningsströmmen Skotten James Clerk Maxwell (1831-1879) noterade år 1864 att mpères lag dr H = d J

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

15. Strålande system

15. Strålande system 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

Formelsamling till Elektromagnetisk

Formelsamling till Elektromagnetisk Formelsamling till Elektromagnetisk fältteori Lars-Göran Westerberg Avdelningen för strömningslära Luleå tekniska universitet 13 januari 2009 ammanfattning Den här formelsamlingen utgör tillsammans med

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik IE1206 Inbyggd Elektronik F1 F3 F4 F2 Ö1 Ö2 PIC-block Dokumentation, Seriecom Pulsgivare I, U, R, P, serie och parallell KK1 LAB1 Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchoffs

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form)

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form) 1 Föreäsning 9 7.2.1 7.2.4 i Griffiths nduktionsagen sammanfattning (Kap. 7.1.3) (r, t) E(r, t) = t (differentie form) För en stiastående singa gäer E(r, t) d = d S (r, t) ˆndS = dφ(t) (integraform) Eektromotorisk

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Hanno Essén Lagranges metod för en partikel

Hanno Essén Lagranges metod för en partikel Hanno Essén Lagranges metod för en partikel KTH MEKANIK STOCKHOLM 2004 1 Inledning Joseph Louis Lagrange (1763-1813) fann en metod som gör det möjligt att enkelt ta fram rörelseekvationerna för system

Läs mer

Tentan , lösningar

Tentan , lösningar UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är

Läs mer

1 Vektorer och tensorer

1 Vektorer och tensorer Föreläsning 1. 1 Vektorer och tensorer Vi kommer att använda två olika beteckningar för vektorer. Enligt det första systemet använder vi fet stil för en vektor i typsatt text och ett vektorstreck då vi

Läs mer

11. Maxwells ekvationer och vågekvationen

11. Maxwells ekvationer och vågekvationen . Maxwells ekvationer och vågekvationen H = J (.2) ger [RMC] dr H = d J = I (.3) C Å andra sidan kan vi lika gärna använda ytan, som också avgränsas av samma kontur C: dr H = C d J = 0 (.4) för att ingen

Läs mer

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras!

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras! 1 Föreläsning 13 12.2.1, 10.1.1 10.1.2, 10.1.4 i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras! Fält från strömmar i tidsdomänen (kursivt) V Lorentzgaugen A+µ 0 ε 0 = 0 för vektorpotentialen

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8) Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Introduktion till modifierad nodanalys

Introduktion till modifierad nodanalys Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad

Läs mer

SF1626 Flervariabelanalys Tentamen 14 mars 2011,

SF1626 Flervariabelanalys Tentamen 14 mars 2011, SF1626 Flervariabelanalys Tentamen 14 mars 2011, 08.00-13.00 Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På

Läs mer

Tentamen i TATA43 Flervariabelanalys

Tentamen i TATA43 Flervariabelanalys Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Appendix A: Differentialoperatorer i olika koordinatsystem

Appendix A: Differentialoperatorer i olika koordinatsystem Appendix A: Differentialoperatorer i olika koordinatsystem [Arfken,BETA,Lahtinen] A. 1. Kurvilineära koordinatsystem Antag att i ett Cartesiskt (x, y, z) koordinatsystem med basvektorerna bx, by, bz existerar

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik Gerhard Kristensson Institutionen för elektro- och informationsteknik 2 oktober 2014 Olika lösningsmetoder 1 Biot-Savarts

Läs mer

Magnetostatik och elektromagnetism

Magnetostatik och elektromagnetism Magnetostatik och elektromagnetism Magnetostatik eskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält. Vi känner till följande effekter:

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Elektromagnetiska falt och Maxwells ekavtioner

Elektromagnetiska falt och Maxwells ekavtioner Forelasning /1 Elektromagnetiska falt och Maxwells ekavtioner 1 Maxwells ekvationer Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullstandig beskrivning av ett elektromagnetiskt falt. Dock,

Läs mer

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda

Läs mer

13. Plana vågors reflektion och brytning

13. Plana vågors reflektion och brytning 13. Plana vågors reflektion och brytning Extra material som ges som referens, men krävs inte i mellanförhören eller räkneövningarna: Elektrodynamik, vt 2008, Kai Nordlund 13.1 13.1. Vågledare... Hastigheter

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson Föreläsning 26/9 Elektromagnetiska fält och Maxwells ekavtioner 1 Maxwells ekvationer Mats Persson Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullständig beskrivning av ett elektromagnetiskt

Läs mer