Praktisk beräkning av SPICE-parametrar för halvledare

Storlek: px
Starta visningen från sidan:

Download "Praktisk beräkning av SPICE-parametrar för halvledare"

Transkript

1 SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi at kth.se

2 Innehåll i 1 Inledning 1 2 Teori PN-diod MOSFET Lång kanal Kort kanal Praktik PN-diod MOSFET Lång kanal Kort kanal Resultat och analys PN-diod MOSFET Diskussion och slutsatser 8 Figurer 3.1 Grafisk bestämning av V T Grafisk bestämning av Θ Grafisk bestämning av γ Jämförelse mellan SPICE-modell och mätdata för dioden Jämförelse mellan SPICE-modell och mätdata för långkanals MOSFETen Jämförelse mellan långkanals och kortkanals MOSFET

3 1(9) 1 Inledning Vid datorbaserade simuleringar krävs det modeller som datorn kan använda för att utföra de nödvändiga beräkningarna. En standard för att simulera kretsar med en dators hjälp är SPICE. För att kunna utföra simuleringar krävs det parametrar till modellerna för specifika komponenter. Dessa parametrar bestäms empiriskt med mätningar och matematiska samband. Här har metoder för att beräkna parametrar till en PN-diod samt två MOSFETar undersökts. Skillnaden mellan modell och verklighet har också undersökts. Syftet är få en känsla för hur riktiga komponenter kan beskrivas med hjälp av SPICE-parametrar och hur modellen skiljer sig mot verkligheten. 2 Teori 2.1 PN-diod Följande ekvation är den grundläggande SPICE-modellen för diodströmmen, I D, den kallas även för Shockley-ekvationen: I D = I S (e V D/nV t 1) I S e V D/nV t (2.1) V t = kt q ( 25 mv i rumstemperatur) (2.2) ln ( ID I S ) = V D nv t (2.3) n = 1 V ( ) D (2.4) ln ID V t I S När diodströmmen, I D, ökar så påverkar parasitresistansen, R S, funktionen vilket leder till att V D måste ersättas med V D R S I. Ovanstående samband insättes i ekvation 2.1 med ekvation 2.2 och följande fås: R S = ( V D nkt q ln ( ID I S )) 1 I D (2.5)

4 2(9) Ur ekvation 2.1 kan följande samband fås: I S = I D e V D/nV t (2.6) 2.2 MOSFET Lång kanal V T ges av tangentens skärning mot x-axeln i ett I D V GS -diagram, för V SB = V. För att kunna beräkna lågfältsmobiliteten, µ, samt mobilitetsmoduleringskonstanten, Θ, måste först förstärkningsfaktorn, β, bestämmas. β bestäms ur lutningen av det linjära området på kurvan i ett I D V GS -diagram, med en kurva per mätning. Θ löses ut från: Substratdopningen, N A, ges av: β = β 1 + Θ (V GS V T ) N A = n i e qφ F /kt (2.7) (2.8) Body-faktorn, γ, krävs för att kunna bestämma C ox och därefter µ samt t ox. γ ges ur följande samband: V T = V T + γ ( 2Φ F + V SB 2Φ F ) (2.9) C ox kan i sin tur bestämmas från: γ = 1 C ox 2ɛs qn A (2.1) µ ges av: β = µ C ox (2.11) t ox ges av: C ox = ɛ ox t ox (2.12) Kort kanal Kortkanalseffekten karakteriseras genom att bestämma σ D.

5 3(9) DIBL, Drain Induced Barrier Lowering, innebär att energibarriären minskar. Det modelleras enligt: V T = V T σ D V DS (2.13) Ekvation 2.13 differentieras till: V T = V T σ D V DS (2.14) där sedan σ D kan lösas ut. 3 Praktik 3.1 PN-diod Mätningar utfördes med spänningssvep på en PN-diod, med och utan belysning. Spänningen, V D, varierades från 2 till V (i 11 steg). Emissionskoefficienten, n, approximerades med hjälp av linjäranpassning mot det linjära området i ln(i D )-V D -diagrammet. Mättnadsströmmen, I S, beräknades enligt ekvation 2.6. Därefter beräknades serieresistansen, R S, enligt ekvation MOSFET Lång kanal Mätningar utfördes med spänningssvep på en MOSFET med lång kanal (L = 1 µm). Gatespänningen, V G, varierades från 5 mv till 2, 5 V (i 61 steg), för drain-spänningen, V D =, 1 V samt 1, V. Med body-spänningen, V S B = V, bestämdes V T grafiskt från ett I D -V GS -diagram (se figur 3.2.1) som plottades i MATLAB, enligt avsnitt Förstärkningsfaktorn, β, bestämdes även den enligt avsnitt ur ett I D -V GS -diagram för olika body-spänningar. Teta gavs sedan av lutningen på den linje som gavs av plotten för β β 1 som en funktion av V GS V T, se figur Substratdopningen, N A, beräknades med ekvation 2.8 för Φ F antaget till, 35 ev.

6 4(9) 1.4 x 1 4 ID vs VG ID [A] VG [V] Figur 3.1: Grafisk bestämning av V T.45 Teta B/B y =.46325*x data 1 linear VG VT [V] Figur 3.2: Grafisk bestämning av Θ

7 5(9) 2 Gamma 1.9 y =.94292*x data 1 linear 1.7 VT [V] sqrt(2*fif+vsb) sqrt(2*fif) [V ½ ]) Figur 3.3: Grafisk bestämning av γ Body-faktorn, γ, löstes ut från den linjära ekvationen 2.9 (Φ F illustration. =, 35 ev), se figur för Med γ känt kunde oxidkapacitansen, C ox, bestämmas enligt ekvation 2.1. Ekvation 2.11 samt 2.12 ger sedan lågfältsmobiliteten, µ, och oxidtjockleken, t ox. SPICE-modellen jämfördes med mätdata genom följande modell för de beräknade parametrarna: I D = β [(V GS V T ) V DS (1 + F B ) V 2 DS 2 ] (3.1) Där: F B = γ 2(2Φ F + V SB ) (3.2) Kort kanal Mätningar utfördes med spänningssvep på en MOSFET med kort kanal (L = 6 nm). Gatespänningen, V G, varierades från 5 mv till 2, 5 V (i 61 steg), för drain-spänningen, V D =, 1 V samt 1, V. De ovanstående mätningar användes sedan för att beräkna σ D enligt ekvation Differentialerna är skillnaden mellan de olika mätningarna.

8 6(9) 4 Resultat och analys 4.1 PN-diod Följande resultat erhölls: Mättnadsströmen, I S = 1, 73 pa Emissions koeffecienten, n = 1, 5158 Serieresistans, R S = 194 Ω För jämförelse mellan SPICE-modell och mätdata se figur Mätdata vs. SPICE modell 1 15 ln(i D ) (A) V (V) D Figur 4.1: Jämförelse mellan SPICE-modell och mätdata för dioden 4.2 MOSFET Följande resultat erhölls för långkanals MOSFETen: Tröskelspänningen, V T = 1, 34 V Lågfältsmobiliteten, µ = 2, cm 2 /V s Mobilitetsmoduleringskonstanten, Θ =, 46 V 1 Substratdopningen, N A = 7, cm 3 Oxidtjockleken (SiO 2 ), t ox = 6, 44 nm För jämförelse mellan SPICE-modell och mätdata se figur 4.2. Följande resultat erhölls får kortkanals MOSFETen: σ D =, 19

9 7(9) 6 x 1 4 SPICE vs Maetdata Maetdata SPICE LEVEL ID [A] VDS [V] (a) I D mot V DS 14 x 1 5 SPICE vs Maetdata ID [A] SPICE LEVEL 3 Maetdata VGS [V] (b) I D mot V GS Figur 4.2: Jämförelse mellan SPICE-modell och mätdata för långkanals MOSFETen I figur 4.3 kan det ses att kortkanalseffekten bidrar till en faktor tio gånger större drain-ström.

10 8(9) 5 Diskussion och slutsatser Vi kan, i figur 4.1 och 4.2, se att det är vissa skillnader mellan SPICE-modellen och verkligheten representerad av mätdatan. En anledning till detta kan vara att SPICE-modellen går mot mer ideala förhållanden, men i verkligheten påverkar omgivningens temperatur, eventuellt bakgrundsljus och andra faktorer. Framförallt ljusets påverkan undersöktes i laborationen med PN-dioden och det visade sig ha betydande påverkan av resultatet. En annan faktor som påverkar är de approximationer som uppstår när parametrar bestäms grafiskt samt resultat rundas av i ekvationer. En anledning till att det är en större drain-ström i en kortkanals MOSFET än en långkanals är att tröskelspänningen sjunker när kanallängden minskar, den minskar även när drain-sourcespänningen ökar.

