Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamen Modellering och simulering inom fältteori, 8 januari, 2007"

Transkript

1 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget på tentan ges av (total poäng)/10. 1 ektorfältet A är givet av A = m r r 3 där m = mẑ är en konstant vektor, r = (x, y, z) och r = r. Bestäm linjeintegralen A dl där C är en cirkel i xy planet med radien a och medelpunkt i origo. 2 C En sten med volym, yta och utåtriktad ytnormal ˆn befinner sig under vattenytan i en bassäng. attnets densitet betecknas ρ v och lufttrycket P 0. a) Bestäm totala trycket under vattnet som funktion av djupet z. b) Teckna totala tryckkraften på kroppen som en ytintegral över stenens yta. c) Bestäm totala tryckkraften på kroppen genom att lösa ytintegralen i b).

2 2 3 b a εr α εr Två sfäriska metallskal har gemensamt centrum. Den inre sfären har radien a och den yttre radien b. Bestäm kapacitansen mellan sfärerna i följande tre fall: a) Då det är vakuum mellan sfärerna. b) Då hälften av utrymmet mellan sfärerna är fyllt med ett icke-ledande material med relativ permittivitet ε r medan det i den andra halvan råder vakuum. c) Då en konisk del med öppningsvinkeln α är fylld med ett icke-ledande material med relativ permittivitet ε r medan det i den andra delen råder vakuum. 4 z y x R L En lång ledare består av två tunna plana parallella ledare, enligt figur. Avståndet mellan ledarna är d och vardera ledaren har bredd b och längd L. I den ena ändan är en spänningskälla som ger likspänningen 0 inkopplad och i andra ändan är en resistans R inkopplad. Ledarnas resistans är försumbar jämfört med R. Det gäller att d b L och vi kan därför anta att magnetfältet och det elektriska fältet är konstant mellan plattorna och approximativt lika med noll överallt annars. i kan också anta att strömmen är jämnt fördelad över ledarnas tvärsnittsytor. Det råder vakuum utanför ledarna. a) Bestäm det elektriska fältet E mellan plattorna. b) Bestäm magnetfältet H mellan plattorna. c) Är den magnetiska kraften mellan plattorna attraktiv eller repulsiv (ge motivering utan räkningar)? d) Bestäm kvoten F e / F m mellan den elektriska kraften F e och den magnetiska kraften F m på den övre plattan.

3 3 5 z y x En cirkulär metallslinga med radien a är placerad i xy-planet med centrum i origo. En likadan metallslinga är också placerad i xy-planet men med sitt centrum i punkten (b, 0, 0) där b a. i antar att slingornas självinduktanser är försumbara och att vardera slingan har resistansen R. a) ad är det magnetiska flödet genom den högra slingan om man driver en konstant ström I 0 genom den vänstra slingan. b) Från t = 0 till t = T ökas strömmen i den vänstra slingan linjärt från I 0 till I 1 så att i(t) = I 0 + (I 1 I 0 )t/t Bestäm den inducerade strömmen i den högra slingan under tiden 0 < t < T. c) Går den inducerade strömmen i den högra slingan åt samma håll eller motsatt håll relativt strömmen i den vänstra slingan under tiden 0 < t < T? Motivera utan räkningar. 6 Det elektriska fältet för en cirkulärpolariserad våg som utbreder sig i vakuum är Bestäm strålningsvektorn (z, t). E(z, t) = E 0 (ˆx cos(ωt kz) + ŷ sin(ωt kz))

4 1 Institutionen för elektrovetenskap Lösningar för tentamen i Modellering och simulering inom fältteori, 8 januari, I sfäriska koordinater gäller ẑ r = r sin θ ˆφ. Därmed fås A = m sin θ r 2 För linjeintegralen gäller θ = π/2, r = a och dl = aˆφdφ. Detta ger A dl = 2πm a 2 a) P (z) = P 0 + ρ v gz b) F = P (z)ˆnd c) i kan skriva kraften som F = ˆx P (z)ˆx ˆnd ŷ C ˆφ P (z)ŷ ˆnd ẑ P (z)ẑ ˆnd Genom att använda divergenssatsen på varje term fås F = ˆx ˆxP (z)d ŷ ŷp (z)d ẑ ẑp (z)d P (z) = ˆx x d ŷ P (z) y d ẑ P (z) z d P (z) = ẑ z d = ẑρ vg d = ẑρ v g (detta är inget annat än Arkimedes princip)

