Formelsamling till Elektromagnetisk

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Formelsamling till Elektromagnetisk"

Transkript

1 Formelsamling till Elektromagnetisk fältteori Lars-Göran Westerberg Avdelningen för strömningslära Luleå tekniska universitet 13 januari 2009 ammanfattning Den här formelsamlingen utgör tillsammans med Physics Handbook och Beta tillåtna hjälpmedel i kursen. Komplementerande anteckningar får göras i denna formelsamling. Kapitel i respektive bok som är av speciellt intresse för denna kurs är (notera att beroende på utgåva, kanske inte här angivet kapitelnummer motsvarar just det du har i din version) Physics Handbook #3 Electromagnetic Theory: Innehåller en hel del matnyttigt som storheter, symboler och enheter. Detta kapitel är även bra komplement till formlerna i detta dokument. #M-9 Vector Analysis: Diverse nyttig vektoralgebra. #M-10 pecial Coordinate ystems: Transformation mellan de olika koordinatsystemen och med grad, div och curl för respektive koordinatsystem. Innehållet i M-9 och M-10 finns även i BETA, se nedan. BETA - Mathematics Handbook #7.2 Tables of Indefinite Integrals: Lösningar till integraler som dyker upp i kursen hittar du här. #11.2 Vector Fields: Innehåller allt som behövs i form av vektoralgebra för olika koordinatsystem, yt- och volymselement, enhetsvektorer, grad, div, curl mm. 1

2 1 Elektrostatik Här behandlas elektrostatiska fält i vakum, ledande material och dielektrika. Elektrostatik innebär att tidsberoende inte tas i beaktande. 1.1 Elektrostatiska fält i vakum I vakum är elektriska laddningar fria, till skillnad från i dielektriska material där förekommande laddningar antingen är fria eller bundna i materialet Definition av R, R, ˆR R = r r R = r r ˆR = R R (1a) (1b) (1c) Här är r ortsvektorn till observationspunkten, medan r är motsvarande vektor till källan E-fält Det elektriska fältet till följd av följande laddningsfördelningar är N stycken punktladdningar E(r) = N q i ˆRi 4πɛ 0 Ri 2 i=1 (2) Linjeladdning Ytladdning E(r) = 1 4πɛ 0 L E(r) = 1 4πɛ 0 ρ L (r ) ˆR R 2 dl (3) ρ s (r ) ˆR R 2 da (4) 2

3 Volymsladdning E(r) = 1 ρ v (r ) ˆR 4πɛ 0 R 2 dv. (5) V Här är dl, da och dv respektive linje-, yt- och volymselemnt. ρ L, ρ s och ρ v är laddningsdensiteten per längdenhet, areaenhet och volymsenhet. Respektive laddningsfördelning kan då skrivas som Linjeladdning Ytladdning Volymsladdning dq = ρ L dl (6) dq = ρ s da (7) dq = ρ v dv. (8) Gauss sats Gauss sats säger att det totala elektriska flödet genom en sluten yta, är lika med den totala laddningen som innesluts av den ytan E da = Q in. (9) ɛ 0 Här är Q in den av ytan totala inneslutna laddningen, och ɛ 0 permitiviteten i vakum. Genom att integrera (9) och applicera Gauss divergenssats fås vilket är en av Maxwell s ekvationer Kraft på laddning i E-fält E = ρ v ɛ 0, (10) Kraften F på en laddning q med positionen r i ett elektriskt fält E är F = qe(r) (11) 3

4 1.1.5 Elektriska potentialen V V är definierad så att E = V. (12) Potentialen i en godtycklig punkt är potentialskillnaden mellan den punkten och en vald punkt där potentialen är noll. Klassiska randvillkor som används är att V = 0 i jord och oändligt långt bort från en laddningsfördelning Elektrisk dipol En elektrisk dipol formeras när två punktladdningar av samma styrka, men med olika tecken, separeras av ett litet avstånd. Potentialen för en dipol vars centrum är lokaliserad i r, är där V (r) = p (r r ) 4πɛ 0 r r 3, (13) p = Qd (14) är dipol momentet. d innehåller riktningen och beloppet på avståndet mellan laddningarna. Q är laddningen som vanligt. 1.2 Elektrostatiska fält och ledande material Beroende på om materialet är en ideal ledare eller ett dielektriskt material, förekommer olika fält på ytorna och inuti materialet. Inuti en ideal ledare kan det inte finnas något elektrostatiskt fält då alla laddningar transporteras till ytan. Detta ger E(r) = 0 V (r) = konstant (15a) (15b) inuti ledaren. På dess yta gäller då 4

5 ˆt E(r) = 0 ˆn E(r) = ρ s ɛ 0 V (r) = konstant. (16a) (16b) (16c) Här är ˆt enhetsvektorn i tangentialriktningen och ˆn den från ledaren utåtpekande normalvektorn. 1.3 Elektrostatiska fält och dielektriska material När ett elektriskt fält E appliceras på dielektriska material som t.ex. plaster av olika slag, förskjuts de positiva laddningarna i materialet längs E och de negativa laddningarna i motsatt riktning. Det bildas alltså en dipol till följd av förskjutningen hos laddningarna, och materialet är då polariserat Polariseringsfältet P Polariseringsfältet P(r) definieras m.h.a. dipolmomentet p som dp = P(r)dv, (17) där dp är det totala dipolmomentet i en liten volym dv med positionen r. Polarisationsfältet ger upphov till bundna polarisationsladdningsdensiteter ρ ps och ρ pv enligt ρ ps = ˆn P ρ pv = P. (18a) (18b) ˆn är den från det polariserande materialet utåtpekande enhetsnormalvektorn. 5

6 1.3.2 Förskjutningsfältet D Förskjutningsfältet uppkommer av fria laddningar. ambanden mellan D, E och P är D = ɛ 0 E + P P = ɛ 0 χ e E ɛ r = 1 + χ e ɛ = ɛ 0 ɛ r D = ɛe. (19a) (19b) (19c) (19d) (19e) χ e är den elektriska susceptibiliteten för materialet, vilket är ett mått på hur känsligt materialet är för ett elektriskt fält. ɛ r är den dielektriska konstanten (eller relativa permittiviteten), alltså kvoten mellan permittiviteten hos dielektrikat och ɛ 0 (permittiviteten i vakum) Gauss lag i dielektriska material Principen är den samma som för Gauss lag i vakum (c.f ). Här fås dock D-fältet fram, vilket orsakas av de fria laddningarna. D = ρ vf D da = Q f, (20) där Q f är den i ytan inneslutna fria laddningen och ρ vf den fria volymsladdningen Randvillkor För E- och D-fälten gäller E 1t = E 2t ˆn 2 (D 1 D 2 ) = ˆn 2 (ɛ 1 E 1 ɛ 2 E 2 ) = ρ s, (21a) (21b) 6

7 där ρ s är den fria laddningsdensiteten på randen och ˆn 2 den enhetsnormalvektor som pekar bort från material trömmar trömmen (i ampere) genom an given yta är den elektriska laddningen som passerar genom ytan per tidsenhet, i.e. I = dq dt. (22) trömdensiteten J vid en given punkt är strömmen genom normlariktningen av ytan för aktuell punkt. ρ v t + J = 0 Kontinuitetsekvationen J 1n = J 2n R.V. i normalriktningen J 1t σ 1 = J 2t σ 2 R.V. i tangentialriktningen J = σe. (23a) (23b) (23c) (23d) σ är konduktiviteten hos ledaren. (23d) benämns som ledningsström, även Ohm s lag Resistans R = ρ cl (24) ρ c är resistiviteten (1/σ) hos ledaren, l längden och tvärsnittsarean. 1.4 Magnetfält i vakuum Liksom för elektrostatiska fält, uppstår olika typer av magnetiska fält beroende på omgivningen i fråga; om det är vakum eller inte. 7

8 1.4.1 Biot-avarts lag Magnetfältet (B-fältet) genereras av olika strömtätheter enligt B(r) = µ 0 I dl ˆR 4π R 2 C B(r) = µ 0 4π (25a) K (r ) ˆR R 2 da (25b) B(r) = µ 0 J (r ) ˆR 4π R 2 dv. (25c) V Dessa motsvarar bidrag från linjeström, ytström och volymsström respektive Kraft på strömförande ledare i B-fält F = C F = F = V I ds B(r) K(r) B(r)da J(r) B(r)dv (26a) (26b) (26c) Amperes lag Amperes lag säger att linjeintegralen av tangentiella komponenten av B runt en sluten kurva, är densamma som den av kurvan inneslutna strömmen I enc B = µ 0 J B dl = µ 0 I enc. (27) C 8

9 1.4.4 Magnetisk dipol För en magnetisk dipol i origo gäller att m = Iˆn B(r) = µ 0 4πr3[3(m ˆr) m] (28b) (28a) A(r) = µ 0 m ˆr 4π r 2. (28c) Här är m det magnetiska dipolmomentet, I strömmen, arean som strömslingan täcker och A den magnetiska vektorpotentialen. 1.5 Magnetfält i olika material Analogt med det elektriska fältet, kan ett polariseringsfält M(r) definieras m.h.a. magnetiska dipolmomentet m som dm = M(r)dv, (29) där dm är det totala dipolmomentet i en liten volym dv med positionen r. Magnetiseringsfältet ger upphov till magnetiseringsströmmar J b och K b enligt J b = M K b = M ˆn, (30a) (30b) där J b och K b är de bundna volyms- och ytströmdensiteterna. ˆn är den från det magnetiserande materialet utåtpekande enhetsvektorn Magnetiserande fältet H Analogt med elektriska fält i dielektriska material, uppkommer det magnetiserande fältet H i magnetiserade material, där 9

10 H = B µ 0 M M = χ m H B = µ 0 µ r H = µh (31a) (31b) (31c) µ r = 1 + χ m. (31d) χ m är den magnetiska susceptibiliteten, µ permeabiliteten hos materialet, och µ r den relativa permeabiliteten i förhållande till µ 0 (permeabiliteten i vakum) Amperes lag i magnetiska material M = J f H dl = I f (32) C där I f är den fria ström som flödar genom den yta som begränsas av den slutna kurvan C Randvillkor B 1n = B 2n ˆn 2 (H 1 H 2 ) = K (33a) (33b) där n 2 är den från material 2 utåtpekande enhetsnormalen. 2 Elektrodynamik 10

11 2.1 Maxwells ekvationer D = ρ vf D da = Q f E = B t E dl = t C B = 0 B da = 0 B da (34a) (34b) (34c) (34d) (34e) (34f) H = J + D t H dl = I f + t C D da (34g) (34h) 2.2 Potentialer E = V A t B = A (35a) (35b) Här är V skalärpotentialen och A vektorpotentialen. 2.3 Induktion 11

12 2.3.1 Magnetiskt flöde Ψ Det magnetiska flödet Ψ genom ytan definieras som Ψ = B da (36) Faradays induktionslag Den inducerade spänningen (även kallad inducerad emk) i en krets, är detsamma som ändringen per tidsenhet av det magnetiska flödet, i.e. V ind = Ψ t = d B da, (37) dt där ytan är den yta som kretsen formar. (37) kan även delas upp i två komponenter så att B V ind = t da + u B dl, (38) där u är hastigheten hos kretsen. C 12

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras.

Förståelsefrågorna besvaras genom att markera en av rutorna efter varje påstående till höger. En och endast en ruta på varje rad skall markeras. Dugga i Elektromagnetisk fältteori för F2. EEF031 2006-11-25 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori F. för F2. EEF031 2005-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar

Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Tentamensskrivning i Ellära: FK4005e Fredag, 11 juni 2010, kl 9:00-15:00 Uppgifter och Svar Ge dina olika steg i räkningen, och förklara tydligt ditt resonemang! Ge rätt enhet när det behövs. Tillåtna

Läs mer

Elektriska och magnetiska fält Elektromagnetiska vågor

Elektriska och magnetiska fält Elektromagnetiska vågor 1! 2! Elektriska och magnetiska fält Elektromagnetiska vågor Tommy Andersson! 3! Ämnens elektriska egenskaper härrör! från de atomer som bygger upp ämnet.! Atomerna i sin tur är uppbyggda av! en atomkärna,

Läs mer

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3)

18. Sammanfattning Ursprung och form av fältena Elektrostatik Kraft, fält och potential 2 21, (18.3) 18. Sammanfattning 18.2. Ursprung och form av fältena Elektriska laddningar (monopoler) i vila ger upphov till elfält Elektriska laddningar i rörelse ger upphov till magnetfält Elektriska laddningar i

Läs mer

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in Övningstenta i Elektromagnetisk fältteori, 2014-11-29 kl. 8.30-12.30 Kurskod EEF031 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori. Valfri kalkylator, minnet måste

Läs mer

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00

FK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med

Läs mer

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson

Elektromagnetiska fält och Maxwells ekavtioner. Mats Persson Föreläsning 26/9 Elektromagnetiska fält och Maxwells ekavtioner 1 Maxwells ekvationer Mats Persson Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullständig beskrivning av ett elektromagnetiskt

Läs mer

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken

Föreläsning 4 1. Den andra av Maxwells ekvationer i elektrostatiken Föreläsning 4 1 Potential Den andra av Maxwells ekvationer i elektrostatiken!" C E!dl = 0 eller # E = 0 innebär att E-fältet är konservativt. Det finns inga fältlinjer som bildar loopar. Alla fältlinjer

Läs mer

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ

Maxwell insåg att dessa ekvationer inte var kompletta!! Kontinutetsekvationen. J = ρ 1 Föreläsning 10 7.3.1-7.3.3, 7.3.6, 8.1.2 i Griffiths Maxwells ekvationer (Kap. 7.3) åra modellagar, som de ser ut nu, är E(r,t) = B(r,t) Faradays lag H(r,t) = J(r,t) Ampères lag D(r,t) = ρ(r,t) Gauss

Läs mer

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig)

Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Övningsuppgifter/repetition inom elektromagnetism + ljus (OBS: ej fullständig) Elektrostatik 1. Ange Faradays lag i elektrostatiken. 2. Vad är kravet för att ett vektorfält F är konservativt? 3. En låda

Läs mer

Sensorer och elektronik. Grundläggande ellära

Sensorer och elektronik. Grundläggande ellära Sensorer och elektronik Grundläggande ellära Innehåll Grundläggande begrepp inom mekanik Elektriskt fält och elektrisk potential Dielektrika och kapacitans Ström och strömtäthet Ohms lag och resistans

Läs mer

Repetition kapitel 21

Repetition kapitel 21 Repetition kapitel 21 Coulombs lag. Grundbulten! Definition av elektriskt fält. Fält från punktladdning När fältet är bestämt erhålls kraften ur : F qe Definition av elektrisk dipol. Moment och energi

Läs mer

OBS!

OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2010-04-06 kl. 14.00-18.00 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna

Läs mer

Elektromagnetiska falt och Maxwells ekavtioner

Elektromagnetiska falt och Maxwells ekavtioner Forelasning /1 Elektromagnetiska falt och Maxwells ekavtioner 1 Maxwells ekvationer Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullstandig beskrivning av ett elektromagnetiskt falt. Dock,

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

------------------------------------------------------------------------------------------------------------ OBS!

------------------------------------------------------------------------------------------------------------ OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2011-12-15 kl. 14.00-18.00 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna

Läs mer

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in

Svaren på förståelsedelen skall ges direkt på tesen som ska lämnas in Dugga i Elektromagnetisk fältteori för F2. EEF031 20121124 kl. 8.3012.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv

Elektrodynamik. Elektrostatik. 4πε. eller. F q. ekv 1 Elektrodynamik I det allmänna fallet finns det tidsberoende källor för fälten, dvs. laddningar i rörelse och tidsberoende strömmar. Fälten blir då i allmänhet tidsberoende. Vi ser då att de elektriska

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

------------------------------------------------------------------------------------------------------------ OBS!

------------------------------------------------------------------------------------------------------------ OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2011-04-26 kl. 14.00-18.00 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q

1. q = -Q 2. q = 0 3. q = +Q 4. 0 < q < +Q 2.1 Gauss lag och elektrostatiska egenskaper hos ledare (HRW 23) Faradays ishinksexperiment Elfältet E = 0 inne i en elektrostatiskt laddad ledare => Laddningen koncentrerad på ledarens yta! Elfältets

Läs mer

Strålningsfält och fotoner. Kapitel 23: Faradays lag

Strålningsfält och fotoner. Kapitel 23: Faradays lag Strålningsfält och fotoner Kapitel 23: Faradays lag Faradays lag Tidsvarierande magnetiska fält inducerar elektriska fält, eller elektrisk spänning i en krets. Om strömmen genom en solenoid ökar, ökar

Läs mer

Bra tabell i ert formelblad

Bra tabell i ert formelblad Bra tabell i ert formelblad Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna alstras. Tidigare

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Strålningsfält och fotoner. Våren 2013

Strålningsfält och fotoner. Våren 2013 Strålningsfält och fotoner Våren 2013 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

Magnetiska fält. Magnetiska fält. Magnetiska fält. Magnetiska fält. Två strömförande ledningar kraftpåverkar varandra!

Magnetiska fält. Magnetiska fält. Magnetiska fält. Magnetiska fält. Två strömförande ledningar kraftpåverkar varandra! 38! 39! Två strömförande ledningar kraftpåverkar varandra! i 1! i 2! Krafterna beror av i 1 och i 2 och av geometrin! 40! Likaså kraftpåverkas en laddning Q som rör sig i närheten av en strömförande ledning!

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för

Läs mer

OBS! Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

OBS! Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Tentamen i Elektromagnetisk fältteori för F2. EEF031 2008-08-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik

Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik Magnetostatik, induktans (och induktion) kvalitativa frågor och lösningsmetodik Gerhard Kristensson Institutionen för elektro- och informationsteknik 2 oktober 2014 Olika lösningsmetoder 1 Biot-Savarts

Läs mer

OBS!

OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2009-08-28 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

OBS! Svaren på förståelsedelen skall ges direkt på tesen som skall lämnas in.

OBS! Svaren på förståelsedelen skall ges direkt på tesen som skall lämnas in. Dugga i Elektromagnetisk fältteori för F2. EEF031 2011-11-19 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet

Hur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:

Läs mer

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika [RMC] 3. Lösning av elektrostatiska problem för dielektrika Eftersom de minsta beståndsdelarna i ett dielektrikum är molekyler kan man definiera ett molekylärt dipolmoment Nu gäller p m = mol dqr (3.3)

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Elektromagnetisk induktion och induktans. Emma Björk

Elektromagnetisk induktion och induktans. Emma Björk Elektromagnetisk induktion och induktans Emma Björk Vi har gått igenom hur magnetfält alstrar krafter, kap. 7. Vi har gått igenom hur strömmar alstrar magnetfält, kap. 8. Återstår att lära sig hur strömmarna

Läs mer

Magnetism. Beskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält.

Magnetism. Beskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält. Magnetism Magnetostatik eskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält. Vi känner till följande effekter: 1. En fritt upphängd

Läs mer

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast

Vad betyder det att? E-fältet riktat åt det håll V minskar snabbast , V Vad betyder det att V? -fältet riktat åt det håll V minskar snabbast dv Om -fältet endast beror av x blir det enkelt: xˆ dx Om V är konstant i ett område är där. konst. V -x x Om är homogent så ges

Läs mer

Facit till rekommenderade övningar:

Facit till rekommenderade övningar: Facit till rekommenderade övningar: Övningstillfälle #1: Electrostatics: 2, 3, 5, 9, a) b) 11, Inside: Outside: 12, 14, (18) Tips: Superpositions principen! och r+ - r- = d Övningstillfälle #2: (obs! uppgiftsnummer

Läs mer

* Läsvecka 1 * Läsvecka 2 * Läsvecka 3 * Läsvecka 4 * Läsvecka 5 * Läsvecka 6 * Läsvecka 7 * Tentamenssvecka. Läsvecka 1

* Läsvecka 1 * Läsvecka 2 * Läsvecka 3 * Läsvecka 4 * Läsvecka 5 * Läsvecka 6 * Läsvecka 7 * Tentamenssvecka. Läsvecka 1 Detta är en preliminär planering över undervisningen i kursen och är tänkt att hjälpa dig att få ut så mycket som möjligt av föreläsningarna. Till varje föreläsningsdag finns förberedelser, innehåll och

Läs mer

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill

Integraler av vektorfalt. Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). Vi vill Forelasning 6/9 ntegraler av vektorfalt Linjeintegraler Exempel: En partikel ror sig langs en kurva r( ) under inverkan av en kraft F(r). i vill da berakna arbetet som kraften utovar pa partikeln. Mellan

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras!

Föreläsning , , i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras! 1 Föreläsning 13 12.2.1, 10.1.1 10.1.2, 10.1.4 i Griffiths Vi kommer nu till hur elektromagnetiska vågor genereras! Fält från strömmar i tidsdomänen (kursivt) V Lorentzgaugen A+µ 0 ε 0 = 0 för vektorpotentialen

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

3. Lösning av elektrostatiska problem för dielektrika

3. Lösning av elektrostatiska problem för dielektrika 3. Lösning av elektrostatiska problem för dielektrika [RMC] Elektrodynamik, vt 2013, Kai Nordlund 3.1 3.1. Dielektrika Ett perfekt dielektrikum (isolator) är ett material som inte innehåller några fria

Läs mer

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8)

Elektromagnetism. Kapitel , 18.4 (fram till ex 18.8) Elektromagnetism Kapitel 8.-8., 8.4 (fram till ex 8.8) Varför magnetism? Energiomvandling elektrisk magnetisk mekanisk Elektriska maskiner Reversibla processer (de flesta) Motor Generator Elektromagneter

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar hristian Forssén, Institutionen för fysik, halmers, Göteborg, verige ep 6, 217 3. Integraler Det mesta av detta material förutsätts vara

Läs mer

TFYA58, Ht 2 Elektromagnetism och Labbar i vågrörelselära

TFYA58, Ht 2 Elektromagnetism och Labbar i vågrörelselära TFYA58, Ht Elektromagnetism och Labbar i vågrörelselära 13 föreläsningar 1 lektioner x 4 timmar lab Föreläsningar: Ragnar Erlandsson Lektioner: Ragnar Erlandsson (a), Christopher Tholander (b, d), Emma

Läs mer

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) =

1.15 Uppgifter UPPGIFTER 21. Uppgift 1.1 a) Visa att transformationen x i = a ikx k med. (a ik ) = 1.15. UPPGIFTER 1 1.15 Uppgifter Uppgift 1.1 a) isa att transformationen x i = a ikx k med (a ik ) = 1 0 1 1 1 1 1 1 1 är en rotation. b) Bestäm komponenterna T ik om (T ik ) = 0 1 0 1 0 1 0 1 0 Uppgift

Läs mer

Där r är ortsvektorn mellan den punkt där fältet beräknas och den punkt där linjeelementet dl av strömbanan finns.

Där r är ortsvektorn mellan den punkt där fältet beräknas och den punkt där linjeelementet dl av strömbanan finns. 1 Allmänt om magnetiska mtrl och tillämpningar; transformatorer, generatorer, motorer, magnetiska lagringsmedia (media + läs/skriv) NOBEL-PRI 27, magnetiska sensorer, drug carrier, magnetisk kylning Lektion

Läs mer

14. Elektriska fält (sähkökenttä)

14. Elektriska fält (sähkökenttä) 14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna

Läs mer

OBS!

OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2009-12-16 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 016-10-17 kl. 08.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321) Tentamen för FYK (TFYA68), samt LKTROMAGNTM (9FY31) 013-10-1 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare -

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Nikolai Tesla och övergången till växelström

Nikolai Tesla och övergången till växelström Nikolai Tesla och övergången till växelström Jag påminner lite om förra föreläsningen: växelström har enorma fördelar, då transformatorer gör det enkelt att växla mellan högspänning, som gör det möjligt

Läs mer

Fysik (TFYA72) Ellära (92FY FY27) Emma Björk

Fysik (TFYA72) Ellära (92FY FY27) Emma Björk Fysik (TFYA7) Ellära (9FY1 + 9FY7) Emma Björk Elektromagnetism Kursupplägg 8 föreläsningar 8 lektioner 4 seminarier (endast 9FY11 och 9FY17) Vågrörelselära (endast TFYA7) 4 föreläsningar 4 lektioner Experimentell

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM232) ösningsskiss för tentamen Vektorfält och klassisk fysik FFM232) Tid och plats: ösningsskiss: Måndagen den 24 oktober 2016 klockan 14.00-18.00 i M-huset. Christian Forssén och Tobias Wenger Detta är enbart

Läs mer

OBS!

OBS! Tentamen i Elektromagnetisk fältteori för F2. EEF031 2006-12-18 kl. 8.30-12.30 Tillåtna hjälpmedel: BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori, Valfri kalkylator men inga egna anteckningar

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (9FY321) Tentamen för FYK (TFYA68), samt LKTROMAGNTM (9FY31) 014-05-8 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare -

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Onsdagen 30/3 06, kl 08:00-:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Magnetostatik och elektromagnetism

Magnetostatik och elektromagnetism Magnetostatik och elektromagnetism Magnetostatik eskriver hur magneter med konstanta magnetfält, t.ex. permanentmagneter, växelverkar med varandra och med externa magnetfält. Vi känner till följande effekter:

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 015-08-17 kl. 8.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men

Läs mer

Flervariabelanalys E2, Vecka 6 Ht08

Flervariabelanalys E2, Vecka 6 Ht08 Flervariabelanalys E2, Vecka 6 Ht08 Omfattning 6., 6.3-6.5 Innehåll: Gradient, divergens, rotation, Greens sats/formel, divergenssatsen i två och tre dimensioner, tokes sats tma043 V6, Ht08 bild Mål: För

Läs mer

FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM232, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 3, 2016 8. Potentialteori Konservativa fält och potentialer

Läs mer

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]

Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0] Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:

Läs mer

Nettoströmmen I z i z-led i mittpunkten (0, 0, 0) mellan två volymelement ges av uttrycket

Nettoströmmen I z i z-led i mittpunkten (0, 0, 0) mellan två volymelement ges av uttrycket [RMC] 7. Magnetostatik II: Materiens magnetiska egenskaper Om ett material är magnetiserat gäller att M. För de flesta material gäller att de enskilda dipolomenten pekar i en slumpmässig riktning, så att

Läs mer

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant

Outline. TMA043 Flervariabelanalys E2 H09. Carl-Henrik Fant Outline TMA043 Flervariabelanalys E2 H09 Matematiska vetenskaper halmers Göteborgs universitet tel. (arb) 772 35 57 epost: carl-henrik.fant@chalmers.se Flervariabelanalys E2, Vecka 6 Ht09 Kapitel 6. -

Läs mer

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3

Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Lösningar till tentamen i Elektromagnetisk fältteori för Π3 & F3 Tid och plats: januari 2, kl. 4.9., i MA. Kursansvarig lärare: Christian Sohl, tel. 222 34 3. Tillåtna hjälpmedel: Formelsamling i elektromagnetisk

Läs mer

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för W2 och ES2 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Kod: Program: Tentamen i ELEKTROMAGNETISM I, 2016-03-19 för W2 och ES2 (1FA514) Kan även skrivas av studenter på andra program där 1FA514 ingår

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

Elektromagnetismens grunder I

Elektromagnetismens grunder I Elektromagnetismens grunder I 7 januari 2009, /latex/teaching/em-i/em grunder I.tex Termofysik, Kai Nordlund 2008 1 I.1. Elektriska strömmar Alla är bekanta med elektricitet, det är bara att stöpsla i

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 015-10-19 kl. 8.00-13.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken, understrykningar och inringningar ok, dock ej formler, anteckningar miniräknare

Läs mer

Matematikuppgifter del II, FYTA11

Matematikuppgifter del II, FYTA11 Matematikuppgifter del II, FYTA11 51. Lös uppgift 10.1 i boken. 52. Lös uppgift 10.2 i boken. 53. Lös uppgift 10.3 i boken. 54. Lös uppgift 10.4 i boken. 55. Låt en kurva i rummet vara given i parametrisk

Läs mer

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)

Tentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514) Uppsala universitet Institutionen för fysik och astronomi Tentamen i ELEKTROMAGNETISM I, 05-06-04 för F och Q (FA54) Skrivtid: 5 tim Kan även skrivas av studenter på andra program där FA54 ingår Hjälpmedel:

Läs mer

Tentamen för FYSIK (TFYA86)

Tentamen för FYSIK (TFYA86) Tentamen för FYK (TFYA86) 016-05-30 kl. 14.00-19.00 Tillåtna hjälpmedel: Physics Handbook (Nordling, Österman) - egna bokmärken ok, dock ej formler, anteckningar miniräknare - grafräknare är tillåtna (men

Läs mer

FFM232, Klassisk fysik och vektorfält - Veckans tal

FFM232, Klassisk fysik och vektorfält - Veckans tal FFM232, Klassisk fysik och vektorfält - eckans tal Tobias Wenger och Christian Forssén, Chalmers, Göteborg, Sverige Oct 3, 2016 Uppgift 6.6 (Cederwalls kompendium) Beräkna normalytintegralen av a F 2 [

Läs mer

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form)

Föreläsning 9. Induktionslagen sammanfattning (Kap ) Elektromotorisk kraft (emk) n i Griffiths. E(r, t) = (differentiell form) 1 Föreäsning 9 7.2.1 7.2.4 i Griffiths nduktionsagen sammanfattning (Kap. 7.1.3) (r, t) E(r, t) = t (differentie form) För en stiastående singa gäer E(r, t) d = d S (r, t) ˆndS = dφ(t) (integraform) Eektromotorisk

Läs mer

Motorprincipen. William Sandqvist

Motorprincipen. William Sandqvist Motorprincipen En strömförande ledare befinner sig i ett magnetfält B (längden l är den del av ledaren som befinner sig i fältet). De magnetiska kraftlinjerna får inte korsa varandra. Fältet förstärks

Läs mer

15. Strålande system

15. Strålande system 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

11. Maxwells ekvationer och vågekvationen

11. Maxwells ekvationer och vågekvationen 11. Maxwells ekvationer och vågekvationen [RMC] Elektrodynamik, vt 2013, Kai Nordlund 11.1 11.1. Förskjutningsströmmen Skotten James Clerk Maxwell (1831-1879) noterade år 1864 att Ampères lag dr H = C

Läs mer

Svaren på förståelsedelen skall ges på tesen som skall lämnas in.

Svaren på förståelsedelen skall ges på tesen som skall lämnas in. Tentamen i Medicinsk teknik EEM065 för Bt2. 20100531 kl. 08.3012.30 Tillåtna hjälpmedel: Tabeller och formler, BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori Formelsamling i Elektriska

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric

Chalmers Tekniska Högskola Tillämpad Fysik Igor Zoric Chalmers Tekniska Högskola 2002 05 28 Tillämpad Fysik Igor Zoric Tentamen i Fysik för Ingenjörer 2 Elektricitet, Magnetism och Optik Tid och plats: Tisdagen den 28/5 2002 kl 8.45-12.45 i V-huset Examinator:

Läs mer

LABORATION 2 MAGNETISKA FÄLT

LABORATION 2 MAGNETISKA FÄLT Fysikum FK4010 - Elektromagnetism Laborationsinstruktion (15 november 2013) LABORATION 2 MAGNETISKA FÄLT Mål I denna laboration skall du studera sambandet mellan B- och H- fälten i en toroidformad järnkärna

Läs mer

11. Maxwells ekvationer och vågekvationen

11. Maxwells ekvationer och vågekvationen 11. Maxwells ekvationer och vågekvationen [RMC] Elektrodynamik, vt 2013, Kai Nordlund 11.1 11.1. Förskjutningsströmmen Skotten James Clerk Maxwell (1831-1879) noterade år 1864 att mpères lag dr H = d J

Läs mer

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths 1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de

Läs mer

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1

15. Strålande system. Elektrodynamik, vt 2013, Kai Nordlund 15.1 15. Strålande system [Griffiths,RMC] Elektrodynamik, vt 2013, Kai Nordlund 15.1 15.1. Introduktion Laddningar i vila eller i likformig rörelse skapar inte elektromagnetiska vågor för detta krävs att laddningarna

Läs mer

EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1

EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1 EDI615 Tekniska gränssnitt Fältteori och EMC föreläsning 1 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen för elektro- och informationsteknik Lunds universitet Mars 2013 Outline 1 Introduktion

Läs mer

Laboration 2: Konstruktion av asynkronmotor

Laboration 2: Konstruktion av asynkronmotor Laboration 2: Konstruktion av asynkronmotor Laboranter: Henrik Bergman, Henrik Bergvall Berglund, William Sjöström, Georgios Davakos Plats och datum: Uppsala 2016-11-09 Kurs: Elektromagnetism 2 Handledare:

Läs mer

Vad är r Magnetism? Beskriva och förklara fenomen relaterade till magnetism!

Vad är r Magnetism? Beskriva och förklara fenomen relaterade till magnetism! Vad är r Magnetism? Beskriva och förklara fenomen relaterade till magnetism! Vilka fenomen? Vad är magnetism? Magnetiska fenomen uppmärksammades redan under antiken och har fått namn efter ett av de tidigaste

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

PHYS-A5130 Elektromagnetism period III våren Vecka 2

PHYS-A5130 Elektromagnetism period III våren Vecka 2 PHYS-A5130 Elektromagnetism period III våren 2017 Vecka 2 1. En kub med sidlängden L = 3,00 m placeras med ett hörn i origo (se figuren). Elfältet ges av E = ( 5,00 N/Cm)xî + (3,00 N/Cm)zˆk. (a) Bestäm

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer