ETE115 Ellära och elektronik, tentamen oktober 2006

Storlek: px
Starta visningen från sidan:

Download "ETE115 Ellära och elektronik, tentamen oktober 2006"

Transkript

1 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är sorterade i svårighetsordning. Beräkna spänningen v i nedanstående koppling. V 3 v V 2 Postadress Box 8, LUND Besöksadress Ole ömers väg 3, Lund Leveransadress Ole ömers väg 3, LUND Internpost Hämtställe 7 Telefon växel Fax E-post Internet

2 2(2) 2 0 H(jω) db ω/ω B arg(h(jω)) ω/ω B Vilken eller vilka av följande kretsar kan motsvara ovanstående Bode-diagram? Motivera! Vad är ω B för den korrekta kretsen eller kretsarna? jω V in jω Vut V in Vut j ω L (a) (b) V in Vut V in j ω L Vut (c) (d)

3 3(2) 3 Vid t = 0 har vi följande system, där den vänstra kapacitansen har laddningen Q och den högra är oladdad. esistansen finns med för att modellera förluster i ledningarna. Q Q Strax efter t = 0 slår strömbrytaren till, och efter rimligt lång tid har laddningen fördelat om sig enligt Q/2 Q/2 Q/2 Q/2 a) Vad är den totala upplagrade energin i systemet i de två olika situationerna? Är energin större, mindre eller oförändrad i den senare situationen? Energin i en kapacitans med laddning Q och spänning V ges av W = 2 QV. b) Beräkna nu strömmen i(t) nedan för t > 0. Q t=0 i(t) Q Hur mycket elektrisk energi omvandlas till en annan energiform (värme) i resistansen?

4 4(2) 4 Vi har två långa, raka, parallella ledare enligt nedan 2a d där omgivningen är luft. a) Betrakta först en ensam ledare med laddning per längdenhet Q/L. Visa att det elektriska fältet utanför en sådan är E = Q/L 2πrε 0 e r, r > a där r är vinkelräta avståndet från centrum av ledaren. Börja med att rita en fältbild. b) Antag nu att det finns laddning per längdenhet Q/L på den ena ledaren och Q/L på den andra. Om vi antar att d a, kan det elektriska fältet mellan ledarna beräknas som summan av två fält beräknade enligt formeln i a). Använd detta för att beräkna kapacitansen per längdenhet /L för de två ledarna. Börja med att rita en fältbild. 5 Betrakta nedanstående krets, där operationsförstärkaren kan anses vara ideal. 2 v v 2 3 v ut Bestäm ett förhållande mellan resistanserna 2 och 3 så att utsignalen v ut blir proportionell mot differensen mellan insignalerna, v 2 v.

5 5(2) 6 Beräkna v ut /v in för nedanstående krets. Kapacitanserna kan betraktas som kortslutningar för småsignalen, och småsignalparametrarna g m och r d kan betraktas som kända storheter. V DD D f 2 v(t) v L ut v in

6 6(2) Lösningsförslag De två resistanserna i den högra grenen av kretsen kan ersättas med en ekvivalent seriekoppling 2. Vi ersätter därefter spänningskällorna med sina respektive resistanser med Norton-ekvivalenter enligt nedan. V 3 v 2 V 2 2 De parallellkopplade resistanserna kan då ersättas med en resistans vilket ger spänningen 2 ekv = = 2 3 ( V v = ekv V ) 2 2 }{{} total ström = 6 = 6V 3V 2 Genom att betrakta amplituden av överföringsfunktionen (det övre diagrammet) kan vi dra slutsatsen att det rör sig om ett högpassfilter (låga frekvenser dämpas, höga frekvenser dämpas inte). Vi har följande tumregler för hur kapacitans och induktans beter sig för låga och höga frekvenser: Låga frekvenser: ersätts med avbrott, L ersätts med kortslutning. Höga frekvenser: ersätts med kortslutning, L ersätts med avbrott. Detta gör att endast kretsar (b) och (d) kan komma ifråga, ty endast dessa har rätt beteende för låga och höga frekvenser. Överföringsfunktionerna för dessa kan beräknas genom spänningsdelning till H b = H d = jω jωl jωl = = jω jω jωl/ jωl/ Uppenbarligen har dessa samma frekvensberoende och kan skrivas på formen H = jω/ω B jω/ω B

7 7(2) och vi identifierar brytfrekvenserna ω B = / för krets (b) och ω B = /L för krets (d). 3 a) Energin i en kapacitans kan uttryckas med hjälp av laddningen som W = 2 QV = Q 2 2 där vi utnyttjat sambandet mellan laddning och spänning för en kapacitans, Q = V. Totala energin i första systemet är då och i det andra systemet W = Q = Q2 2 W 2 = (Q/2) 2 (Q/2) = Q2 4 Energin är alltså endast hälften av den ursprungliga, vilket stämmer väl med den termodynamiska principen att naturen söker sig mot sitt lägsta energitillstånd. b) Vi betecknar laddningen på den vänstra kapacitansen med q (t) och laddningen på den högra med q 2 (t). Det står klart att vi har begynnelsevillkoren q (0) = Q och q 2 (0) = 0 och bivillkoret q (t) q 2 (t) = Q Vi inför spänningar v (t) och v 2 (t) enligt för alla t i(t) v v 2 Kirchhoffs spänningslag ger v (t) i(t) v 2 (t) = 0 q (t) i(t) Q q (t) där vi utnyttjade villkoret q q 2 = Q ovan. Ett sista samband är att strömmen i kan uttryckas som derivatan av laddningen q, i(t) = dq (t) dt = 0

8 8(2) där minustecknet motiveras av att i ska vara positiv om q minskar. Vi har nu differentialekvationen med lösningen q (t) = q (0) }{{} =Q Detta ger e 2t t 0 dq (t) dt e 2 (tt ) = 2 q (t) Q Q dt = Q e 2t Q 2 [ ] t e 2 (tt ) = Q e 2t Q 2t Q ( e ) = ( e 2 2 t =0 2t ) i(t) = dq (t) = Q 2t dt e, t > 0 Den energi som utvecklas i resistansen måste svara mot skillnadsenergin i startoch sluttillstånd, det vill säga W = W W 2 = Q2 2 Q2 4 = Q2 4 Detta kan också beräknas genom att integrera den effekt som utvecklas i resistansen, W = 0 [i(t)] 2 dt = 0 ( ) 2 [ Q e 4t Q 2 dt = 2 4 ] 4t e = Q2 4 En viktig observation är att denna energi inte beror på resistansen. Denna resistans styr endast hastigheten på tidsförloppet, dvs hur snabbt laddningen flödar från den ena kapacitansen till den andra. 4 En tvärsnittsbild av geometrin ger följande fältbild: t=0

9 9(2) Från denna bild sluter vi oss till att elektriska fältet bör kunna skrivas på formen E = E(r)e r där r är vinkelräta avståndet från centrum av ledaren. Gauss lag i elläran säger att för en godtycklig sluten yta S har vi D e n ds = Q innesluten I luft gäller D = ε 0 E, där ε 0 är permittiviteten i vakuum. S Vi låter ytan S vara en tänkt cirkulär cylinder med radie r = och längd L enligt nedan L S e r a Bidraget från ändarna på cylindern ger inget bidrag eftersom D e n = ε 0 E e n = 0 på dessa. Ytintegralen i Gauss lag är då ε 0 E e n ds = ε 0 E e n ds = ε 0 E(r) e r e r ds = ε S r= }{{} 0 E() 2πL }{{} = mantelytan mantelytan Eftersom den inneslutna laddningen måste vara Q innesluten = Q L = Q, har vi L E() = Q/L ε 0 2π

10 0(2) och eftersom är godtycklig (sånär som på att vi måste ha > a) är därmed det elektriska fältet (storlek och riktning) E = Q/L 2πrε 0 e r, r > a precis som önskat. b) En approximativ fältbild (i tvärsnittsplanet) är Q/L Q/L x=0 x=d där vi bara ritat in ett par förbindelselinjer mellan ledarna. För att beräkna kapacitansen behöver vi känna spänningen mellan ledarna. Denna kan beräknas genom att integrera det elektriska fältet mellan ledarytorna, och för att göra detta använder vi ett koordinatsystem med origo i den vänstra ledarens centrum, och koordinaten x på förbindelselinjen mellan ledarnas centrum: v a v b = Pb = Q/L 2πε 0 P a E dr = da x=a da x=a ( ( x d x Q/L 2π x ε 0 e x }{{} fält från vänstra ledaren ) Q/L (e x ) e x dx 2π d x ε }{{ 0 } fält från högra ledaren ) dx = Q/L 2πε 0 [ln x ln(d x)] da x=a = Q/L 2 ln d a 2πε 0 a Observera att vi tog bort absolutbeloppen kring x och d x först efter att ha konstaterat att båda dessa storheter är positiva i hela integrationsområdet. Kapacitansen per längdenhet blir nu L = Q/L v a v b = πε 0 ln da a πε 0 ln d a

11 (2) Denna formel baserar sig på approximationen d a. Om man räknar exakt (vilket kräver ett litet trick som kallas spegling), så får man svaret 5 L = πε 0 cosh d 2a Vi ser att operationsförstärkaren är negativt återkopplad, vilket ger att spänningen mellan ingångarna är noll. Om vi betecknar potentialen vid operationsförstärkarens ingångar med v, kan vi uttrycka den med hjälp av v 2 och spänningsdelning. v = 3 3 v 2 Samtidigt vet vi att utspänningen ges av (strömmen i 2 går genom 2 åt höger, och är samma som kommer in till operationsförstärkarens negativa ingång från v eftersom det inte går någon ström in i förstärkaren) v ut = v 2 i 2 = v 2 v v = ( 2 )v 2 v 3 = ( 2 ) v 2 2 v = 2 3 v 2 2 v 3 3 Om vi väljer 3 = 2 får vi tydligen v ut = 2 (v 2 v ), som önskat. 6 Småsignalschemat för kopplingen är f G D v(t) v in v gs g m v gs S r d D L v ut Vi kan ersätta de tre parallellkopplade resistanserna längst till höger med resistansen L = r d D L Kirchhoffs strömlag i drain-noden D ger då g m v gs v ut 0 L v ut v gs f = 0

12 2(2) Eftersom v gs = v in ger detta ett förhållande mellan in- och utsignal enligt 0 = g m v in v ut v ) ( ut v in = (g L m f v in ) v f L ut f Detta ger slutligen v ut v in = g m / f / L / f g m / f = /r d / D / L / f

ETE115 Ellära och elektronik, tentamen januari 2008

ETE115 Ellära och elektronik, tentamen januari 2008 januari 2008 (8) Institutionen för elektro och informationsteknik Daniel Sjöberg ETE5 Ellära och elektronik, tentamen januari 2008 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015 Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och

Läs mer

1 Grundläggande Ellära

1 Grundläggande Ellära 1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00 Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t) Tillämpningar av differentialekvationer, LR kretsar TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER LR KRETSAR Låt vara strömmen i nedanstående LR krets (som innehåller element en spole med induktansen L henry,

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik ederlöf Tentamen i Grundläggande ellära och digitalteknik ET 03 för D 000-03-3 Tentamen omfattar 40 poäng, poäng för varje uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1 1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut

Läs mer

Tentamen i Elektronik grundkurs ETA007 för E

Tentamen i Elektronik grundkurs ETA007 för E Lars-Erik Cederlöf Tentamen i Elektronik grundkurs ETA007 för E 003-0-4 Tentamen omfattar poäng. 3 poäng per uppgift. 0 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa. För full poäng krävs

Läs mer

Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar)

Föreläsning 4/11. Lite om logiska operationer. Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) 1 Föreläsning 4/11 Hambley avsnitt 12.7, 14.1 (7.3 för den som vill läsa lite mer om grindar) Lite om logiska operationer Logiska variabler är storheter som kan anta två värden; sann 1 falsk 0 De logiska

Läs mer

Tentamen i Elektronik för E, 8 januari 2010

Tentamen i Elektronik för E, 8 januari 2010 Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter

Läs mer

Tentamen i Elektronik 5hp för E2/D2/Mek2

Tentamen i Elektronik 5hp för E2/D2/Mek2 Tentamen i Elektronik 5hp för E2/D2/Mek2 Tid: kl 9.13. Måndagen den 16 augusti 21 Sal: O125 Hjälpmedel: formelsamling elektronik, formelsamling ellära samt valfri räknare. Maxpoäng: 3 Betyg: 12p3:a, 18p4:a

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

Tentamen eem076 Elektriska Kretsar och Fält, D1

Tentamen eem076 Elektriska Kretsar och Fält, D1 Tentamen eem076 Elektriska Kretsar och Fält, D1 Examinator: Ants R. Silberberg 21 maj 2012 kl. 08.30-12.30, sal: M Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås tisdagen den 22 maj på institutionens

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Tentamen i ELEKTROMAGNETISM I, 05-06-04 för F och Q (FA54) Skrivtid: 5 tim Kan även skrivas av studenter på andra program där FA54 ingår Hjälpmedel:

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

Ellära. Lars-Erik Cederlöf

Ellära. Lars-Erik Cederlöf Ellära LarsErik Cederlöf Elektricitet Elektricitet bygger på elektronens negativa laddning och protonens positiva laddning. nderskott av elektroner ger positiv laddning. Överskott av elektroner ger negativ

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

Tentamen i Elektronik, ESS010, och Elektronik för D, ETI190 den 10 jan 2006 klockan 14:00 19:00

Tentamen i Elektronik, ESS010, och Elektronik för D, ETI190 den 10 jan 2006 klockan 14:00 19:00 Tentamen i Elektronik, ESS00, och Elektronik för D, ETI90 den 0 jan 006 klockan 4:00 9:00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, och Elektronik för D,

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ET 3 för D 999-3-5 Tentamen omfattar 4 poäng, 2 poäng för varje uppgift. 2 poäng ger godkänd tentamen. Tillåtet hjälpmedel är räknedosa.

Läs mer

Sammanfattning. ETIA01 Elektronik för D

Sammanfattning. ETIA01 Elektronik för D Sammanfattning ETIA01 Elektronik för D Definitioner Definitioner: Laddningsmängd q mäts i Coulomb [C]. Energi E ( w ) mäts i enheten Joule [J]. Spänning u ( v ) är hur mycket energi (i Joule) som överförs

Läs mer

Föreläsning 29/11. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt 1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ETA 03 för D 2000-05-03 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Föreläsnng Sal alfa

Föreläsnng Sal alfa LE1460 Föreläsnng 2 20051107 Sal alfa. 13.15 17.00 Från förra gången Ström laddningar i rörelse laddningar per tidsenhet Spännig är relaterat till ett arbet. Arbete per laddningsenhet. Spänning är potetntialskillnad.

Läs mer

Elektriska komponenter och kretsar. Emma Björk

Elektriska komponenter och kretsar. Emma Björk Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd

Läs mer

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Datum 2011-06-01 Tid 4 timmar Kursansvarig Åsa Skagerstrand Tillåtna hjälpmedel Övrig information Resultat:

Läs mer

Tentamen i Elektronik fk 5hp

Tentamen i Elektronik fk 5hp Tentamen i Elektronik fk 5hp Tid: kl 9.13. Måndagen den 16 Mars 29 Sal: Bingo Hjälpmedel: formelsamling elektronik (14 sidor), formelsamling ellära samt valfri räknare. Maxpoäng: 3 Betyg: 12p3:a, 18p4:a

Läs mer

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar. Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i

Läs mer

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper

MOSFET:ens in- och utimpedanser. Småsignalsmodeller. Spänning- och strömstyrning. Stora signaler. MOSFET:ens högfrekvensegenskaper FÖRELÄSNING 4 MOSFET:ens in och utimpedanser Småsignalsmodeller Spänning och strömstyrning Stora signaler MOSFET:ens högfrekvensegenskaper Per LarssonEdefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

Spolen. LE1460 Analog elektronik. Måndag kl i Omega. Allmänna tidsförlopp. Kapitel 4 Elkretsanalys.

Spolen. LE1460 Analog elektronik. Måndag kl i Omega. Allmänna tidsförlopp. Kapitel 4 Elkretsanalys. F6 E460 Analog elektronik Måndag 005--05 kl 3.5 7.00 i Omega Allmänna tidsförlopp. Kapitel 4 Elkretsanalys. Spolen addningar i rörelse ger pphov till magnetfält. Detta gäller alltid. Omvändningen är ej

Läs mer

Tentamen i Krets- och mätteknik, fk - ETEF15

Tentamen i Krets- och mätteknik, fk - ETEF15 Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2013-10-25 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv 1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30 Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1

EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1 EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen för elektro- och informationsteknik Lunds universitet Mars 2013 Outline 1 Introduktion

Läs mer

Elektriska och magnetiska fält Elektromagnetiska vågor

Elektriska och magnetiska fält Elektromagnetiska vågor 1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

3.4 RLC kretsen. 3.4.1 Impedans, Z

3.4 RLC kretsen. 3.4.1 Impedans, Z 3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR

TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR ELEKTROTEKNK MASKNKONSTRUKTON KTH TENTAMENSUPPGFTER ELEKTROTEKNK MED SVAR Elektroteknik för MEDA och CL, MF1035 014 06 05 14:00 18:00 Du får lämna salen tidigast 1 timme efter tentamensstart. Du får, som

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Tentamen i Medicinsk teknik EEM065 för Bt2. 20100531 kl. 08.3012.30 Tillåtna hjälpmedel: Tabeller och formler, BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori Formelsamling i Elektriska

Läs mer

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna

Repetition: Nätanalys för AC. Repetition: Elektricitetslära. Repetition: Halvledarkomponenterna FÖRELÄSNING 2 Repetition: Nätanalys för AC Repetition: Elektricitetslära Repetition: Halvledarkomponenterna Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik 1(49) Repetition: Nätanalys

Läs mer

Introduktion till modifierad nodanalys

Introduktion till modifierad nodanalys Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad

Läs mer

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast , V Vad betyder det att V? -fältet riktat åt det håll V minskar snabbast dv Om -fältet endast beror av x blir det enkelt: xˆ dx Om V är konstant i ett område är där. konst. V -x x Om är homogent så ges

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar.

2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar. Introduktion till elektronik Introduktionen är riktad till studenter på Pi-programmet på Lund universitet och består av följande avsnitt: 1. Grundläggande begrepp: Potential, spänning, ström, resistans,

Läs mer

Elektroakustik Något lite om analogier

Elektroakustik Något lite om analogier Elektroakustik 2003-09-02 10.13 Något lite om analogier Svante Granqvist 2002 Något lite om analogier När man räknar på mekaniska system behöver man ofta lösa differentialekvationer och dessutom tänka

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans.

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans. Föreläsning 3 20071105 Lambda CEL205 Analoga System Genomgång av operationsförstärkarens egenskaper. Utdelat material: Några sidor ur datablad för LT1014 LT1013. Sidorna 1,2,3 och 8. Hela dokumentet (

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

Tentamen i Fysik för M, TFYA72

Tentamen i Fysik för M, TFYA72 Tentamen i Fysik för M, TFYA72 Onsdag 2015-06-10 kl. 8:00-12:00 Tillåtna hjälpmedel: Bifogat formelblad Avprogrammerad räknedosa enlig IFM:s regler. Christopher Tholander kommer att besöka tentamenslokalen

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ET 013 för D1 1999-04-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är

Läs mer

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q 2.1 Gauss lag och elektrostatiska egenskaper hos ledare (HRW 23) Faradays ishinksexperiment Elfältet E = 0 inne i en elektrostatiskt laddad ledare => Laddningen koncentrerad på ledarens yta! Elfältets

Läs mer

Elektromagnetisk induktion och induktans. Emma Björk

Elektromagnetisk induktion och induktans. Emma Björk Elektromagnetisk induktion och induktans Emma Björk Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna

Läs mer

Formelsamling i kretsteori, ellära och elektronik

Formelsamling i kretsteori, ellära och elektronik Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik Lunds tekniska högskola Februari FORMELSAMLING I KRETSTEORI, ELLÄRA OCH ELEKTRONIK Kretsteori Komplexvärden Realdelskonvention:

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Per Liljas Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D1 2001-05-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet

Läs mer

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:

Läs mer

Tentamen i Krets- och mätteknik, fk, ETEF15. den 14 jan 2012 8:00-13:00

Tentamen i Krets- och mätteknik, fk, ETEF15. den 14 jan 2012 8:00-13:00 Lunds Tekniska Högskola, Institutionen för Elektro- och informationsteknik Ingenjörshögskolan, Campus Helsingborg Tentamen i Krets- och mätteknik, fk, ETEF15 den 14 jan 2012 8:00-13:00 Uppgifterna i tentamen

Läs mer

Hambley: OBS! En del av materialet kommer att gås igenom på föreläsningen

Hambley: OBS! En del av materialet kommer att gås igenom på föreläsningen Föreläsning 3, 2/ Hambley: 4.2 4.4 OBS! En del a materialet kommer att gås igenom på föreläsningen den 9/. Operationsförstärkare [4.] Operationsförstärkaren (operational amplifier eller opamp.) uppfanns

Läs mer

VÄXELSTRÖM SPÄNNINGSDELNING

VÄXELSTRÖM SPÄNNINGSDELNING UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1996-06-12 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

4. Elektromagnetisk svängningskrets

4. Elektromagnetisk svängningskrets 4. Elektromagnetisk svängningskrets L 15 4.1 Resonans, resonansfrekvens En RLC krets kan betraktas som en harmonisk oscillator; den har en egenfrekvens. Då energi tillförs kretsen med denna egenfrekvens

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Strömdelning. och spänningsdelning. Strömdelning

Strömdelning. och spänningsdelning. Strömdelning elab005a Strömdelning och spänningsdelning Namn Datum Handledarens sign Laboration I den här laborationen kommer du omväxlande att mäta ström och spänning samt även använda metoden för indirekt strömmätning

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras

Läs mer

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras.

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras. Dugga i Elektromagnetisk fältteori för F2. EEF031 2006-11-25 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

TENTAMENSUPPGIFTER I ELEKTROTEKNIK

TENTAMENSUPPGIFTER I ELEKTROTEKNIK ELEKTOTEKNK MSKNKONSTKTON KTH Tentamen med lösningsförslag. En del skrivutrymme borttaget. nlämningstid Kl: TENTMENSPPGFTE ELEKTOTEKNK Elektroteknik för Media och CL. MF035 (4F4) 0 05 5 9:00 3:00 För godkänt

Läs mer

TSKS06 Linjära system för kommunikation Kursdel Elektriska kretsar. Föreläsning 3

TSKS06 Linjära system för kommunikation Kursdel Elektriska kretsar. Föreläsning 3 TSKS06 Linjära system för kommunikation Kursdel Elektriska kretsar Föreläsning 3 Likströmsteori: Tvåpoler och problemlösning Mikael Olofsson Institutionen för Systemteknik (ISY) Ämnesområdet Elektroniksystem

Läs mer

FFM232, Klassisk fysik och vektorfält - Veckans tal

FFM232, Klassisk fysik och vektorfält - Veckans tal FFM232, Klassisk fysik och vektorfält - eckans tal Tobias Wenger och Christian Forssén, Chalmers, Göteborg, Sverige Oct 3, 2016 Uppgift 6.6 (Cederwalls kompendium) Beräkna normalytintegralen av a F 2 [

Läs mer