Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)"

Transkript

1 Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 3/ SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M. Tid: sekund (s), dimensionssymbol T. Elektrisk ström: ampère (A), dimensionssymbol I. Termodynamisk (absolut) temperatur: kelvin (K), dimensionssymbol Θ. Substansmängd: mol, dimensionssymbol N. Ljusintensitet: candela (cd), dimensionssymbol J. Kraft: Newton (N) Energi: Joule (J) Laddning: Coulomb (C) etc. Kan uttryckas i grundenheterna. Härledda SI-enheter Fördelar med att använda SI-enheter: 1) Uttrycker man alla storheter i SI-enheter vet man att svaret blir uttryckt i en SI-enhet. 2) Ofta har man fått fram den sökta storheten (vänsterledet) uttryckt i en kombination av andra storheter (högerledet). Man kan då lätt kontrollera om enheten hos vänsterledet överensstämmer med den resulterande enheten för högerledet. Om så inte är fallet har man gjort ett allvarligt fel. På tentamina m.m. brukar det bedömas strängt om man lätt hade kunnat konstatera att svaret är orimligt. 3) Med hjälp av enheterna kan vi på ett enkelt sätt uppskatta relationer mellan olika storheter. Det illustreras i problemen mot slutet. Några exempel 1) (Jfr. sid. 14 i kursboken av Grimvall). Watt (W) enhet för eekt P. Hur uttrycker vi W i grundenheter? Vi använder kända samband. Eekt = energi/tidsenhet, enhet W = J/s Energi (arbete) = kraft väg, enhet J = Nm Kraft = massa acceleration, enhet N = kg m/s 2 Metod 1 med användning av dimensionssymboler (Se kap. 6 i kursboken). dim(f ) = MLT 2 dim(e) = ML 2 T 2 dim(p ) = ML 2 T 3 Enhet: W = kg m 2 s 3 Metod 2 med användning av enheter (Jfr. avsnitt 1.3). W = J/s = Nm/s = (kg m/s2 ) m s = kg m2 s 3 1

2 Anm. Metoden med dimensionssymboler har nackdelen att vi först måste uttrycka alla storheter i grundenheter. Om vi räknar i enheter kan vi starta med härledda storheter som W, J och N och successivt byta ut dem mot grundenheter. 2) Farad (F) enhet för kapacitans C. Kapacitans denieras som laddning dividerat med spänningen över kondensatorn F = C/V Ström = laddning / tidsenhet, enhet för laddning: C = As Eekt = spänning strömstyrka, enhet för spänning: V = W/A Fann nyss att W = kg m 2 /s 3 Metod 1: dim (P ) = ML 2 T 3 enligt föregående uppgift dim (V ) = ML 2 I 1 T 3 dim (q) = IT dim (C ) = dim(q/v ) = IT (ML 2 I 1 T 3 ) 1 = IT M 1 L 2 IT 3 = I 2 T 4 M 1 L 2 F = C/V = As/V = As W/A = A2 s kg m 2 /s 3 = A2 s 4 kg m 2 3) Tesla (T) enhet för magnetisk fältstyrka B. Viktigt samband: Lorentzkraften: F = q v B Magnetfältets belopp ges alltså av B = F/(qv) Metod 1: dim (B) = dim (F/qv) = MLT 2 (IT ) 1 (LT 1 ) 1 = MLT 2 I 1 T 1 L 1 T = MT 2 I 1 N = kg m/s 2 C = As (båda sambanden visade tidigare) T = 4) Uppgift 2, sid. 24 i kursboken. Volt (V) enhet för spänning U eller potential V. kg m/s2 (As) (m/s) = kg m s As m s 2 = kg A s 2 Eekt = spänning strömstyrka, enhet för spänning V = W/A, där A är en grundenhet Fann i exempel 1 att W = kg m 2 /s 3 Metod 1: dim (P ) = ML 2 T 3 dim (V ) = ML 2 T 3 I 1 V = W/A = kg m 2 s 3 A 1 5) Uppgift 5, sid. 26. Här är det givet att specik värmekapacitet (även kallad värmekapacitivitet) uttryckt i grundenheter har enheten m 2 K 1 s 2 2

3 Vi vill dock uttrycka detta med hjälp av den härledda SI-enheten J. Från uppgift 1 eller tabell 1.2, sid. 13, nner vi att 1 J 1 kg m 2 s 2 = 1 (Jfr. sista exemplet på sid. 20). Detta skrivsätt är ofta praktiskt vid enhetsbyten: vi ställer upp en kvot som är ett och multiplicerar uttrycket med den. Vi kan nu skriva att specik värmekapacitet mäts i m 2 Ks 2 J kg m 2 s 2 = J K kg Värmekapaciteten anger hur mycket energi som måste tillföras för att ett föremål ska öka temperaturen med en grad, så dess enhet är J/K. Den specika värmekapaciteten är värmekapaciteten per kg, så dess enhet bör vara J/(kg K), vilket är just det vi fann. Dimensionsanalys Exempel 1 Det nns pulserande stjärnor vars ljusstyrka och radiella hastighet oscillerar med en period t. En hypotes är att t beror på stjärnans radie r, massa m och gravitationskonstanten G. Uttryck t i dessa storheter så att dimensionerna hänger ihop. Vi ansätter sambandet t = km a r b G c, där k är en dimensionslös konstant och exponenterna a, b och c ska bestämmas. Allmänt gäller (Newtons gravitationslag) att kraften mellan två partiklar med massorna m 1 och m 2 på avståndet r är F = Gm 1m 2 r 2 (Notera att Coulombs lag för kraften mellan två laddningar är på precis samma form). Kraft mäts i N = kg m/s 2. Om vi uttrycker G i de övriga storheterna får vi och enheten blir Ekvationen för t ger att F r2 G = m 1 m 2 (kg m)m 2 s 2 kg 2 = m3 kg s 2 kg a m b (m 3 kg 1 s 2 ) c ska ha enheten s. Därmed ska exponenten för s vara ett, d.v.s. 2c = 1, och exponenterna för kg och m ska vara noll, vilket ger a c = 0 och b + 3c = 0. Detta ger i tur och ordning c = 1 2, a = 1 2 och b = 3 2. Slutsats: Det sökta sambandet är t = k m 1/2 r 3/2 G 1/2 Anm. Verkar detta rimligt fysikaliskt? Uttrycket anger att perioden t minskar om m och/eller G ökar. Båda faktorerna innebär att kraften bakom oscillationen ökar och då verkar det rimligt att oscillationen sker snabbare, d.v.s. att perioden minskar. När radien r ökar verkar det också rimligt att oscillationen får större amplitud och sker långsammare. Även om detta resonemang inte ger de exakta värdena för exponenterna kan det vara skäl att tänka efter om trenderna verkar fysikaliskt rimliga. Exempel 2 Det hydrostatiska blodtrycket p kan antas bero på blodets densitet ρ, höjdskillnaden h mellan hjärtat och en lägre mätpunkt i kroppen och gravitationen g. Ange ett rimligt uttryck för p så att dimensionerna stämmer. Kan man tänka sig ett mera allmänt uttryck där dimensionerna också stämmer men där den fysikaliska situationen beskrivs bättre? 3

4 Vi ansätter p = kρ a h b g c, där k är en dimensionslös konstant. Tryck är kraft per ytenhet och mäts i pascal (Pa) = N/m 2 = (kg m/s 2 ) /m 2 = kg m 1 s 2. Vidare mäts ρ i kg/m 3 och tyngdaccelerationen g i m/s 2. Enheten hos högerledet blir därmed (kg m 3 ) a m b (m s 2 ) c = kg a m b+c 3a s 2c Jämförelse med enheten för p ger ekvationssystemet a = 1, -2c = -2, b + c - 3a = -1. Detta ger a = b = c = 1, d.v.s. sambandet blir p = kρhg Anm. Detta uttryck gäller för mätpunkter lägre än hjärtat men skulle ge det ofysikaliska resultatet att trycket blir negativt i hjärnan. Man skulle kunna skriva p = p 0 + kρhg där p 0 är ett slags grundblodtryck och den andra termen ger avvikelsen från detta i olika delar av kroppen. Även detta uttryck är dimensionsenligt. Uppgift 2, sid. 132: Luftmotstånd. Den bromsande kraften F på ett föremål antas bero på föremålets tvärsnittsarea A, dess hastighet v och luftens densitet ρ. Vi ansätter F = ka x v y ρ z, där k är en dimensionslös konstant och x, y och z är exponenter, som vi vill bestämma. För vänsterledet har vi dim(f ) = MLT 2 Vidare har vi dim(a) = L 2 dim(v) = LT 1 dim(ρ) = ML 3 Högerledet får därmed dimensionen (L 2 ) x (LT 1 ) y (ML 3 ) z = L 2x+y 3z T y M z Detta ska överensstämma med dimensionen för kraften F. Exponenterna för var och en av grundenheterna måste därför vara lika för vänsterled och högerled. Detta ger ekvationssystemet: M : 1 = z L : 1 = 2x + y 3z T : 2 = y Den första ekvationen ger direkt att z = 1 och den tredje ekvationen ger y = 2. Insättning av detta i den andra ekvationen ger sedan x = 1. Med ansatsen ovan får vi därmed F = kav 2 ρ Anm. I lösningen i kursboken på sid. 137 används i stället för A en variabel d med dimensionen längd. Det kan t.ex vara diametern hos ett klot. Detta ger svaret F = kd 2 v 2 ρ Problemet diskuteras närmare på sid Uppgift 4, sid. 133: Diusionsekvationen. En ofta förekommande ekvation i fysiken är diusionsekvationen c t = D 2 c x 2, där D kallas diusionskonstanten och c är koncentrationen (antal partiklar per m 3 ) som har dimensionen L 3. Här efterfrågas dim (D). 4

5 Som diskuteras på sid. 118 kan man behandla en derivata som en kvot när man betraktar dimensioner. Vi får därmed ( ) c dim = L 3 /T = L 3 T 1 t ( 2 ) c dim x 2 = L 3 /L 2 = L 5 Detta ger L 3 T 1 = dim (D) L 5 dim (D) = L 2 T 1 Uppgift 7, sid. 134: Släggkastning. Vi vill här ha ett dimensionsenligt uttryck för kastlängden s, som antas bero på utgångsfarten v, utgångsvinkeln α mot kastplanen, tyngdaccelerationen g och släggans massa m. Vi ansätter här s = k(α) v x g y m z (Vi bortser från luftmotståndet). Här har vi infört k(α) som en dimensionslös funktion av vinkeln α, som är dimensionslös. Denna funktion kan inte bestämmas med enbart dimensionsanalys. Vi har dim (v) = L T 1 dim (g) = L T 2 dim (m) = M Vänsterledet har dimensionen L. För högerledet får vi (L T 1 ) x (L T 2 ) y M z = L x+y T x 2y M z För att dimensionen för vänsterledet och högerledet ska vara samma måste vi ha L : 1 = x + y T : 0 = x 2y M : 0 = z Den sista ekvationen ger direkt att z = 0, dvs att kastlängden inte beror på släggans massa. Den andra ekvationen ger x = 2y. Insättning av detta i den första ekvationen ger 1 = 2y + y = y, dvs y = 1. Den andra ekvationen ger sedan x = 2. Vår dimensionsanalys ger därmed Anm. En striktare lösning av problemet ger s = k(α) v 2 g 1 = k(α)v2 g s = sin(2α) v2 g Här är sin(2α) av storleksordningen ett, så vår dimensionsanalys ger ett ungefärligt värde på kastlängden. Den maximala längden fås för α = π/4 och blir v 2 /g. 5

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β

Något om Dimensionsanalys och Mathematica. Assume period T Cm Α g Β L Γ s 1 kg Α m Β m Γ s 1 kg Α m Β. Identify exponents VL HL kg 0 Α m 0 Β Γ s 1 2 Β HH/ITE/BN Dimensionsanalys och Mathematica 1 Något om Dimensionsanalys och Mathematica Bertil Nilsson 2016-08-15 Assume period T Cm Α g Β Γ s 1 kg Α m Β m Γ s 2 s 1 kg Α m Β s 2Β m Γ Identify exponents

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 2. Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6

Ingenjörsmetodik IT & ME 2010 Föreläsning 2. Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6 Ingenjörsmetodik IT & ME 2010 Föreläsning 2 Enheter i SI-systemet Kap 1 Dimensionsanalys Kap 6 1 Frågor från förra gången? 2 Likabehandling Funktionsnedsättning Har du en funktionsnedsättning och behöver

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm Ingenjörsmetodik IT & ME 2007 Föreläsare Dr. Gunnar Malm 1 Frågor från förra gången Datorer kan beställas på: http://www.kth.se/student/support/ict/ 2.739/1.11102 (bärbar dator vid ICT) U9200 kostar 7

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

9 Storheter och enheter

9 Storheter och enheter 9 Storheter och enheter 9.1 SI - DET INTERNATIONELLA ENHETSSYSTEMET SI (Systeme Internationale d'unites), det internationella måttenhetssystemet, är inte ett helt nytt måttsystem. Det bygger på tidigare

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010

TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010 TENTAMEN Institution: DFM, Fysik Examinator: Pieter Kuiper Namn:... Adress:... Datum: april 2010... Tid: Plats: Kurskod: 1FY803 Personnummer: Kurs/provmoment: Vågrörelselära och Optik Hjälpmedel: linjal,

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man örsöker ställa upp en matematisk modell ör något ysikaliskt enomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna ysikaliska

Läs mer

Skydiving. En djupdykning i. Projekt i Mekanik. Kursansvarig: Richard Hsieh

Skydiving. En djupdykning i. Projekt i Mekanik. Kursansvarig: Richard Hsieh Kungliga Tekniska Högskolan 010-03-03 Tillämpad fysik Mekanik En djupdykning i Skydiving Projekt i Mekanik Kursansvarig: Richard Hsieh Nathalie Sahlström 890804-0143 Emelie Holm 90073-0049 Sofie Sjödahl

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen

Chalmers. Matematik- och fysikprovet 2009 Fysikdelen Chalmers Teknisk fysik Teknisk matematik Arkitektur och teknik Matematik- och fysikprovet 2009 Fysikdelen Provtid: 2h. Hjälpmedel: inga. På sista sidan finns en lista över fysikaliska konstanter som eventuellt

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

3-10 Potenser i problemlösning Namn:..

3-10 Potenser i problemlösning Namn:.. 3- Potenser i problemlösning Namn:.. Inledning Du har nu lärt dig en hel del om potenser i kapitel 3-9. Du vet vad som menas med ett potensuttryck och hur man räknar med dem. Nu skall du lära dig mer om

Läs mer

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)

Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar

Läs mer

Innehållsförteckning

Innehållsförteckning Innehållsförteckning Inledning 2 Grundläggande fysik 3 SI enheter 3 Area och godstjocklek 4 Tryck 5 Temperatur 7 Densitet 8 Flöde 10 Värmevärde 11 Värmeutvidgning 14 Sträckgränser 15 Allmänna gaslagen

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR

DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS OCH LIKFORMIGHETSLAGAR DIMENSIONSANALYS Dimensionsanalys är en metod att reducera antalet variabler (och därmed komplexiteten) i ett givet problem. Ger möjlighet att uttrycka teoretiska

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012

Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012 Repetition grunder, kraft, densitet & tryck Heureka Fysik 1: kap. 1-3 version 2012 Mätning & värdesiffror Så fort man mäter någon storhet (exempelvis en längd, en massa o.s.v.) ger själva mätningen en

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter;

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter; Konsoliderad version av Styrelsens för ackreditering och teknisk kontroll föreskrifter om måttenheter; Ändring införd: t.o.m. STAFS 2015:5 1 Dessa föreskrifter ska tillämpas på mätdon som används vid mätning

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Final i Wallenbergs fysikpris

Final i Wallenbergs fysikpris Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon

Läs mer

Appendix i instruktionen

Appendix i instruktionen Appendix i instruktionen Läs även Appendix A och Appendix B i instruktionerna till laboration 2 2010-10-05 Fysikexperiment, 7.5 hp 1 1 Linearisering genom logaritmering Ofta förekommer samband av typen:

Läs mer

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro Lösningar Kap 7 Elektrisk energi, spänning och ström Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kap 7 7.1) Om kulan kan "falla" från A till B minskar dess potentiella elektriska

Läs mer

Kapitel 1. Kemiska grundvalar

Kapitel 1. Kemiska grundvalar Kapitel 1 Kemiska grundvalar Kapitel 1 Innehåll 1.1 Kemi: en översikt 1.2 Den vetenskapliga metoden 1.3 Storheter och enheter 1.4 Osäkerheter i mätningar 1.5 Signifikanta siffror och beräkningar 1.6 Enhetskonvertering

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

Grundläggande energibegrepp

Grundläggande energibegrepp Grundläggande energibegrepp 1 Behov 2 Tillförsel 3 Distribution 4 Vad är energi? Försök att göra en illustration av Energi. Hur skulle den se ut? Kanske solen eller. 5 Vad är energi? Energi används som

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Elektromagnetiska falt och Maxwells ekavtioner

Elektromagnetiska falt och Maxwells ekavtioner Forelasning /1 Elektromagnetiska falt och Maxwells ekavtioner 1 Maxwells ekvationer Maxwell satte 1864 upp fyra stycken ekvationer som gav en fullstandig beskrivning av ett elektromagnetiskt falt. Dock,

Läs mer

3-8 Proportionalitet Namn:

3-8 Proportionalitet Namn: 3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt

Läs mer

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Sensorer, effektorer och fysik Grundläggande fysikaliska begrepp som är viktiga inom mättekniken Innehåll Grundläggande begrepp inom mekanik. Elektriskt fält och elektrisk potential. Gauss lag Dielektrika

Läs mer

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning).

(Eftersom kraften p. g. a. jordens gravitation är lite jämfört med inbromsningskraften kan du försumma gravitationen i din beräkning). STOCHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Mekanik FyU01 och FyU03 Måndag 3 oktober 2005 kl. 9-15 Införda beteckningar skall definieras och uppställda ekvationer motiveras, detta gäller även när

Läs mer

Trappist-1-systemet Den bruna dvärgen och de sju kloten

Trappist-1-systemet Den bruna dvärgen och de sju kloten Trappist--systemet Den bruna dvärgen och de sju kloten Trappist- är en sval dvärgstjärna, en brun dvärg, som man nyligen upptäckte flera planeter kring. För tillfället känner man till sju planeter i omloppsbana

Läs mer

Prov Fysik 2 Mekanik

Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik Instruktion för elevbedömning: Efter varje fråga finns tre rutor. Rutan till vänster ska ha en lösning på E-nivå. Om det går att göra en lösning som är klart bättre - på C-nivå - då

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 110326 Sal TER1 Tid 8-12 Kurskod Provkod BFL122 TEN1 Kursnamn/benämning Fysik B för tekniskt basår,

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

Fysikens lagar och hur dessa påverkar en robot

Fysikens lagar och hur dessa påverkar en robot Fysikens lagar och hur dessa påverkar en robot Kraft Newtons andra lag: kraften F = massan m * accellerationen a "Begreppet kraft är en abstraktion inom fysiken för att förklara och beskriva orsaken till

Läs mer

Kapitel 3. Standardatmosfären

Kapitel 3. Standardatmosfären Kapitel 3. Standardatmosfären Omfattning: Allmänt om atmosfären Standardatmosfären Syfte med standardatmosfären Definition av höjd Lite fysik ISA-tabeller Tryck-, temp.- och densitetshöjd jonas.palo@bredband.net

Läs mer

att båda rör sig ett varv runt masscentrum på samma tid. Planet

att båda rör sig ett varv runt masscentrum på samma tid. Planet Tema: Exoplaneter (Del III, banhastighet och massa) Det vi hittills tittat på är hur man beräknar radien och avståndet till stjärnan för en exoplanet. Omloppstiden kunde vi exempelvis få fram genom att

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Kapitel 1. Kemiska grundvalar

Kapitel 1. Kemiska grundvalar Kapitel 1 Kemiska grundvalar Kapitel 1 Innehåll 1.1 Kemi: en översikt 1.2 Den vetenskapliga metoden 1.3 Storheter och enheter 1.4 Osäkerheter i mätningar 1.5 Signifikanta siffror och beräkningar 1.6 Enhetskonvertering

Läs mer

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik:

Mina videos Jag har satt samman en snabbkurs för er som behöver repetera grundskolans matematik: Behov av förkunskaper i matematik För att du ska kunna följa med i undervisningen i rörelselära (IB4) krävs förkunskaper i grundskolans matematik, samt lite trigonometri. Jag medsänder därför ett förkunskapstest

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Måndagen /8 016, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

Christian Hansen CERN BE-ABP

Christian Hansen CERN BE-ABP Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm Tel Mitt kontor Electrum-huset C4

Ingenjörsmetodik IT & ME Föreläsare Dr. Gunnar Malm   Tel Mitt kontor Electrum-huset C4 Ingenjörsmetodik IT & ME 010 Föreläsare Dr. Gunnar Malm Email: gunta@kth.se Tel. 790 43 3 Mitt kontor Electrum-huset C4 1 Att göra när vi repeterar Genomgång av den formelsamling som förberetts till tentan

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum: Tentamen i : Vågor,plasmor och antenner Kurs: MTF108 Totala antalet uppgifter: 6 Datum: 2006-05-27 Examinator/Tfn: Hans Åkerstedt/491280/Åke Wisten070/5597072 Skrivtid: 9.00-15.00 Jourhavande lärare/tfn:

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

Växelström och reaktans

Växelström och reaktans Växelström och reaktans Magnus Danielson 6 februari 2017 Magnus Danielson Växelström och reaktans 6 februari 2017 1 / 17 Outline 1 Växelström 2 Kondensator 3 Spolar och induktans 4 Resonanskretsar 5 Transformator

Läs mer

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor

Vågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Problemsamling. Peter Wintoft Institutet för rymdfysik Scheelevägen Lund

Problemsamling. Peter Wintoft Institutet för rymdfysik Scheelevägen Lund Solär-terrest fysik, AST 213 Problemsamling Peter Wintoft (peter@irfl.lu.se) Institutet för rymdfysik Scheelevägen 17 223 70 Lund 2001-09-19 AST 213 2001-09-19 1 1. Allmänna gaslagen p = nkt (1) relaterar

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar

Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 1/1 016, kl 14:00-18:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

1 Dimensionsanalys och π-satsen.

1 Dimensionsanalys och π-satsen. Dimensionsanalys och π-satsen. Då man försöker ställa upp en matematisk modell för något fysikaliskt fenomen skall man alltid göra dimensionsanalys. Dimensionsanalys handlar om att undersöka hur givna

Läs mer

Puls och g-kraft. Uppföljningsblad 1. Hjärtat, en pump. Begrepp: Samband mellan begreppen: Uppgift 1. Uppgift 2

Puls och g-kraft. Uppföljningsblad 1. Hjärtat, en pump. Begrepp: Samband mellan begreppen: Uppgift 1. Uppgift 2 Uppföljningsblad 1 Hjärtat, en pump Begrepp: Puls = hjärtats frekvens = antal slag per minut Slagvolym = volymen av det blod som pumpas ut vid varje hjärtslag Minutvolym = volymen av det blod som pumpas

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

The 43 rd International Physics Olympiad Theoretical Competition

The 43 rd International Physics Olympiad Theoretical Competition The 43 rd International Physics Olympiad Theoretical Competition Tartu, Estonia Tuesday, July 17 th 2012 Skrivtiden är 5 timmar, med 3 uppgifter om totalt 30 poäng. Du får inte öppna kuvertet med uppgiftstexterna

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Inför provet mekanik 9A

Inför provet mekanik 9A Inför provet mekanik 9A Pär Leijonhufvud BY: $ \ 10 december 2014 C Provdatum 2014-12-12 Omfattning och provets upplägg Provet kommer att handla om mekaniken, det vi gått igenom sedan vi började med fysik.

Läs mer

Chalmers KTH. Matematik- och fysikprovet 2011 Fysikdelen

Chalmers KTH. Matematik- och fysikprovet 2011 Fysikdelen Chalmers KTH Teknisk fysik Teknisk matematik Arkitektur och teknik Farkostteknik Matematik- och fysikprovet 2011 Fysikdelen Provtid: 2h. Hjälpmedel: inga. På sista sidan finns en lista över fysikaliska

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

Föreläsning 5, clickers

Föreläsning 5, clickers Föreläsning 5, clickers Gungbrädan 1 kg 2 kg A. Kommer att tippa åt höger B. Kommer att tippa åt vänster ⱱ C. Väger jämnt I en kastparabel A. är accelerationen störst alldeles efter uppkastet B. är accelerationen

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 8 Vågrörelselära & Kvantfysik, FK2002 9 januari 2012 Problem 40.1 Vad är våglängden för emissionsmaximum λ max, hos en svartkropps-strålare med temperatur a) T 3 K (typ kosmiska mikrovågsbakgrunden)

Läs mer

HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid

HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid HÅLLFASTHETSLÄRA Hållfasthetslärans grundläggande uppgift är att hjälpa oss att beräkna dimension och form hos en konstruktion så att den vid användning inte går sönder. Detta förutsätter att vi väljer

Läs mer

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007

Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 1 Institutionen för elektrovetenskap Tentamen Modellering och simulering inom fältteori, 8 januari, 2007 Tillåtna hjälpmedel: Formelsamling i Elektromagnetisk fältteori arje uppgift ger 10 poäng. Delbetyget

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Experimentell metodik

Experimentell metodik Experimentell metodik Storheter, mätetal och enheter En fysikalisk storhet är en egenskap som kan mätas eller beräknas. En storhet är produkten av mätetal och enhet. Exempel 1: Elektronens massa är m =

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Kvalificeringstävling den 26 september 2017

Kvalificeringstävling den 26 september 2017 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera

Läs mer

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?

E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd? Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Lösa ekvationer på olika sätt

Lösa ekvationer på olika sätt Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.

Läs mer

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j.

τ ij x i ρg j dv, (3) dv + ρg j dv. (4) Detta samband gäller för en godtyckligt liten kontrollvolym och därför måste det + g j. Föreläsning 4. 1 Eulers ekvationer i ska nu tillämpa Newtons andra lag på en materiell kontrollvolym i en fluid. Som bekant säger Newtons andra lag att tidsderivatan av kontrollvolymens rörelsemängd är

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer