Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Exempel: En boll med massa m studsar mot ett golv. Alldeles innan studsen vet man att hastigheten är riktad"

Transkript

1 1 KOMIHÅG 6: Momentlag Tröghetsmoment Föreläsnng 7: Impulslag Rörelsemängden defneras som en vektor: p = mv Newtons 2:a lag kan då skrvas som p = F Om den är sann, så är det också sant att: t 2 t 2 " p dt = " F dt t 1 t 1 -Vänsterledet kan räknas ut formellt tll en rörelsemängdsändrng "p = p ( t 2 ) # p ( t 1 ) -Högerledet får bl en ny storhet Defnton: Kraftens mpuls: I = t 2 " t 1 F dt Slutlgen har v härlett en ny lag ur Newtons 2:a lag, den så kallade mpulslagen (eller mpulsekvatonen): "p = I Med ord: Kraftens mpuls orsakar en ändrng av partkelns rörelsemängd så att ändrngen är lka stor som mpulsen Exempel: En boll med massa m studsar mot ett golv Alldeles nnan studsen vet man att hastgheten är rktad

2 2 neråt med storleken v 0, och att alldeles efter studsen är bollens hastghet v 1 rktad uppåt Ändrng rörelsemängd på grund av studsen är således m( v 1 + v 0 ), räknat postv uppåt Enlgt mpulslagen är stötkraftens mpuls ( I) lka stor som rörelsemängdsändrngen, dvs I = m( v 1 + v 0 ) TILLÄMPNING PÅ STÖTAR Allmän beskrvnng: Mellan två partklar m 1 och m 2 kontakt med varandra uppstår två motrktade normalkrafter (Newtons 3:e lag) Summan av dessa krafter är noll! Summan av krafternas (tdsntegraler) mpulser är lkaså noll!! Konsekvensen är att summan av partklarnas rörelsemängder nte ändras Matematsk beskrvnng: Om nga andra krafter än normalkrafterna är vktga ger mpulslagen för första partkeln: "p 1 = I, där I är mpulsen av normalkraften verkande på partkel m 1 På samma sätt för partkel m 2 : "p 2 = #I, ty dess normalkraft är motrktad! Summerng av dessa två mulslagar ger: "( p 1 + p 2 ) = 0 Stötlag: "( p 1 + p 2 ) = 0,

3 3 dvs den totala rörelsemängden bevaras vd stötar (eller explosoner) Stötar sker under kort td och normalkrafterna blr mycket större än tyngdkrafter och annat Bara normalkrafternas mpulser (ntegraler) blr vktga då Problem 2: En projektl med massan 75 gram har hastgheten 600 m/s när den träffar och fastnar ett 50- klos block Blocket befnner sg vla före träffen Beräkna förlusten av rörelseenerg på grund av träffen Lösnng: På grund av att kraftpåverkan mellan projektl och block är ömsesdg ändras nte totala rörelsemängden före: efter: mv = mv + Mv, dvs sluthastgheten blr m v = m + M v 0 Om v jämför knetska energer före och efter som en kvot, erhålls T e T f = 1 ( 2 m + M )v mv 2 0 = m m + M =0015

4 4 Problem: En godsvagn A som väger 30 Mg (ton) rör sg på ett horsontellt spår med farten 3 km/h En annan godsvagn B med massan 20 Mg ges farten 5 km/h så att den kommer fatt och kan kopplas hop med A på spåret Bestäm den gemensamma farten för vagnarna efter kopplngen Bestäm även den energförlust som kopplngen nnebär Lösnng: I detta problem bevaras totala rörelsemängden (stötlagen): före: efter: v A + m B v B = ( + m B )v, dvs v = m v + m v A A B B + m B Energförlusten: T f " T e = 1 2 m # m A 1" A & % ( v 2 A + 1 $ + m B ' 2 m # m B 1" B & 2 % ( v B $ + m B ' " m B v A v B + m B = 1 2 = 1 2 m B + m B m B + m B ( v 2 A + v 2 B " 2v A v B ) ( v A " v B ) 2

5 5 KOMIHÅG 7: Kraftens mpuls I = t 2 " F dt Impulsekvatonen "p = I Stötlag: "( p 1 + p 2 ) = 0 t Föreläsnng 8: CENTRALA STÖTAR mellan föremål Om de kollderande kropparnas masscentra lgger på kontaktytans normallnje (stötnormal) sägs stöten vara central RAK STÖT: före vd stöten Om kropparna nte roterar och deras hastgheter är parallella med stötnormalen är stöten rak Det behövs bara en koordnataxel SNED STÖT: Om stöten nte är rak, är den sned

6 6 - Stötar utan energförlust: Tänk på perfekta gummbollar, men stålkulor är nog bättre Kropparna möts och separerar Antag att mötes(kollsons)farten och separatonsfarten är lka men motrktade Problem: Betrakta en dealsk rak, central elastsk stöt, där en partkel nfaller med farten v mot en annan stllastående partkel ute rymden Efter stöt antas att den högra partkeln avlägsnar sg från den nfallande partkeln med samma fart v Bestäm den vänstra partkelns fart efter stöt och energförlusten stöten Lösnng: Stöten beskrvs fullständgt av stötlagen: "( p 1 + p 2 ) = 0 # m 1 v + 0 = m 1 u + m 2 ( u + v) V löser först ut u: u = m 1 " m 2 m 1 + m 2 v Därefter räknar v ut energer före och efter stöten Före: T före = m 1 2 v 2 Efter: T efter = m 1 2 u2 + m # 2 v m 2 1 m 1 " m % 2 $ % ( m 1 + m 2 ) 2 ( u + v) 2 = ( ) 2 + m 2 ( 2m 1 ) 2 & ( '( = m 1 2 v 2

7 7 Slutsats: För stötar utan energförluster gäller att separatonshastgheten (längs stötnormalen) är lka stor som kollsonshastgheten - Dessa stötar kallas fullständgt elastska Om man väljer en av partklarna som referenspartkel kan man entydgt defnera: Kollsonshastghet: Den relatva hastgheten för den nkommande partkeln (mot referenspartkeln) före stöt Separatonshastghet: Den relatva hastgheten för den nkommande partkeln (från referenspartkeln) efter stöt - Fullkomlgt oelastsk stöt: Tänk på två klbbga degklumpar som krockar Hur är det med energn och rörelsemängden detta fall? Jo, energ går förlorad men masscentrums rörelse bevaras Den energ som masscentrums rörelse har kommer då att bevaras Bara energn från den relatva rörelsen går förlorad - Stötmpulsen När mpulslagen används för en partkel vd stötar avser man bara stötkraftens mpuls: t 2 "p = m v efter # v före $ ( ) = F stöt dt OBS: En stötkraft är mycket större än vanlga krafter men verkar bara under en mycket kort td Därför kan man ofta bortse från vanlga krafters mpulser vd stöt t 1

8 8 Problem: Gör en uppskattnng av stötkraften som får massan m att bromsa upp från farten v tll stllastående på tden " Lösnng: Impulsekvatonen ger 0 " mv = I stöt Impulsen är tdsntegralen av stötkraften F stöt, och mpulsen kan enlgt matematkens medelvärdessats uppskattas som I stöt = F stöt " Dett ger uppskattnngen: F stöt = " mv # Numerskt: m=70 kg, v=20 m/s, " =1 s, ger F stöt = "1400N Om " =01 s fås F stö t = "14000N - Stöttalet e : (En materalkonstant) Egenskaper föremålens materal är sådana att samma par av materal alltd ger ett konstant förhållande mellan föremålens relatva hastgheter före och efter stöt: relatv separatonshastghet e = " 0 relatv kollsonshastghet Anmärknng: De relatva hastgheterna är specellt lätta att räkna ut om ena kroppen, t ex en vägg lgger stll För stöttalet gäller specellt de två extrema värdena e =1" fullst elastsk e = 0 " fullst oelastsk Sammanfattnng: Stötekvatonerna: m 1 v 1 före + m 2 v 2 före = m 1 v 1 efter + m 2 v 2 efter och e = v 2 efter " v 1 efter v 1 före " v 2 före

9 9 h 0 h 1 Problem: Tennsbollarnas kvaltet kan kontrolleras med det enkla testet att klara studs upp tll mdjan om de släpps från axelhöjd För en tennsboll som klarar testet enlgt fguren kan man räkna ut studstalet e och den relatva energförlusten!e / E på grund av studs Gör det! Lösnng: I det här problemet har v bara en boll och ( ) = F stöt dt "p = m v efter # v före e = v efter v före t efter $ Hastgheterna alldeles nnan och alldeles efter studs? m ( 2 v före ) 2 m = mgh 0 och ( 2 v efter ) 2 = mgh 1 dvs e = t före 2gh 1 2gh 0 = h 1 h 0 Relatva energförlusten på grund av stöt blr sedan (omräknat potentella energer): "E E = mgh # mgh 0 1 = h # h 0 1 mgh 0 h 0

10 10 Lagar för Många Partklar* V nöjer oss med att bara beskrva partkelsystemets 'gemensamma rörelse', dvs masscentrumrörelsen V väljer ett nertalsystem och betraktar var och en av partklarna systemet Två typer av krafter kan nu dentferas: Inre krafter f : härrörande från växelverkan med grannpartklarna systemet Yttre krafter F : härrörande från växelverkan med matera utanför systemet Newtons 2:a lag för varje partkel ser då ut som m r = F + f Efter summerng får v: " m r = " F + " f

11 11 Identfera kraftsummor: Alla nre krafter försvnner " f = 0 enlgt Newtons 3:e lag, Totala yttre kraften F = " F blr kvar Defnerar även masscentrum: r G = 1 m " m r, där m = " m Den summerade rörelselagen kan slutlgen skrvas: Masscentrumrörelsen: (Eulers första lag) m r G = F Kom bara håg att strunta nre krafter Anmärknng1: V kunde också använt rörelsemängdbegreppet och nfört hela systemets rörelsemängd p = m v Då kan samma ekvaton skrvas p = F " Anmärknng2: Lknande fås om v använt rörelsemängdsmomentbegreppet och kraftmomentet Då blr systemets rörelsemängdsmoment H O = " H O, och systemets momentlag (Eulers andra lag) lyder H O = M O Här räknas totala kraftmomentet som summan av de yttre krafternas moment för alla partklar: M O = " M O För energlagar adderas alla partklarnas ensklda energlagar

12 12 Problem: De tre kulorna är förbundna med trådar och en fjäder när kraften F applceras en av trådarna enlgt fguren Beräkna masscentums acceleraton a G Lösnng: Masscentrums rörelse bestäms av ekvatonen: 9ma G = F Denna ekvaton ger drekt acceleratonen a G = F, för masscentrum 9m

Stela kroppars rörelse i ett plan Ulf Torkelsson

Stela kroppars rörelse i ett plan Ulf Torkelsson Föreläsnng /10 Stela kroppars rörelse ett plan Ulf Torkelsson 1 Allmän stelkroppsrörelse ett plan Den allmänna stelkroppsrörelsen ett plan kan delas upp den stela kroppens rotaton krng en axel och axelns

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B

LÖSNINGAR TILL TENTAMEN I FYP302 MEKANIK B GÖTEBORGS UNIVERSITET Insttutonen för Fysk och teknsk fysk LÖSNINGAR TILL TENTAMEN I FYP30 MEKANIK B Td: Torsdag august 04, kl 8 30 3 30 Plats: V Ansvarg lärare: Ulf Torkelsson, tel. 03-786 968 arbete,

Läs mer

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi

Stelkroppsdynamik i tre dimensioner Ulf Torkelsson. 1 Tröghetsmoment, rörelsemängdsmoment och kinetisk energi Föreläsnng 4/10 Stelkroppsdynamk tre dmensoner Ulf Torkelsson 1 Tröghetsmoment, rörelsemängdsmoment och knetsk energ Låt oss beräkna tröghetsmomentet för en goycklg axel som går genom en fx punkt O en

Läs mer

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg

2 Jämvikt. snitt. R f. R n. Yttre krafter. Inre krafter. F =mg. F =mg Jämvkt Jämvkt. Inlednng I detta kaptel skall v studera jämvkten för s.k. materella sstem. I ett materellt sstem kan varje del, partkel eller materalpunkt beskrvas med hjälp av dess koordnater. Koordnatsstemet

Läs mer

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0)

Hjälpmedel: Penna, papper, sudd, linjal, miniräknare, formelsamling. Ej tillåtet med internetuppkoppling: 1. Skriv ditt för- och efternamn : (1/0/0) Prov ellära, Fya Lugnetgymnaset, teknkprogrammet Hjälpmedel: Penna, papper, sudd, lnjal, mnräknare, formelsamlng. Ej tllåtet med nternetuppkopplng: Elektrsk laddnng. Skrv dtt för och efternamn : (/0/0).

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen 010-05-6 Tentamen i Mekanik SG1107, baskurs S OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1 En cylinder med massan M vilar på en homogen horisontell planka med

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v

Läs mer

FK2002,FK2004. Föreläsning 5

FK2002,FK2004. Föreläsning 5 FK00,FK004 Föreläsnng 5 Föreläsnng 5 Labbrapporter Korrelatoner Dmensonsanalys Denna föreläsnng svarar mot kap. 9 (Taylor) Labbrapporter Feedback+betyg skckas morgon. Några tps ett dagram hjälper alltd

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00

2B1115 Ingenjörsmetodik för IT och ME, HT 2004 Omtentamen Måndagen den 23:e aug, 2005, kl. 9:00-14:00 (4) B Ingenjörsmetodk för IT och ME, HT 004 Omtentamen Måndagen den :e aug, 00, kl. 9:00-4:00 Namn: Personnummer: Skrv tydlgt! Skrv namn och personnummer på alla nlämnade papper! Ma ett tal per papper.

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,

KOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2# n. x j, KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt:

. Bestäm för denna studs stöttalet e! Lösning: Energiprincipen för bollens fall ner mot underlaget ger omedelbart före stöt: KOMIHÅG 19: ------------------------------------------------------ Dämpade vibrationer: Fria fallet Kritisk dämpningsrörelse x(t) = e "# nt ( B + Ct) + x j Svag dämpningsrörelse x(t) = e "#$ nt ( Bcos(

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

NEWTONS 3 LAGAR för partiklar

NEWTONS 3 LAGAR för partiklar wkomihåg 12: Acceleration-med olika komponenter. ----------------------------------------- Föreläsning 13: Dynamik kraft-rörelse (orsakverkan) NEWTONS 3 LAGAR för partiklar 1 1. En 'fri' partikel förblir

Läs mer

Förklaring:

Förklaring: rmn Hallovc: EXTR ÖVNINR ETIND SNNOLIKHET TOTL SNNOLIKHET OEROENDE HÄNDELSER ETIND SNNOLIKHET Defnton ntag att 0 Sannolkheten för om har nträffat betecknas, kallas den betngade sannolkheten och beräknas

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

i = 1. (1.2) (1.3) eller som z = x + yi

i = 1. (1.2) (1.3) eller som z = x + yi Särttrck ur "Dfferentalekvatoner och komplea tal" av Tore Gustafsson, 9.8.03 KOMPLEXA TAL Uppfattnngen om komplea tal uppstod samband med upptäckten av enkla ekvatoner som nte har reella lösnngar, t.e.

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Växelström = kapitel 1.4 Sinusformade växelstorheter

Växelström = kapitel 1.4 Sinusformade växelstorheter Växelström = kaptel 1.4 Snusformade växelstorheter Toppvärde, effektvvärde, frekvens, perodtd. Kretsens mpedans och kretsens fasvnkel. Vsardagram. Effekt och effektfaktor. Effektvvärde och effekt vd fasvnkeln

Läs mer

Industrins förbrukning av inköpta varor INFI

Industrins förbrukning av inköpta varor INFI Statstska centralbyrån SCBDOK 3.2 (37) Industrns förbruknng av nköpta varor INFI 2003 NV006 Innehåll 0 Allmänna uppgfter... 2 0. Ämnesområde... 2 0.2 Statstkområde... 2 0.3 SOS-klassfcerng... 2 0.4 Statstkansvarg...

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

Mer Friktion jämviktsvillkor

Mer Friktion jämviktsvillkor KOMIHÅG 6: --------------------------------- Torr friktion: F! µn. Viskös friktion: F = "cv. Extra villkor för jämvikt: risk för glidning eller stjälpning. ---------------------------------- Föreläsning

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Newtons andra lag är det viktigaste hjälpmedel vi har för att beskriva vad som händer med en kropp och med kroppens rörelse när den påverkas av andra kroppar.

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j.

Var ligger tyngdkrafternas enkraftsresultant? Totala tyngdkraftmomentet (mätt i origo) för kropp bestående av partiklar: M O. # m j. 1 KOMIHÅG 4: --------------------------------- Enkraftsresultantens existens. Vanliga resultanter vid analys av jämvikter. Jämviktsanalys: a) Kraftanalys - rita+symboler b) Jämviktslagar- Euler 1+2 c)

Läs mer

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen 005-05-7 Tentamen i Mekanik 5C1107, baskurs S. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En homogen stång med massan m är fäst i ena änden i en fritt vridbar

Läs mer

5 Energi och rörelsemängd

5 Energi och rörelsemängd 5 Energi och rörelsemängd 501. a) Arbete är kraft gånger sträcka. Kraften mäts i sträckans riktning. W = F s s b) Energiändring är lika med utfört arbete. E = W c) Lägesenergi E p = mgh Svar: a) W = F

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

Kap Första huvudsatsen (HS). Teori och begrepp.

Kap Första huvudsatsen (HS). Teori och begrepp. Kap. 2.1-6. Första huvudsatsen (HS). eor och begrepp. ermodynamk = värmets rörelse. Energutbyte: ärme - Arbete. Utbyte System - Omgvnng. System = ntressant del av världen (t.ex. en bägare med kemkaler).

Läs mer

Krafter och Newtons lagar

Krafter och Newtons lagar Mekanik I, Laboration 2 Krafter och Newtons lagar Fysiska föremål, kroppar, kan påverka varandra ömsesidigt, de kan växelverka. För att förklara hur denna växelverkan går till har fysikvetenskapen uppfunnit

Läs mer

Definitioner: hastighet : v = dr dt = r fart : v = v

Definitioner: hastighet : v = dr dt = r fart : v = v KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Kollisioner, impuls, rörelsemängd kapitel 8

Kollisioner, impuls, rörelsemängd kapitel 8 Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!

Läs mer

6.2 Transitionselement

6.2 Transitionselement -- FEM för Ingenjörstllämpnngar, SE5 rshen@kth.se 6. Transtonselement Den här tpen av element används för förbnda ett lnjärt och ett kvadratskt element. Gvet: Sökt: Bestäm formfunktonen för nod. Vsa att

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

VSMA01 - Mekanik ERIK SERRANO

VSMA01 - Mekanik ERIK SERRANO VSMA01 - Mekanik ERIK SERRANO Översikt Kursintroduktion Kursens syfte och mål Kursprogram Upprop Inledande föreläsning Föreläsning: Kapitel 1. Introduktion till statik Kapitel 2. Att räkna med krafter

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrvnng Expermentella metoder, 12 hp, för kanddatprogrammet, år 1 Onsdagen den 17 jun 2009 kl 9-1. S.H./K.H./K.J.-A./B.S. Införda betecknngar bör förklaras och uppställda

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION

Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION 1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen

Läs mer

Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan?

Hur har Grön Flagg-rådet/elevrådet arbetat och varit organiserat? Hur har rådet nått ut till resten av skolan? I er rapport dokumenterar n kontnuerlgt och laddar upp blder. N beskrver vad n har gjort, hur n har gått tllväga arbetsprocessen och hur eleverna fått nflytande. Här fnns utrymme för reflektoner från elever

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17

Performansanalys LHS/Tvåspråkighet och andraspråksinlärning Madeleine Midenstrand 2004-04-17 1 Inlednng Jag undervsar tyskar på folkhögskolan Nürnberg med omgvnngar. Inför uppgften att utföra en perforsanalys av en elevtext lät mna mest avancerade elever skrva en uppsats om vad de tyckte var svårt

Läs mer

Mätfelsbehandling. Medelvärde och standardavvikelse

Mätfelsbehandling. Medelvärde och standardavvikelse Mätfelsbehandlng I alla fskalska försök har de värden an erhåller er eller ndre hög noggrannhet. Ibland är osäkerheten en ätnng fullständgt försubar förhållande tll den precson an vll ha. Andra gånger

Läs mer

Kollisioner, rörelsemängd, energi

Kollisioner, rörelsemängd, energi Kollisioner, rörelsemängd, energi I denna laboration kommer ni att undersöka kollisioner, rörelsemängd och energi, samt bekanta er ytterligare med GLX Xplorer som används i mekaniklabbet för utläsning

Läs mer

Förberedelse INSTALLATION INFORMATION

Förberedelse INSTALLATION INFORMATION Förberedelse 1 Materalet tll Pergo trägolv levereras med llustrerade anvsnngar. I texten nedan ger v förklarngar tll llustratonerna, som kan delas upp tre områden: Förberedelser, Läggnng och Rengörng.

Läs mer

Industrins förbrukning av inköpta varor (INFI) 2008

Industrins förbrukning av inköpta varor (INFI) 2008 STATISTISKA CENTRALBYRÅN 1(97) Industrns förbruknng av nköpta varor (INFI) 2008 NV0106 Innehåll SCBDOK 3.1 0 Admnstratva uppgfter 0.1 Ämnesområde 0.2 Statstkområde 0.3 SOS-klassfcerng 0.4 Statstkansvarg

Läs mer

Inre krafters resultanter

Inre krafters resultanter KOMIHÅG 6: --------------------------------- Torr friktion: F " µn Normalkraftens angrepp?? Risk för glidning eller stjälpning ---------------------------------- Föreläsning 7: Inre krafters resultanter

Läs mer

Dödlighetsundersökningar på KPA:s

Dödlighetsundersökningar på KPA:s Matematsk statstk Stockholms unverstet Dödlghetsundersöknngar på KPA:s bestånd av förmånsbestämda pensoner Sven-Erk Larsson Eamensarbete 6: Postal address: Matematsk statstk Dept. of Mathematcs Stockholms

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126

Projekt i transformetoder. Rikke Apelfröjd Signaler och System rikke.apelfrojd@signal.uu.se Rum 72126 Projekt transformetoder Rkke Apelfröjd Sgnaler och System rkke.apelfrojd@sgnal.uu.se Rum 72126 Målsättnng Ur kursplanen: För godkänt betyg på kursen skall studenten kunna använda transformmetoder nom något

Läs mer

Inledning och Definitioner

Inledning och Definitioner Inlednng och Defntoner Elektrsk krets eller elektrskt nät: elektrska elementer sammankopplade med varandra Ett kretselement med två termnaler, a och b a b Elektrskt nät: Maska Gren 4 3 Nod 2 Kretselement

Läs mer

KEM M36. Elektroanalytisk kemi 15 hp VT 10. Av Lars Erik Andreas Ehnbom. Föreläsare Prof. Lo Gorton. Gränsytan. Ag + -lösning. e - H 2 O.

KEM M36. Elektroanalytisk kemi 15 hp VT 10. Av Lars Erik Andreas Ehnbom. Föreläsare Prof. Lo Gorton. Gränsytan. Ag + -lösning. e - H 2 O. Gränsytan + + e - + e - + e - + -lösnng H 2 + H 2 -bleck KEM M36 Elektroanalytsk kem 15 hp VT 1 Av Lars Erk Andreas Ehnbom Föreläsare Prof. Lo Gorton Allmänt: en del av den nledande nformatonen på -föreläsnngarna

Läs mer

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1130, baskurs P1 m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-03-17 Tentamen i Mekanik SG1130, baskurs P1 m fl OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 1 KTH Mekanik Problemtentamen En tunn homogen stav i jämvikt med massan m har i ena ändpunkten

Läs mer

Konstruktion av kvantfältteori i diskretiserad form med tillämpning på universums inflationsfas

Konstruktion av kvantfältteori i diskretiserad form med tillämpning på universums inflationsfas Kanddatarbete Konstrukton av kvantfältteor dskretserad form med tllämpnng på unversums nflatonsfas Författare: Jmmy Ljungberg Handledare: Conny Sjögren Examnator: Magnus Paulsson Datum: 14--1 Kurskod:

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Laboration: Krafter och Newtons lagar

Laboration: Krafter och Newtons lagar Institutionen för fysik och astronomi Laboration: Krafter och Newtons lagar Instruktionen består av två delar: 1. Laborationsinstruktion (detta häfte) 2. Svarshäfte Laborationsinstruktionen, detta häfte,

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14

Tentamen i 2B1111 Termodynamik och Vågrörelselära för Mikroelektronik 2006-03-14 Tentamen B Termodynamk och ågrörelselära för Mkroelektronk 006-03-4 Lösnngar skall skrvas tydlgt och motveras väl. Tllåtet hjälmedel är mnräknare (ej scannade blder) och utdelad formellsamlng. Observera

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

Förberedelse INSTALLATION INFORMATION

Förberedelse INSTALLATION INFORMATION Förberedelse 1 Materalet tll Pergo lamnatgolv levereras med llustrerade anvsnngar. I texten nedan ger v förklarngar tll llustratonerna, som kan delas upp tre områden: Förberedelser, Läggnng och Rengörng.

Läs mer

Jag vill tacka alla på företaget som har delat med sig av sina kunskaper och erfarenheter vilket har hjälpt mig enormt mycket.

Jag vill tacka alla på företaget som har delat med sig av sina kunskaper och erfarenheter vilket har hjälpt mig enormt mycket. Förord Detta examensarbete har utförts på uppdrag av nsttutonen för Industrell produkton på Lunds Teknska Högskola, och genomförts på företaget. Jag vll tacka alla på företaget som har delat med sg av

Läs mer

Basala kunskapsmål i Mekanik

Basala kunskapsmål i Mekanik Basala kunskapsmål i Mekanik I kunskapsmålen nedan används termerna definiera, förklara och redogöra återkommande. Här följer ett försök att klargöra vad som avses med dessa. Definiera Skriv ner en definition,

Läs mer

Lösningar till problemtentamen

Lösningar till problemtentamen KTH Meani 2006 05 2 Meani b och I, 5C03-30, för I och BD, 2006 05 2, l 08.00-2.00 Lösningar till problemtentamen Uppgift : En platta i form av en lisidig triangel BC med sidolängderna a och massan m står

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematsa Insttutonen KTH Lösnngar tll tentamenssrvnng på ursen Dsret Matemat, moment A, för D och F, SF1631 och SF1630, den 4 jun 009 l 08.00-13.00. Hjälpmedel: Inga hjälpmedel är tllåtna på tentamenssrvnngen.

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt

# o,too 26L 36o vq. Fy 1-mekaniken i sammandrag. 1 Rörelsebeskrivning (linjebunden rörelse) )-'f* 1.1 Hastighet och acceleration, allmänt Fy 1-mekaniken i sammandrag version 0.3 [140820] Christian Karlsson En del saker nedan tas inte upp i Fy 1-kursen, men är bra att med sig inför Fy 2. Dessa saker är markerade med [NYTT!]. 1 Rörelsebeskrivning

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt

Optimering av underhållsplaner leder till strategier för utvecklingsprojekt Opterng av underhållsplaner leder tll strateger för utvecklngsprojekt Ann-Brh Ströberg 1 och Torgny Algren 1. Mateatska vetenskaper Chalers teknska högskola och Göteborgs unverset 41 96 Göteborg 31-77

Läs mer

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar.

Föreläsning 2,dynamik. Partikeldynamik handlar om hur krafter påverkar partiklar. öreläsning 2,dynamik Partikeldynamik handlar om hur krafter påverkar partiklar. Exempel ges på olika typer av krafter, dessa kan delas in i mikroskopiska och makroskopiska. De makroskopiska krafterna kan

Läs mer

Lösningar modul 3 - Lokala nätverk

Lösningar modul 3 - Lokala nätverk 3. Lokala nätverk 3.1 TOPOLOGIER a) Stjärna, rng och buss. b) Nät kopplas ofta fysskt som en stjärna, där tll exempel kablar dras tll varje kontorsrum från en gemensam central. I centralen kan man sedan

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Biomekanik, 5 poäng Moment

Biomekanik, 5 poäng Moment (kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en

Läs mer