5 2 3 i låter den yttre sfären vara jordad och den inre sfären ha potentialen 0. Kapacitansen ges av C = Q 0 där Q är den fria laddningen på den inre sfären. I samtliga fall gäller att potentialen satisfierar Laplace ekvation i området mellan sfärerna. Potentialen beror endast av den radiella koordinaten r i området a < r < b och därmed gäller Integration ger 1 (r) r 2 r2 r r (r) = A r + B = 0 Integrationskonstanterna A och B bestäms av att (a) = 0 och (b) = 0 vilket ger ( ) a b (r) = 0 r 1 Motsvarande elektriska fält ges av ab 1 E(r) = (r) = ˆr 0 r 2 Ytladdningstätheten på den inre sfären ges av ρ = ˆr D(r = a) b a) När vakuum råder gäller att D = ε 0 E och ρ = ε 0 0. Totala ytladdningen a(b a) blir Q = 4πa 2 ab ρ = 4πε 0 0 och ab C = 4πε 0 b) När halva området är fyllt av ett dielektrikum gäller för r = a att { ε 0 E(a) i vakuum D = ε 0 ε r E(a) i dielektrikumet Därmed fås och Q = 2πa 2 ab (ε 0 E(a) + ε 0 ε r E(a)) = 2πε 0 (1 + ε r ) 0 C = 2πε 0 (1 + ε r ) ab

6 3 c) detta fall är analogt med det i b) förutom att den yta av den inre sfären som täcks av dielektrikumet ges av d = 2π α/2 0 0 a 2 sin θdθdφ = 2πa 2 (1 cos(α/2)) Ytan där det är vakuum ges av v = 4πa 2 d = 2πa 2 (1 + cos(α/2)). Därmed ges laddningen av och kapacitansen av 4 ab Q = 2π 0 ε 0 ((1 cos(α/2))ε r cos(α/2)) C = 2π ab ε 0 ((1 cos(α/2))ε r cos(α/2)) i använder det koordinatsystem som angetts i figuren. a) Det elektriska fältet är riktat nedåt och ges av E = 0 d ẑ b) i använder Amperes lag. Magnetfältet är enligt skruvregeln riktat i positiv y led mellan plattorna. Eftersom magnetfältet är konstant mellan ledarna och noll utanför fås H dl = I C H = I b ŷ c) Kraften är repulsiv. d) i får den elektriska kraften från F e = QE 1 där Q är laddningen på den övre ledaren och E 1 är det elektriska fältet från den undre ledaren. Av symmetriskäl är Laddningen ges av E 1 = 1 2 E = 0 2dẑ Q = ρ bl = ẑ DbL = ε 0 0 d bl Den elektriska kraften ges därmed av 0 2 bl F e = ε 0 2d ẑ 2

7 4 Den magnetiska kraften ges av BIL formeln F m = B 1 ILˆx ŷ = B 1 0 R Lẑ där B 1 är magnetiska flödestätheten från den undre ledaren. Av symmetriskäl gäller B 1 = 1 2 B = µ 0 2 H = µ 0I 2b ŷ Den magnetiska kraften ges alltså av Kvoten ges av F m = 1 2 µ 0 br Lẑ 2 F e F m = ε 0 b 2 R 2 µ 0 d 2 i använder dipolapproximationen. Dipolformeln ger B(r, θ) = µ 0m 4πr 3 (2ˆr cos θ + ˆθ sin θ) a) I detta fall är det magnetiska momentet m = I 0 πa 2, θ = π/2 och r = b. Därmed fås Φ = B(b, π/2)πa 2 = µ 0π 2 a 4 I 0 4πb 3 b) I detta fall är m(t) = i(t)πa 2, θ = π/2 och r = b. Därmed fås Φ(t) = µ 0π 2 a 4 i(t) 4πb 3 Den inducerade strömmen ges av i ind (t) = 1 dφ(t) = µ 0πa 4 di(t) = µ 0πa 4 (I 1 I 0 ) R dt 4Rb 3 dt 4Rb 3 T c) Enligt Lentz lag måste strömmarna vara riktade åt samma håll. 6 trålningsvektorn ges av Högertrebensregeln ger (z, t) = E(z, t) H(z, t) Detta ger H(z, t) = 1 η 0 ẑ E(z, t) = E 0 η 0 (ŷ cos(ωt kz) ˆx sin(ωt kz)) (z, t) = E2 0 η 0 ( cos 2 (ωt kz) + sin 2 (ωt kz) ) ẑ = E2 0 η 0 ẑ

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Tid och plats: januari 2, kl. 4.9., i MA. Kursansvarig lärare: Christian Sohl, tel. 222 34 3. Tillåtna hjälpmedel: Formelsamling i elektromagnetisk

Läs mer

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik

Vektoranalys III. Anders Karlsson. Institutionen för elektro- och informationsteknik Vektoranalys III Anders Karlsson Institutionen för elektro- och informationsteknik 16 september 215 Översikt 1 Gauss sats divergenssatsen Exempel på användning av Gauss sats 2 tokes sats Exempel på användning

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras!

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras! 1 Föreläsning 13 12.2.1, 10.1.1 10.1.2, 10.1.4 i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras! Fält från strömmar i tidsdomänen (kursivt) V Lorentzgaugen A+µ 0 ε 0 = 0 för vektorpotentialen

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv 1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths 1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras.

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras. Dugga i Elektromagnetisk fältteori för F2. EEF031 2006-11-25 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016

SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016 Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-6-4 DEL A 1. Funktionen f är definierad på området som ges av olikheterna x > 1/ och y > genom f(x, y) ln(x 1) + ln(y) xy x. (a) Förklara vad det

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 016-10-17 kl. 08.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men

Läs mer

Formelsamling till Elektromagnetisk

Formelsamling till Elektromagnetisk Formelsamling till Elektromagnetisk fältteori Lars-Göran Westerberg Avdelningen för strömningslära Luleå tekniska universitet 13 januari 2009 ammanfattning Den här formelsamlingen utgör tillsammans med

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ 1 Föreläsning 10 7.3.1-7.3.3, 7.3.6, 8.1.2 i Griffiths Maxwells ekvationer (Kap. 7.3) åra modellagar, som de ser ut nu, är E(r,t) = B(r,t) Faradays lag H(r,t) = J(r,t) Ampères lag D(r,t) = ρ(r,t) Gauss

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 015-10-19 kl. 8.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken, understrykningar och inringningar ok, dock ej formler, anteckningar miniräknare

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 016-05-30 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form)

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form) 1 Föreäsning 9 7.2.1 7.2.4 i Griffiths nduktionsagen sammanfattning (Kap. 7.1.3) (r, t) E(r, t) = t (differentie form) För en stiastående singa gäer E(r, t) d = d S (r, t) ˆndS = dφ(t) (integraform) Eektromotorisk

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 015-08-17 kl. 8.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men

Läs mer

FFM232, Klassisk fysik och vektorfält - Veckans tal

FFM232, Klassisk fysik och vektorfält - Veckans tal FFM232, Klassisk fysik och vektorfält - eckans tal Tobias Wenger och Christian Forssén, Chalmers, Göteborg, Sverige Oct 3, 2016 Uppgift 6.6 (Cederwalls kompendium) Beräkna normalytintegralen av a F 2 [

Läs mer

Tentamen TMA043 Flervariabelanalys E2

Tentamen TMA043 Flervariabelanalys E2 Tentamen TMA43 Flervariabelanalys E2 22-- kl. 8.3 2.3 Eaminator: Johan Jonasson, Matematiska vetenskaper, halmers Telefonvakt: Fredrik Lindgren, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

ETE115 Ellära och elektronik, tentamen januari 2008

ETE115 Ellära och elektronik, tentamen januari 2008 januari 2008 (8) Institutionen för elektro och informationsteknik Daniel Sjöberg ETE5 Ellära och elektronik, tentamen januari 2008 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321) Tentamen för FYK (TFYA68), samt LKTROMAGNTM (9FY31) 014-05-8 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare -

Läs mer

15. Strålande system

15. Strålande system 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

PHYS-A5130 Elektromagnetism period III våren Vecka 2

PHYS-A5130 Elektromagnetism period III våren Vecka 2 PHYS-A5130 Elektromagnetism period III våren 2017 Vecka 2 1. En kub med sidlängden L = 3,00 m placeras med ett hörn i origo (se figuren). Elfältet ges av E = ( 5,00 N/Cm)xî + (3,00 N/Cm)zˆk. (a) Bestäm

Läs mer

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in Övningstenta i Elektromagnetisk fältteori, 2014-11-29 kl. 8.30-12.30 Kurskod EEF031 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori. Valfri kalkylator, minnet måste

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika 3. Lösning av elektrostatiska problem för dielektrika [RMC] Elektrodynamik, vt 2013, Kai Nordlund 3.1 3.1. Dielektrika Ett perfekt dielektrikum (isolator) är ett material som inte innehåller några fria

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321) Tentamen för FYK (TFYA68), samt LKTROMAGNTM (9FY31) 013-10-1 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare -

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Oscillerande dipol i ett inhomogent magnetfält

Oscillerande dipol i ett inhomogent magnetfält Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens

Läs mer

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik Gerhard Kristensson Institutionen för elektro- och informationsteknik 2 oktober 2014 Olika lösningsmetoder 1 Biot-Savarts

Läs mer

Elektriska och magnetiska fält Elektromagnetiska vågor

Elektriska och magnetiska fält Elektromagnetiska vågor 1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,

Läs mer

Elektromagnetisk induktion och induktans. Emma Björk

Elektromagnetisk induktion och induktans. Emma Björk Elektromagnetisk induktion och induktans Emma Björk Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( )

1( ), 2( ), 3( ), 4( ), 5( ), 6( ), 7( ), 8( ), 9( ) Inst. för Fysik och materialvetenskap Ola Hartmann Tentamen i ELEKTROMAGNETISM I 2008-10-08 Skrivtid: 5 tim. för Kand_Fy 2 och STS 3. Hjälpmedel: Physics Handbook, formelblad i Elektricitetslära, räknedosa

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson Föreläsning 26/9 Elektromagnetiska fält och Maxwells ekavtioner 1 Maxwells ekvationer Mats Persson Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullständig beskrivning av ett elektromagnetiskt

Läs mer

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8) Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter

Läs mer

Tentamen i TATA43 Flervariabelanalys

Tentamen i TATA43 Flervariabelanalys Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) ösningsskiss för tentamen Vektorfält och klassisk fysik FFM232) Tid och plats: ösningsskiss: Måndagen den 24 oktober 2016 klockan 14.00-18.00 i M-huset. Christian Forssén och Tobias Wenger Detta är enbart

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika [RMC] 3. Lösning av elektrostatiska problem för dielektrika Eftersom de minsta beståndsdelarna i ett dielektrikum är molekyler kan man definiera ett molekylärt dipolmoment Nu gäller p m = mol dqr (3.3)

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-12-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

------------------------------------------------------------------------------------------------------------ OBS!

------------------------------------------------------------------------------------------------------------ OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2011-04-26 kl. 14.00-18.00 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

1.1 Sfäriska koordinater

1.1 Sfäriska koordinater Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..

Läs mer

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log.

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log. Lektion 13, Flervariabelanals den 15 februari 2 15.1.2 Skissera vektorfältet och bestäm dess fältlinjer. F, = e + e I varje punkt, har vektorfältet en vektor med komponenter,, d.v.s. vektorn utgående från

Läs mer

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM113 Kontinuumsmekanik Datum: 2004-08-21 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar

Läs mer

) 2 = 1, där a 1. x + b 2. y + c 2

) 2 = 1, där a 1. x + b 2. y + c 2 ap 7 Användningar av multipelintegraler Arean av ett plant område 0 Beräkna arean av det område som begränsas av följande kurvor: A a (x y) 2 + x 2 = a 2 A b xy =, xy = 8, y = x och y = 2x (x > ) A c y

Läs mer

Elektromagnetiska falt och Maxwells ekavtioner

Elektromagnetiska falt och Maxwells ekavtioner Forelasning /1 Elektromagnetiska falt och Maxwells ekavtioner 1 Maxwells ekvationer Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullstandig beskrivning av ett elektromagnetiskt falt. Dock,

Läs mer

Tentamen MVE085 Flervariabelanalys

Tentamen MVE085 Flervariabelanalys Tentamen MVE85 Flervariabelanalys 5--5 kl. 4. - 8. Examinator: Dennis Eriksson, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, telefon: 73 88 34 Hjälpmedel: bifogat formelblad, ordlistan

Läs mer

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA3 Flervariabelanalys E2 23--6 kl. 8.3 2.3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Adam Andersson, telefon: 73 88 3 Hjälpmedel: bifogat

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Exempelsamling i elektromagnetisk fältteori för F3 och Pi3. Karlsson, Anders; Kristensson, Gerhard; Sohl, Christian. Published:

Exempelsamling i elektromagnetisk fältteori för F3 och Pi3. Karlsson, Anders; Kristensson, Gerhard; Sohl, Christian. Published: Exempelsamling i elektromagnetisk fältteori för F3 och Pi3 Karlsson, Anders; Kristensson, Gerhard; Sohl, Christian Published: 2014-01-01 Link to publication Citation for published version (APA): Karlsson,

Läs mer

Magnetiska fält. Magnetiska fält. Magnetiska fält. Magnetiska fält. Två strömförande ledningar kraftpåverkar varandra!

Magnetiska fält. Magnetiska fält. Magnetiska fält. Magnetiska fält. Två strömförande ledningar kraftpåverkar varandra! 38! 39! Två strömförande ledningar kraftpåverkar varandra! i 1! i 2! Krafterna beror av i 1 och i 2 och av geometrin! 40! Likaså kraftpåverkas en laddning Q som rör sig i närheten av en strömförande ledning!

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade.

2.7 Virvelströmmar. Om ledaren är i rörelse kommer den att bromsas in, eftersom det inducerade magnetfältet och det yttre fältet är motsatt riktade. 2.7 Virvelströmmar L8 Induktionsfenomenet uppträder för alla metaller. Ett föränderligt magnetfält inducerar en spänning, som i sin tur åstadkommer en ström. Detta kan leda till problem,men det kan också

Läs mer

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast , V Vad betyder det att V? -fältet riktat åt det håll V minskar snabbast dv Om -fältet endast beror av x blir det enkelt: xˆ dx Om V är konstant i ett område är där. konst. V -x x Om är homogent så ges

Läs mer

Magnetostatik och elektromagnetism

Magnetostatik och elektromagnetism Magnetostatik och elektromagnetism Magnetostatik eskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält. Vi känner till följande effekter:

Läs mer

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl

Tentamensskrivning, Kompletteringskurs i matematik 5B1114. Onsdagen den 18 december 2002, kl Institutionen för Matematik TH irsti Mattila Tentamensskrivning, ompletteringskurs i matematik 5B4 Onsdagen den 8 december, kl 8.-. Preliminära betgsgränser för, 4 och 5 är 8, 4 och 54 poäng. Inga hjälpmedel

Läs mer

8. Elektromagnetisk induktion

8. Elektromagnetisk induktion [RM] 8. Elektromagnetisk induktion problematiskt både i att det inte är fråga om en kraft i enheter av Newton, dels för att termen har många olika, delvis inkonsistenta definitioner (se wikipedia:electromotive

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

------------------------------------------------------------------------------------------------------------ OBS!

------------------------------------------------------------------------------------------------------------ OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2011-12-15 kl. 14.00-18.00 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna

Läs mer

FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 3, 2016 8. Potentialteori Konservativa fält och potentialer

Läs mer