11 9(9) 6 x 1 4 ID vs VGS, long kanal VDS =.1 V VDS = 1. V ID [A] VGS [V] (a) MOSFET med lång kanal, L = 1µm 6 x 1 3 ID vs VGS VDS =.1 V VDS = 1. V ID [A] VGS [V] (b) MOSFET med kort kanal, L = 6 nm Figur 4.3: Jämförelse mellan långkanals och kortkanals MOSFET

Labb-PM MCC086 Mikroelektronik 2016

Labb-PM MCC086 Mikroelektronik 2016 Labb-PM MCC086 Mikroelektronik 2016 Syfte med labben: Att få praktisk och experimentell erfarenhet av mätningar på pn-dioden och MOSFET, samt uppleva komponenternas egenskaper. Mäta på dioder och transistorer

Läs mer

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2

Moment 1 - Analog elektronik. Föreläsning 2 Transistorn del 2 Moment 1 - Analog elektronik Föreläsning 2 Transistorn del 2 Jan Thim 1 F2: Transistorn del 2 Innehåll: Fälteffekttransistorn - JFET Karakteristikor och parametrar MOSFET Felsökning 2 1 Introduktion Fälteffekttransistorer

Läs mer

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent)

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter

Läs mer

Om inget annat anges så gäller det kisel och rumstemperatur (300K)

Om inget annat anges så gäller det kisel och rumstemperatur (300K) Komponentfysik Övning 3 VT-0 Om inget annat anges så gäller det kisel och rumstemperatur (300K) Utredande uppgifter: I: En diod har två typer av kapacitanser, utarmningskapacitans och diffusionskapacitans.

Läs mer

Videoförstärkare med bipolära transistorer

Videoförstärkare med bipolära transistorer Videoförstärkare med bipolära transistorer IE1202 Analog elektronik - Joel Nilsson joelni at kth.se Innehåll i 1 Första försöket 1 1.1 Beräkningar....................................... 1 1.1.1 Dimensionering

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige

Laboration 36: Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se. 8 Maj, 2001 Stockholm, Sverige Laboration 36: Kärnfysik Nils Grundbäck, e99 ngr@e.kth.se Gustaf Räntilä, e99 gra@e.kth.se Mikael Wånggren, e99 mwa@e.kth.se 8 Maj, 2001 Stockholm, Sverige Assistent: Roberto Liotta Modern fysik (kurskod

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

Komponentfysik ESS030. Den bipolära transistorn

Komponentfysik ESS030. Den bipolära transistorn Komponentfysik ESS030 Den bipolära transistorn T- 2016 Syfte Syftet med denna laboration är att studenten ska bekanta sig med den grundläggande fysiken i en bipolär transistor. Det fundamentala byggblocket

Läs mer

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13.

Rättade inlämningsuppgifter hämtas på Kents kontor Föreläsning 4 Må 11.00-11.30, 12.30-13.15 Kent Palmkvist To 11.00-11.30, 12.30-13. /5/14 15:56 Praktisk info, forts. Löst uppgift Fyll i ett konvolut (återanvänds tills uppgiften godkänd TTE Elektronik Konvolut hittas ovanpå den svarta brevlåda som svar lämnas i vart brevlåda placerad

Läs mer

Laboration i Tunneltransport. Fredrik Olsen

Laboration i Tunneltransport. Fredrik Olsen Laboration i Tunneltransport Fredrik Olsen 9 maj 28 Syfte och Teori I den här laborationen fick vi möjlighet att studera elektrontunnling över enkla och dubbla barriärer. Teorin bakom är den som vi har

Läs mer

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon

Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk

Läs mer

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1.

Solar cells. 2.0 Inledning. Utrustning som används i detta experiment visas i Fig. 2.1. Solar cells 2.0 Inledning Utrustning som används i detta experiment visas i Fig. 2.1. Figure 2.1 Utrustning som används i experiment E2. Utrustningslista (se Fig. 2.1): A, B: Två solceller C: Svart plastlåda

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Uppdrag för LEGO projektet Hitta en vattensamling på Mars

Uppdrag för LEGO projektet Hitta en vattensamling på Mars LEGO projekt Projektets mål är att ni gruppvis skall öva på att genomföra ett projekt. Vi använder programmet LabVIEW för att ni redan nu skall bli bekant med dess grunder till hjälp i kommande kurser.

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

FÖRNYELSEBARA RESURSER ETT RÄKNEEXEMPEL. Utgå från en logistisk tillväxtfunktion: = f ( x) = rx 1, där x är populationen, r är den

FÖRNYELSEBARA RESURSER ETT RÄKNEEXEMPEL. Utgå från en logistisk tillväxtfunktion: = f ( x) = rx 1, där x är populationen, r är den FÖRNYELSEBARA RESURSER ETT RÄNEEXEMPEL dx x Utgå från en logistisk tillväxtfunktion: = f ( x) = rx, där x är populationen, r är den dt inneboende tillväxttakten (alltid ett tal mellan noll och ett), och

Läs mer

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Laboration 6. A/D- och D/A-omvandling. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum Laboration 6 A/D- och D/A-omvandling A/D-omvandlare Digitala Utgång V fs 3R/2 Analog Sample R R D E C O D E R P/S Skiftregister R/2 2 N-1 Komparatorer Digital elektronik Halvledare, Logiska grindar Digital

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

Introduktion till Word och Excel. 14 september 2008

Introduktion till Word och Excel. 14 september 2008 Introduktion till Word och Excel 14 september 2008 1 Innehåll 1 Inledning 3 2 Word 3 2.1 Uppgift................................ 3 2.2 Instruktioner............................. 3 2.2.1 Hämta hem ler.......................

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

KVÄVETS ÅNGBILDNINGSVÄRME

KVÄVETS ÅNGBILDNINGSVÄRME LABORATION (2B1111) KVÄVETS ÅNGBILDNINGSVÄRME Thomas Claesson KTH, IMIT, Materialfysik E-post: tcl@kth.se 060321/tc MÅLSÄTTNING 1. att bestämma ångbildningsvärmet, ångbildningsentalpin, experimentellt

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Modellering av en Tankprocess

Modellering av en Tankprocess UPPSL UNIVERSITET SYSTEMTEKNIK EKL och PS 2002, R 2004, BC 2009, 2013 Modellering av dynamiska system Modellering av en Tankprocess Sammanfattning En tankprocess modelleras utifrån kända fysikaliska relationer.

Läs mer

Funktioner Exempel på uppgifter från nationella prov, Kurs A E

Funktioner Exempel på uppgifter från nationella prov, Kurs A E Funktioner Exempel på uppgifter från nationella prov, Kurs A E Uppgifter ur Nationella prov Kurs A Ur del II utan räknare: När en frysbox stängs av stiger temperaturen. Följande formel kan användas för

Läs mer

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare

Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

Stabilitetsanalys och reglering av olinjära system

Stabilitetsanalys och reglering av olinjära system Laboration i Reglerteori, TSRT09 Stabilitetsanalys och reglering av olinjära system Denna version: 18 januari 2017 3 2 1 0 1 2 3 0 10 20 30 40 50 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen.

2: Räkna ut utsträckningen av rymdladdningsområdet i de två fallen i 1 för n-sidan, p-sidan och den totala utsträckningen. Komponentfysik Uppgifter pn del 1 VT-15 Utredande uppgifter Ia) Rita skisser med nettoladdning, elektriskt fält och bandstruktur för en symmetrisk pn-övergång. b) Rita motsvarande skisser som i a), men

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Introduktion till Word och Excel

Introduktion till Word och Excel Introduktion till Word och Excel HT 2006 Detta dokument baseras på Introduktion till datoranvändning för ingenjörsprogrammen skrivet av Stefan Pålsson 2005. Omarbetningen av detta dokument är gjord av

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren

Olika sätt att bygga förstärkare. Differentialförstärkaren (översikt) Strömspegeln. Till sist: Operationsförstärkaren FÖRELÄSNING 12 Olika sätt att bygga förstärkare Differentialförstärkaren (översikt) Strömspegeln Till sist: Operationsförstärkaren Per Larsson-Edefors, Chalmers tekniska högskola EDA351 Kretselektronik

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Bestämning av fluoridhalt i tandkräm

Bestämning av fluoridhalt i tandkräm Bestämning av fluoridhalt i tandkräm Laborationsrapport Ida Henriksson, Simon Pedersen, Carl-Johan Pålsson 2012-10-15 Analytisk Kemi, KAM010, HT 2012 Handledare Carina Olsson Institutionen för Kemi och

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Analys av elektriska nät med numeriska metoder i MATLAB

Analys av elektriska nät med numeriska metoder i MATLAB Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare

Läs mer

1. Mätning av gammaspektra

1. Mätning av gammaspektra 1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Kinetik. Föreläsning 1

Kinetik. Föreläsning 1 Kinetik Föreläsning 1 Varför kunna kinetik? För att till exempel kunna besvara: Hur lång tid tar reaktionen till viss omsättningsgrad eller hur mycket produkt bildas på viss tid? Hur ser reaktionens temperaturberoende

Läs mer

Tentamen i ETE115 Ellära och elektronik, 10/1 2015

Tentamen i ETE115 Ellära och elektronik, 10/1 2015 Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ. Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Föreläsning 7 Fälteffek1ransistor IV

Föreläsning 7 Fälteffek1ransistor IV Föreläsning 7 Fälteffek1ransistor IV måsignal FET A, f t MO- Kondensator D/MO- kamera Flash- minne 1 måsignalmodell A kapacitanser i mä1nadsmod δu Isolator io 2 D N ++ N ++ P- typ halvledare δ Q δu >>

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Lufttryck i ballong laboration Mätteknik

Lufttryck i ballong laboration Mätteknik (SENSUR) Lufttryck i ballong laboration Mätteknik Laborationen utfördes av: (Sensur) Rapportens författare: Sjöström, William Uppsala 8/3 2015 1 av 7 1 - Inledning Om du blåser upp en ballong av gummi

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE maj 2012,

Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE maj 2012, Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE345 24 maj 2012, 8.30-13.00 1. Ge exempel på en avklingningsfunktion för att beskriva en gas som bryts ner i atmosfären. Presentera också

Läs mer

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik D MA p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik D MA04 00p Respektive programmål gäller över kurskriterierna MA04 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är vår

Läs mer

LTK010, vt 2017 Elektronik Laboration

LTK010, vt 2017 Elektronik Laboration Reviderad: 20 december 2016 av Jonas Enger jonas.enger@physics.gu.se Förberedelse: Du måste känna till följande Kirchoffs ström- och spänningslagar Ström- och spänningsriktig koppling vid resistansmätning

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Laboration Fuzzy Logic

Laboration Fuzzy Logic BILAGA B Laboration Fuzzy Logic Lär dig simulera ett program! ABB INDUSTRIGYMNASIUM Fuzzy Logic Wikingsons Wåghalsiga Wargar Projekt ABB VT 2006 Västerås Innehåll 1 Introduktion... 3 2 Uppgiften... 3 2.1

Läs mer

Digital IC konstruktion

Digital IC konstruktion Digital IC konstruktion Viktor Öwall Transistorn: en förstärkare Power Supply Korrekt? gate drain source En transistor kan användas på många olika sätt, t.ex. för att förstärka en elektrisk signal. Ground

Läs mer

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09

Läs mer

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C

Läs mer

Laboration N o 1 TRANSISTORER

Laboration N o 1 TRANSISTORER Institutionen för tillämpad fysik och elektronik Umeå universitet Patrik Eriksson 22/10 2004 Analog elektronik 2 Laboration N o 1 TRANSISTORER namn: datum: åtgärda: godkänd: Målsättning: Denna laboration

Läs mer

LABORATIONSINSTRUKTION. Mätning på dioder och transistorer

LABORATIONSINSTRUKTION. Mätning på dioder och transistorer Lars-Erik Cederlöf LABORATIONSINSTRUKTION LABORATION Mätning på dioder och transistorer KURS Elektronik grundkurs LAB NR 4 INNEHÅLL Data om dioden 1N4148 Kontroll av diod Diodens karaktäristik Data om

Läs mer

Optokomponenter Laborationshandledning

Optokomponenter Laborationshandledning ESS030 Komponentfysik för E Optokomponenter Laborationshandledning FASTA TLLSTÅNDETS FYSK LTH Komponentfysik för E Optokomponenter modern elektronik används både elektriska och optiska signaler för överföring

Läs mer

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning

Läs mer

Matematik D (MA1204)

Matematik D (MA1204) Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden

Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Michael Hanke October 19, 2006 1 Beskrivning och mål Matematiska modeller i vetenskap och ingenjörsvetenskap

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

Ellära. Laboration 4 Mätning och simulering. Växelströmsnät.

Ellära. Laboration 4 Mätning och simulering. Växelströmsnät. Ellära. Laboration 4 Mätning och simulering. Växelströmsnät. Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter

Läs mer

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.

5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium. Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter

Läs mer

Simulering av högtalare

Simulering av högtalare Svante Granqvist 2008-11-05 13:47 Laboration i DT2420/DT242V Högtalarkonstruktion Simulering av högtalare Du kommer att få simulera labblådan och jämföra med tidigare uppmätta data. Vi använder simuleringsprogrammet

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av:

Hållfasthetslära. Böjning och vridning av provstav. Laboration 2. Utförs av: Hållfasthetslära Böjning och vridning av provstav Laboration 2 Utförs av: Habre Henrik Bergman Martin Book Mauritz Edlund Muzammil Kamaly William Sjöström Uppsala 2015 10 08 Innehållsförteckning 0. Förord

Läs mer

Polarisation laboration Vågor och optik

Polarisation laboration Vågor och optik Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen

Läs mer

Provmoment: Ladokkod: Tentamen ges för: Omtentamen SMI01A CE12. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Provmoment: Ladokkod: Tentamen ges för: Omtentamen SMI01A CE12. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Mikroekonomi Provmoment: Ladokkod: Tentamen ges för: Omtentamen SMI01A CE12 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2013 08 29 Tid: 9.00 14.00 Hjälpmedel:

Läs mer

Byggnationen av Cheopspyramiden - ett visualiseringsprojekt. Mathias Bergqvist, Rikard Gehlin, Henrik Gunnarsson

Byggnationen av Cheopspyramiden - ett visualiseringsprojekt. Mathias Bergqvist, Rikard Gehlin, Henrik Gunnarsson Byggnationen av Cheopspyramiden - ett visualiseringsprojekt Mathias Bergqvist, Rikard Gehlin, Henrik Gunnarsson 25 April 2010 0.1 Förord Gruppen vill tacka Adam Grudzinski för att ha fått tillåtelse att

Läs mer

Labbrapport. Isingmodel

Labbrapport. Isingmodel Labbrapport Auhtor: Mesut Ogur, 842-879 E-mail: salako s@hotmail.com Author: Monica Lundemo, 8524-663 E-mail: m lundemo2@hotmail.com Handledare: Bo Hellsing Göteborgs Universitet Göteborg, Sverige, 27--

Läs mer

LÅGCYKELUTMATTNING (engelska: LOW CYCLE FATIGUE, LCF)

LÅGCYKELUTMATTNING (engelska: LOW CYCLE FATIGUE, LCF) LÅGCYKELUTMATTNING (engelska: LOW CYCLE FATIGUE, LCF) Rekapitulation från högcykelutmattning (HCF): Vi skär alltså normalt av Haigh-diagrammet med en linje som gör att vi inte tillåter att bli. Men i en

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och

Läs mer

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design

SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design 1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall

Läs mer

Mätteknik 2016 Mätsystem

Mätteknik 2016 Mätsystem Mätteknik 2016 Mätsystem Per Augustsson [per.augustsson@bme.lth.se] Inst. för Biomedicinsk Teknik 1 Upplägg Mätsystem Om laborationen Lab View Laborationsövningar Inst. för Biomedicinsk Teknik 2 http://www.fitbit.com/jobs

Läs mer

ABSORPTION AV GAMMASTRÅLNING

ABSORPTION AV GAMMASTRÅLNING ABSORPTION AV GAMMASTRÅLNING Uppgift: Materiel: Teori: Att bestämma ett samband för den intensitet av gammastrålning som passerar en absorbator, som funktion av absorbatorns tjocklek. Att bestämma halveringstjockleken

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Tryckta transistorer på papper och plast

Tryckta transistorer på papper och plast Tryckta transistorer på papper och plast Daniel Tobjörk, N. Kaihovirta, T. Mäkelä, R. Österbacka, R. Bollström, A. Määttänen, P. Ihalainen, J. Peltonen, M. Toivakka, Åbo Akademi, Laboratoriet för pappersförädling

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer