Mekanik Laboration 3 (MB3)

Storlek: px
Starta visningen från sidan:

Download "Mekanik Laboration 3 (MB3)"

Transkript

1 Institutionen för fysik Ingvar Albinsson/Carlo Ruberto Naturvetenskapligt basår, NBAF00 Laborationen genomförs i grupper om två-tre personer och består av fem olika försök som genomförs i valfri ordning under två lektionstimmar. Gör så många försök som du hinner. Det är dock inte nödvändigt att du hinner med alla det viktigaste är att du tar dig tid för att reflektera över dina resultat. Försök 1 Kaströrelse Försök Cirkulär rörelse Försök 3 Elastisk stöt Försök 4 Fullständigt oelastisk stöt Försök 5 Pendelrörelse Studentens namn och signatur: Datum för godkännande samt labbassistentens namn och signatur: Information till laborationsassistenter: Notera att datorprogrammet Stötförsök finns installerat på de relevanta datorerna i laborationslokalerna. Man måste starta datorn på den lokala hårddisken genom att hålla den blå knappen på datorns frontpanel intryckt. Vidare kan man behöva väla dator med scroll lock. Det ska inte behövas användarnamn och lösenord, utan bara att trycka enter.

2 Förberedande HEMUPPGIFT (Här ges ett eempel på hur rörelsemängden bevaras vid en kollision. Om kollisionen är elastisk bevaras även rörelseenergin!) Denna hemuppgift ska du ha genomfört eller försökt att genomföra innan laborationstillfället. Du ska kunna visa upp din lösning eller ditt försök till lösning för labbassistenten i början av laborationen. Givetvis har du möjlighet att ställa frågor till labbassistenten kring den. Du kan också ställa frågor kring den under räknestugorna och studiehjälpen innan laborationstillfället. Anta att två vagnar som rör sig friktionsfritt kolliderar elastiskt. Före kollisionen rör sig vagn nr 1 åt höger (v 1 = 3,0 m/s), medan vagn står stilla (v = 0 m/s). Vagnarnas massor är m 1 = 1,0 kg respektive m =,0 kg. Före kollisionen beräknas rörelsemängden för båda vagnar enligt följande: p 1 = m 1v 1 = 1,0 kg 3,0 m/s = 3,0 kgm/s p = m v =,0 kg 0 m/s = 0 kgm/s Den totala rörelsemängden blir därför: p total = p 1 + p = (3,0 + 0) kgm/s = 3,0 kgm/s Efter kollisionen rör sig vagn 1 åt vänster (v = 1,0 m/s), medan vagn rör sig åt höger (v =,0 m/s). Beräkna vagnarnas rörelsemängd samt total rörelsemängd: p 1 = p = Den totala rörelsemängden blir då: p total = (Om du får samma totala rörelsemängd som före kollisionen, 3,0 kgm/s, har du räknat rätt!) På motsvarande sätt är rörelseenergierna före den elastiska kollisionen: E k,1 = m 1v 1 / = 1,0 3,0 / J = 4,5 J E k, = m v / =,0 0 / J = 0 J Den totala rörelseenergin före kollisionen är därför: E k,total = E k,1 + E k, = 4,5 J Beräkna rörelseenergierna efter den elastiska kollisionen: E k,1 = E k, = Den totala rörelseenergin efter kollisionen blir då: E k,total = (Om du får samma totala rörelseenergi som före kollisionen har du räknat rätt!) (Observera att den totala rörelseenergin är den samma endast om kollisionen är elastisk!) (Observera också att rörelsemängd och rörelseenergi är två helt olika storheter, som lyder olika lagar!) (11)

3 Försök 1 Kaströrelse Utrustning: uppställning strömning i tunna rör, måttband, mätglas, tidtagarur. En kastparabel är den bana som ett föremål beskriver när det kastas i ett gravitationsfält. Begynnelsehastigheten v 0 kan delas upp i komposanter i - respektive y-led enligt figuren intill. Eftersom tyngdkraften endast verkar vertikalt, så är den horisontella komposanten av hastigheten konstant. Om kastet sker från koordinaterna (0, y0) så kan läge, hastighet och acceleration beskrivas med följande funktioner: v0 läge: ( t) y( t) y 0 0 v v 0 t 0 y t gt hastighet: v v y v v 0 0 y g t (OBS! Hastigheten är derivatan av läget) acceleration: a a y 0 g (OBS! Accelerationen är derivatan av hastigheten) Om man eliminerar tiden (t) ur de två lägesekvationerna, (t) och y(t), kan man uttrycka y-koordinaten som en funktion av -koordinaten, dvs y(). Detta leder till att man får en andragradsfunktion på formen y = a + b + c (där a 0) vilket beskriver en geometrisk kurva som kallas parabel. Eftersom en vattenstråle påverkas av tyngdkraften på samma vis som ett föremål som kastats, beskriver den också en parabel! A) Gör i ordning uppställningen så att vatten strömmar ut genom röret horisontellt ( grönmärkt ca 3dm långt) och ner i vasken. Öppna kranen lagom mycket så att nivån i behållaren är konstant! Definiera nedslagsplatsen i vasken som y = 0! y y0 vattenstråle (t1) B) Eftersom begynnelsehastigheten är riktad horisontellt ( = 0), så är dess komposanter v respektive v 0. Väljer du dessutom koordinatsystemet som i figuren blir 0 v 0 0 y 0 0. Skriv upp rörelselagarna för läge och hastighet med dessa förutsättningar! Det är bra att alltid utgå från de allmänna rörelselagarna ovan! läge: ( t)... y( t) hastighet: v v y (11)

4 Du ska nu uppskatta vattnets begynnelsehastighet vid rörets mynning (v0) genom att mäta vattenstrålens nedslagsposition C) Mät vattenstrålens starthöjd över nedslagsplatsen: y 0 m Med detta kan du beräkna falltiden t1! (Kom ihåg Galileis försök i laboration där du lät modellera falla!) Beräkna alltså hur lång tid t1 det tar för varje vattenmolekyl att falla till nedslagsplatsen, gt1 dvs lös ekvationen y ( t1) y0 0! D) Mät också det horisontella avståndet till nedslagsplatsen: t 1 ( t 1 ).. s. m Med detta kan du beräkna begynnelsehastigheten v0! (Kom ihåg Galileis försök i laboration där du behandlade rörelse i - och y-led var för sig!) Beräkna alltså begynnelsehastigheten v0 i -led, ( t1) dvs lös ekvationen ( t1) v0t1! v 0... m/s t * * * E) Uppskatta nu vattnets begynnelsehastighet när det lämnar mynningen genom att istället mäta vattenflödet (dvs volym per tidsenhet uttryckt i m 3 /s) och rörets invändiga tvärsnittsarea! Det grönmärkta rörets innerdiameter = 1, m. Beräkna rörets tvärsnittsarea: A = m Använd mätglas och tidtagarur för att mäta vattenflödet: m 3 /s (OBS: 1 ml = 10 6 m 3 ) vattenflöde Beräkna vattnets begynnelsehastighet: v 0 m/s A Jämför detta värde med hastigheten i D) och kommentera resultatet: 1 Gör gärna om du hinner: F) För kaströrelse utan luftmotstånd på horisontell mark (dvs y0 = 0) kan man visa att man når maimal längd i - led om utgångsvinkeln är 45! y (t1) Placera rörets mynning vid kanten av vasken och variera lutningen. Vid vilken vinkel når strålen längst? α = 4 (11)

5 Försök Cirkulär rörelse Utrustning: pleiglasrör, fiskelina, gummikork, vikt 100 g, tidtagarur, måttband. För cirkulär rörelse med konstant fart är accelerationsvektorn alltid riktad mot cirkelns centrum. Enligt Newtons :a lag måste då den resulterande kraft som upprätthåller den krökta banan också vara riktad in mot centrum. Denna kraft kallas centripetalkraft, F c, och motsvarande acceleration centripetalacceleration, a c. I detta fall lyder alltså Newtons :a lag på följande vis: r v Trots att farten är konstant ändras alltså hastigheten (som är en vektor) på grund av att rörelseriktningen ändras så länge föremålet rör sig i den cirkulära banan! Fc A) Trä fiskelinan genom pleiglasröret och fäst gummikorken i ena änden och 100 g-vikten i den andra. Var noga med att allt sitter ordentligt fast! Låt gummikorken snurra i en cirkulär bana ovanför huvudet med lagom stor hastighet så att 100 g-vikten hålls på en konstant nivå. Snurra tillräckligt fort så att fiskelinan nästan är vinkelrät, men var försiktig så att inte gummikorken skadar någon!!! För bästa noggrannhet är det också viktigt att du gör så små rörelser som möjligt med handen under tiden som ni mäter. Det är tyngdkraften på M som via linan förmedlar en resulterande kraft på korken som är riktad mot centrum! Mät banradien r och periodtiden T, dvs tiden för ett varv (för bästa noggrannhet mät tiden för t.e. 10 varv och dividera med antalet varv). Beräkna banhastigheten v: r M = 0,10 kg Fg = Mg m r......m T......s r v T m/s B) Mät gummikorkens massa m och beräkna sedan centripetalkraften Fc på korken: v m = kg F c m N r C) Upprepa försöket för några olika värden på radien (vilket naturligtvis också påverkar periodtiden). Fyll i tabellen till höger. D) Jämför med tyngdkraften: F g Mg N r (m) T (s) r v T v m (N) r F c Kommentera resultatet: Fundera på: Vilken bana skulle gummikorken följa om den lossnade? v Vid cirkulär rörelse är accelerationen alltid a c 5 (11) r Denna kallas centripetalacceleration och är riktad mot cirkelbanans centrum.

6 Försök 3 Elastisk stöt Utrustning: rullbana, två friktionsfria vagnar, två vikter (0,5 kg), två fotoceller, datorprogram Stötförsök. När två föremål kolliderar så bevaras alltid den totala rörelsemängden. Om dessutom kollisionen är elastisk så bevaras även den totala rörelseenergin. Om kollisionen är oelastisk bevaras endast rörelsemängden, medan rörelseenergin minskar. Vid en fullständigt oelastisk stöt fastnar föremålen i varandra. Rörelsemängden hos ett föremål är en vektor som har samma riktning som föremålets hastighet. Rörelseenergin är däremot en skalär (som inte har någon riktning). Rörelsemängd definieras som produkten av föremålets massa och hastighet: p = mv Rörelseenergi är proportionell mot kvadraten på föremålets hastighet: A) Vänd vagnarnas magnetsidor mot varandra för att få en elastisk kollision. Knuffa igång den ena vagnen med lagom stor fart och låt den kollidera med den andra vagnen som från början står stilla mellan fotocellerna. Försök att uppnå ungefär samma begynnelsefart i samtliga försök. (Detta är egentligen inte nödvändigt, med det gör att du lättare kan jämföra de olika försöken.) fotocell 1 fotocell p1 p m Gör tre försök där du placerar de två vikterna i vagnarna så att de totala massorna (dvs vagn+vikter) och m blir som föreslås i tabellerna nedan. Varje vagn väger 0,30 kg och varje vikt väger 0,5 kg. Beräkna den totala rörelsemängden och rörelseenergin före och efter kollisionen: m v1 FÖRE KOLLISIONEN v 0,80 0,30 0 0,55 0,55 0 0,30 0,80 0 ptotal=p1+p (kgm/s) E E k, total k,1 k, Tänk på att ta hänsyn till riktningen när du beräknar den totala rörelsemängden p total! (negativt värde innebär bakåtriktad rörelse) E (J) 6 (11)

7 m 0,80 0,30 0,55 0,55 0,30 0,80 v1 EFTER KOLLISIONEN v ptotal=p1+p (kgm/s) Tänk på att ta hänsyn till riktningen när du beräknar den totala rörelsemängden p total! (negativt värde innebär bakåtriktad rörelse) B) Hur ändrades den totala rörelsemängden under den elastiska kollisionen? Hur ändrades den totala rörelseenergin under den elastiska kollisionen? C) Om rörelsemängden minskade: testa att köra en vagn med en vikt (0,50 kg) genom båda fotocellerna och beräkna skillnaden i rörelsemängd. Eftersom ingen stöt sker har denna skillnad inget med stöten att göra. Vad beror ändringen på? D) Gå nu tillbaka till dina mätningar i A) från de stötförsöken där en av vagnarna hade vikten 0,50 kg. Om du korrigerar för rörelsemängdsändringen som du fick för den ensamma bilen i C), hur ändras då rörelsemängden under den elastiska kollisionen? E) Stämmer dina resultat med nedanstående påståenden? E E k, total k,1 k, E (J) När två föremål kolliderar så bevaras alltid den totala rörelsemängden! Om dessutom kollisionen är elastisk så bevaras även rörelseenergin! 7 (11)

8 Försök 4 Fullständigt oelastisk stöt Utrustning: rullbana, två friktionsfria vagnar, två vikter (0,5 kg), två fotoceller, datorprogram Stötförsök. När två föremål kolliderar så bevaras alltid den totala rörelsemängden. Om dessutom kollisionen är elastisk så bevaras även den totala rörelseenergin. Om kollisionen är oelastisk bevaras endast rörelsemängden, medan rörelseenergin minskar. Vid en fullständigt oelastisk stöt fastnar föremålen i varandra. Rörelsemängden hos ett föremål är en vektor som har samma riktning som föremålets hastighet. Rörelseenergin är däremot en skalär (som inte har någon riktning). Rörelsemängd definieras som produkten av föremålets massa och hastighet: p = mv Rörelseenergi är proportionell mot kvadraten på föremålets hastighet: A) Vänd vagnarna så att du kan åstadkomma en fullständigt oelastisk stöt, dvs så att vagnarna fastnar i varandra med hjälp av sina kardborre -fästen. Knuffa igång den ena vagnen med lagom stor fart och låt den kollidera med den andra vagnen som från början står stilla mellan fotocellerna. Försök att uppnå ungefär samma begynnelsehastighet i samtliga försök. (Detta är egentligen inte nödvändigt, med det gör att du lättare kan jämföra de olika försöken.) fotocell 1 fotocell p1 p m Gör tre försök där du placerar de två vikterna i vagnarna så att de totala massorna (dvs vagn+vikter) och m blir som föreslås i tabellerna nedan. Varje vagn väger 0,30 kg och varje vikt väger 0,5 kg. Beräkna den totala rörelsemängden och rörelseenergin före och efter kollisionen: FÖRE KOLLISIONEN m v1 v 0,80 0,30 0 0,55 0,55 0 0,30 0,80 0 ptotal=p1+p (kgm/s) E E E k, total k,1 k, (J) Tänk på att ta hänsyn till riktningen när du beräknar den totala rörelsemängden p total! (negativt värde innebär bakåtriktad rörelse) 8 (11)

9 EFTER KOLLISIONEN m v1 v ptotal=p1+p (kgm/s) E E k, total k,1 k, (J) E 0,80 0,30 0,55 0,55 0,30 0,80 Tänk på att ta hänsyn till riktningen när du beräknar den totala rörelsemängden p total! (negativt värde innebär bakåtriktad rörelse) B) Hur ändrades den totala rörelsemängden under den oelastiska kollisionen? Hur ändrades den totala rörelseenergin under den oelastiska kollisionen? C) Om rörelsemängden minskade: testa att köra en vagn med en vikt (0,50 kg) genom båda fotocellerna och beräkna skillnaden i rörelsemängd. Eftersom ingen stöt sker har denna skillnad inget med stöten att göra. Vad beror ändringen på? D) Gå nu tillbaka till dina mätningar i A) från de stötförsöken där en av vagnarna hade vikten 0,50 kg. Om du korrigerar för rörelsemängdsändringen som du fick för den ensamma bilen i C), hur ändras då rörelsemängden under den oelastiska kollisionen? E) Stämmer dina resultat med nedanstående påståenden? När två föremål kolliderar så bevaras alltid den totala rörelsemängden! Om kollisionen är oelastisk så bevaras däremot inte rörelseenergin! 9 (11)

10 Försök 5 Pendelrörelse Utrustning: snöre, tre st vikter (50 g), måttband, tidtagarur, gradskiva. A) Häng upp en vikt i taket med ett snöre och låt den pendla fram och tillbaka. Mät periodtiden T, d.v.s. tiden för en svängning fram och tillbaka, vid några olika utslagsvinklar (dock samtliga < 10 ). För bästa noggrannhet mät tiden för t.e. 10 svängningar och dividera med antalet svängningar. T = s B) Uppskatta vid vilken vinkel du klart och tydligt kan se en avvikelse från periodtiden som du mäter vid små pendelutslag! avvikelse C) Mät nu periodtiden (vid små vinkelutslag) för tre olika massor. Tänk på hur du hänger upp vikterna i snöret (tyngdpunkten ska helst inte ändra sig, så du bör alltså inte hänga vikterna i varandra)! Påverkar massan periodtiden?... D) Variera längden l på snöret och mät upp periodtiden T. Fyll i tabellen här intill. Rita sedan ett diagram med periodtiden T (på y-aeln) som funktion av pendellängden l (på -aeln). Använd en så stor skala som möjligt. Var noga med att ange skala, storheter och enheter på båda alarna. l (m) T (s) Rita diagrammet på nästa sida. 10 (11)

11 E) Är kurvformen den du förväntar dig? Motivera När en pendel svänger med små utslag kallas dess rörelse harmonisk. Svängningstiden för en matematisk pendel med små utslag är: T En pendel kallas matematisk om snörets massa är försumbart och om viktens storlek är mycket mindre än snörets längd. Harmonisk rörelse kommer att behandlas i delkurs 3 (Vågrörelselära och modern fysik). l g 11 (11)

Mekanik Laboration 2 (MB2)

Mekanik Laboration 2 (MB2) Institutionen för fysik Ingvar Albinsson/Carlo Ruberto Naturvetenskapligt basår, NBAF00 Laborationen genomförs i grupper om två-tre personer och består av fem olika försök som genomförs i valfri ordning

Läs mer

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 GÖTEBORGS UNIVERSITET HT 018 Institutionen för fysik EXEMPELTENTAMEN Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Carlo Ruberto Valfri tabell- och formelsamling för gymnasiet

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är

Läs mer

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00

Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 GÖTEBORGS UNIVERSITET 181011 Institutionen för fysik Kl 8.30 13.30 Tentamen i delkurs 1 (mekanik) för Basåret Fysik NBAF00 Examinator: Hjälpmedel: Betygsgränser: Carlo Ruberto Valfri tabell- och formelsamling

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Kollisioner, rörelsemängd, energi

Kollisioner, rörelsemängd, energi Kollisioner, rörelsemängd, energi I denna laboration kommer ni att undersöka kollisioner, rörelsemängd och energi, samt bekanta er ytterligare med GLX Xplorer som används i mekaniklabbet för utläsning

Läs mer

Introduktion till Biomekanik, Dynamik - kinetik VT 2006

Introduktion till Biomekanik, Dynamik - kinetik VT 2006 Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,

Läs mer

Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse

Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016

Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, version 2016 Repetition Mekanik Fy2 Heureka 2: kap. 2, 3.1-3, 4.1-3 version 2016 Kraftmoment (vridmoment) En krafts förmåga att vrida ett föremål runt en vridningsaxel kallas för kraftmoment (vridmoment). Moment betecknas

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Laboration 4 Mekanik baskurs

Laboration 4 Mekanik baskurs Laboration 4 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 015 03 7 Introduktion Denna laboration handlar om två specialfall av kollisioner, inelastiska och elastiska kollisioner. Vi ska

Läs mer

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål. 1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,3,4)P, r 2 2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Om den lagen (N2) är sann så är det också sant att: r  p = r  F (1) 1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

TENTAMEN. Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet. Lärare: Joakim Lundin

TENTAMEN. Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet. Lärare: Joakim Lundin Umeå Universitet TENTAMEN Linje: Tekniskt-Naturvetenskapligt basår Kurs: Fysik A Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-28 Tid: 09.00-15.00 Kod:... Grupp:... Betyg Poäng:...

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Läs mer

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,

Läs mer

AKTIVITETER VID POWERPARK/HÄRMÄ

AKTIVITETER VID POWERPARK/HÄRMÄ AKTIVITETER VID POWERPARK/HÄRMÄ Acceleration Mega Drop Fritt fall Piovra Typhoon Svängningsrörelse Planetrörelse La Paloma Cirkelrörelse FRITT FALL (Mega Drop) Gradskiva och måttband Räknemaskin Tidtagarur

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

INFÖR BESÖK PÅ GRÖNA LUND

INFÖR BESÖK PÅ GRÖNA LUND 1. Insane 1. I Insane upplever man som mest en G-kraft på 3,5 G. Hur många kilo skulle en våg visa om man väger 50 kilo i vanliga fall? 2. Under en timme hinner 600 personer åka Insane om alla fyra vagnarna

Läs mer

Gunga med Galileo matematik för hela kroppen

Gunga med Galileo matematik för hela kroppen Ann-Marie Pendrill Gunga med Galileo matematik för hela kroppen På en lekplats eller i en nöjespark finns möjlighet att påtagligt uppleva begrepp från fysik och matematik med den egna kroppen. Med hjälp

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod F6T Kursnamn Fysik 3 Datum Material Laborationsrapport svängande skiva Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Labbrapport TCTDA Amanda

Läs mer

STOCKE OLMS UNIVERSITET FYS IKUM

STOCKE OLMS UNIVERSITET FYS IKUM STOCKE OLMS UNIVERSITET FYS IKUM Tciita.ncaisskrivnintg i Mckanik för FK2002 /Fk~ zoc~ -j Onsdagen den 5 januari 2011 kl. 9 14 Hjälpmedel: Miniriiknare och formelsamling. Varje problem ger maximall 4 poäng.

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Tentamen i Mekanik för D, TFYA93/TFYY68

Tentamen i Mekanik för D, TFYA93/TFYY68 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Magnus Johansson Tentamen i Mekanik för D, TFYA93/TFYY68 Måndag 019-01-14 kl. 14.00-19.00 Tillåtna Hjälpmedel: Physics Handbook

Läs mer

Datum: , , , ,

Datum: , , , , RR:1 Instruktion till laborationen ROTERANDE REFERENSSYSTEM Författare: Lennart Selander, Svante Svensson Datum: 2000-02-21, 2004-12-02, 2006-12-01, 2012-02-03, 2013-01-22 Mål Att få erfarenhet av de fenomen

Läs mer

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 2. Friktionskraft och snörkraft

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 2. Friktionskraft och snörkraft INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 2 Krafter och Newtons lagar Friktionskraft och snörkraft Uppsala 2015-09-29 Instruktioner Om laborationen: Innan ni lämnar labbet: Arbeta

Läs mer

LABKOMPENDIUM Fysik del B1

LABKOMPENDIUM Fysik del B1 LABKOMPENDIUM Fysik del B1 BFL111: Fysik för bastermin BFL122: Fysik B för tekniskt/naturvetenskapligt basår Innehåll Laboration 1: Kretsar och kondensatorer Förberedelseuppgifter 3 Del 1: Plattkondensator

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi

Läs mer

Introhäfte Fysik II. för. Teknisk bastermin ht 2018

Introhäfte Fysik II. för. Teknisk bastermin ht 2018 Introhäfte Fysik II för Teknisk bastermin ht 2018 Innehåll Krafter sid. 2 Resultant och komposanter sid. 5 Kraft och acceleration sid. 12 Interna krafter, friläggning sid. 15 1 Kraftövningar De föremål

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

En tyngdlyftare lyfter en skivstång som väger 219 kg. Skivstången lyfts 2,1 m upp från golvet på 5,0 s.

En tyngdlyftare lyfter en skivstång som väger 219 kg. Skivstången lyfts 2,1 m upp från golvet på 5,0 s. NAMN: KLASS: Del A: Endast svar krävs. Skriv dina svar direkt på provpappret. 1) En tyngdlyftare lyfter en skivstång som väger 219 kg. Skivstången lyfts 2,1 m upp från golvet på 5,0 s. a) Vilken genomsnittlig

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 22 januari 2009 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Rörelsemotståndsarbetet på nervägen är A n = F motst s = k mg s = k (2 180 + 52 100)

Läs mer

Mekanik KF, Moment 1 Del 1 (Lämna in denna del med dina svar) Skriv provkod el. namn o personnummer på varje blad Flera alternativ kan vara rätt.

Mekanik KF, Moment 1 Del 1 (Lämna in denna del med dina svar) Skriv provkod el. namn o personnummer på varje blad Flera alternativ kan vara rätt. Mekanik KF, Moment 1 Datum: 2012-12-03 Författare: Lennart Selander Hjälpmedel: Physics handbook, Beta Mathematics handbook, Valfri formelsamling, tabellverk, Kompendium Centrala samband, Pennor, linjal,

Läs mer

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs - Laboration 5. Bevarande av energi och rörelsemängd. Undersökning av kollisioner

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs - Laboration 5. Bevarande av energi och rörelsemängd. Undersökning av kollisioner INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs - Laboration 5 Bevarande av energi och rörelsemängd Undersökning av kollisioner Instruktioner Om laborationen: - Arbeta i grupper om 2 till 3 personer.

Läs mer

Miniräknare, formelsamling

Miniräknare, formelsamling Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik B Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-29 Tid: 9.00-15.00 Kod:... Grupp:... Poäng:... Betyg U G VG... Tentamen i Fysik

Läs mer

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T.

Förslag: En laddad partikel i ett magnetfält påverkas av kraften F = qvb, dvs B = F qv = 0.31 T. 1. En elektron rör sig med v = 100 000 m/s i ett magnetfält. Den påverkas av en kraft F = 5 10 15 N vinkelrätt mot rörelseriktningen. Rita figur och beräkna den magnetiska flödestätheten. Förslag: En laddad

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

exempel på krafter i idealiserade situationer, som till exempel i Slänggungan / Kättingflygaren eller Himmelskibet.

exempel på krafter i idealiserade situationer, som till exempel i Slänggungan / Kättingflygaren eller Himmelskibet. Figur 1: Slänggungan på Liseberg Med Newton bland gungor och karuseller Ann-Marie.Pendrill@fysik.lu.se I nöjesparkens åkattraktioner är det din egen kropp som upplever krafterna i Newtons lagar, när den

Läs mer

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:

Läs mer

Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och gradskiva

Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och gradskiva Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST17h KBASX17h 9 högskolepoäng Tentamensdatum: 2018-05-28 Tid: 09:00-13:00 Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och

Läs mer

Svar och anvisningar

Svar och anvisningar 170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Övningar till datorintroduktion

Övningar till datorintroduktion Institutionen för Fysik Umeå Universitet Ylva Lindgren Sammanfattning En samling uppgifter att göra i MATLAB, vilka ska utföras enskilt eller i grupp om två. Datorintroduktion Handledare: (it@tekniskfysik.se)

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

LABKOMPENDIUM. TFYA76 Mekanik

LABKOMPENDIUM. TFYA76 Mekanik Linköpings universitet IFM, Institutionen för Fysik, Kemi och Biologi Rev. 2014-08-27 LABKOMPENDIUM TFYA76 Mekanik INNEHÅLL: LAB 1: RÖRELSE. 3 Uppgift 1 3 Uppgift 2 5 LAB 2: STÖT 6 2 LAB 1: RÖRELSE Målsättning

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

Handledning laboration 1

Handledning laboration 1 : Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen

Läs mer

Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något.

Sid Tröghetslagen : Allting vill behålla sin rörelse eller vara i vila. Bara en kraft kan ändra fart eller riktning på något. Björne Torstenson KRAFTER sid 1 Centralt innehåll: Hävarmar och utväxling i verktyg och redskap, till exempel i saxar, spett, block och taljor. (9FVL2) Krafter, rörelser och rörelseförändringar i vardagliga

Läs mer

a. b a. b. 7.

a. b a. b. 7. 1. Mattias och hans vänner badar vid ett hopptorn som är 10,3 m högt. Hur lång tid tar det innan man slår i vattnet om man hoppar rakt ner från tornet? 2. En boll träffar ribban på ett handbollsmål och

Läs mer

Laboration: Roterande Referenssystem

Laboration: Roterande Referenssystem INSTITUTIONEN FöR FYSIK OCH ASTRONOMI Laboration: Roterande Referenssystem Laborationsinstruktionen innehåller teori, diskussioner och beskrivningar av de experiment som ska göras. Mål: Att få erfarenhet

Läs mer

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2. 5 juni :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2. 5 juni :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL02/TEN: Fysik 2 för basår (8 hp) Tentamen Fysik 2 5 juni 205 8:00 2:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Kollisioner, impuls, rörelsemängd kapitel 8

Kollisioner, impuls, rörelsemängd kapitel 8 Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!

Läs mer

5 Energi och rörelsemängd

5 Energi och rörelsemängd 5 Energi och rörelsemängd 501. a) Arbete är kraft gånger sträcka. Kraften mäts i sträckans riktning. W = F s s b) Energiändring är lika med utfört arbete. E = W c) Lägesenergi E p = mgh Svar: a) W = F

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Tillämpad vågrörelselära FAF260, 6 hp

Tillämpad vågrörelselära FAF260, 6 hp Tillämpad vågrörelselära FAF260, 6 hp Inför laborationerna Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Håkan Hallberg vd. för Hållfasthetslära Lunds Universitet December 2013 Exempel 1 Två krafter,f 1 och F 2, verkar enligt figuren.

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 8 januari 016 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 016 1. a) Den stora och lilla bollen faller båda,0 m. Energiprincipen ger hastigheten då

Läs mer

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola

Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Lösningar till Tentamen i fysik B del 1 vid förutbildningar vid Malmö högskola Tid: Måndagen 5/3-2012 kl: 8.15-12.15. Hjälpmedel: Räknedosa. Bifogad formelsamling. Lösningar: Lösningarna skall vara väl

Läs mer

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Skrivtid: kl. 14:15-17:15 Hjälpmedel: Formelsamling, grafritande miniräknare, linjal Lärare: ASJ, HPN, JFA, LEN, MEN, NSC Möjliga poäng: 20 E-poäng + 12 C-poäng

Läs mer

TENTAMEN. Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling.

TENTAMEN. Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling. Umeå Universitet TENTAMEN Tekniskt-Naturvetenskapligt basår Kurs: Fysik A, Basterminen del 1 Hjälpmedel: Miniräknare, formelsamling Lärare: Joakim Lundin, Magnus Cedergren, Karin Due, Jonas Larsson Datum:

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

Mer om E = mc 2. Version 0.4

Mer om E = mc 2. Version 0.4 1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

HYDRAULIK (ej hydrostatik) Sammanfattning

HYDRAULIK (ej hydrostatik) Sammanfattning HYDRAULIK (ej hydrostatik) Sammanfattning Rolf Larsson, Tekn Vattenresurslära För VVR145, 4 maj, 2016 NASA/ Astronaut Photography of Earth - Quick View VVR145 Vatten/ Hydraulik sammmanfattning 4 maj 2016

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer