Komplexa tal. j 2 = 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Komplexa tal. j 2 = 1"

Transkript

1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras av j = Ett imaginärt tal är en produkt av den imaginära enheten och ett reellt tal, t.ex. j. Ett komplext tal är en summa av ett reellt och ett imaginärt tal. Om a och b är reella tal är ja ett imaginärt tal och z = a + jb e{z} = a Im{z} = b z = a + b y ett komplext tal realdelen av z imaginärdelen av z absolutbeloppet av z b z P θ a x I det komplexa talplanet kallas x axeln den reella axeln och y axeln den imaginära axeln. Ett komplext tal z = a+jb avbildas då i punkten P = (a, b). Absolutbeloppet av z är enligt Pytagoras sats längden av vektorn från origo till P. Om vi inför vinkeln θ ser vi att a = z cosθ b = z sin θ z = z (cosθ + j sin θ) (0.) Vinkeln θ kallas för argumentet av z och betecknas arg{z} = θ. Den är vald att ligga i intervallet π < θ π. Från figuren ser vi att tanθ = b/a. Genom att invertera denna relation får vi ett explicit uttryck för θ. Om a 0 ges θ av arg{z} = θ = arctan(b/a) (0.) Man kan alltid lägga till en multipel av π till θ och fortfarande uppfylla relationerna i (0.)

2 I viss literatur används beteckningen tan för arcus tangens. Om a 0 ges θ av (i radianer ) { π arctan(b/ a ), omb 0 arg{z} = θ = (0.3) π arctan(b/ a ) = π + arctan( b / a ), omb 0 Anledningen är att funktionen arctan endast ger värden mellan π/ och π/. I elektronikkursen kommer vi alltid se till att a 0 när vi skall skriva ett komplext tal på komplex form. Därmed kan vi alltid använda ekvation (0.) och slipper att använda ekvation (0.3). Komplexkonjugat Komplexkonjugering innebär att man byter tecken på imaginärdelen av det komplexa talet. Komplexkonjugatet av z betecknas 3 z Det är enkelt att se att z = a + jb z = a jb z z = zz = a + b = z Detta kan vi utnyttja när vi bestämmer real- och imaginärdelen av /z z = z z z = z z = a jb a + b Därmed fås { } e = z { } Im z a a + b = b a + b Polär form av ett komplext tal Skrivsättet z = a+jb kallas för rektangulär form. Genom att jämföra potensserieutvecklingarna av sin θ, cos θ och e jθ kan man visa att (detta gås igenom i matten) e jθ = cosθ + j sin θ Från ekvation (0.) ser vi att vi kan skriva ett komplext tal z = a + jb på formen z = z (cos θ + j sin θ) = z e jθ = z e jarg{z} Vi mäter oftast vinklar i radianer. elationen mellan grader och radianer är radianer=π grader/80 3 i viss litteratur betecknas komplexkonjugatet z.

3 3 Denna representation av z kallas för den polära formen av z. Vi ser också att z = z e jarg{z} z = z e z jarg{z} = e jarg{z} Exempel Låt z = a + jb och z = a + jb vara två komplexa tal med a > 0 och a > 0. Då gälller z z = z e jarg{z} z e jarg{z} = a + b e jarctan (b /a ) a + b e jarctan (b /a ) = (a + b )(a + b )e j(arctan (b /a )+arctan (b /a )) z a = + b z a + be j(arctan (b /a ) arctan (b /a )) Komplex representation av tidsharmoniska storheter I växelströmsläran används komplexa representationer av de tidsharmoniska strömmarna och spänningarna. En tidsharmonisk ström kan allmänt skrivas i(t) = I 0 cos(ωt + φ) Här är ω vinkelfrekvensen, vilken mäts i radianer per sekund och är relaterad till den vanliga frekvensen f via ω = πf. Strömmens amplitud är I 0 och dess fas relativt cos(ωt) är φ. Den komplexa representationen av i(t) är I = I 0 e jφ Den komplexa strömmen I innehåller information om amplitud och fas eftersom I = I 0 = amplitud arg{i} = φ = fas relativt cos(ωt) Om vi känner den komplexa strömmen I, får vi den verkliga tidsberoende strömmen i(t) genom regeln i(t) = e{ie jωt } Ett snabbare sätt att transformera från I till i(t) är att bestämma absolutbeloppet I och argumentet φ = arg{i} av I, och direkt skriva upp i(t) som i(t) = I cos(ωt+ φ). När fasen mäts relativt cos ωt säger vi att cos ωt är riktfas och att vi använder realdelskonventionen för att transformera mellan tids- och frekvensplan. Om en tidsharmonisk ström eller spänning skrivs som en sinusfunktion kan det vara praktiskt att mäta alla faser relativt sin(ωt) och därmed använda sinωt som riktfas. Vi använder då imaginärdelskonventionen för att transformera mellan tids- och frekvensplan. Den komplexa representationen av v(t) = V 0 sin(ωt + φ)

4 4 kan då skrivas V = V 0 e jφ För att komma tillbaks till den tidsberoende spänningen kan vi antingen utnyttja regeln v(t) = Im{V e jωt } eller så bestämmer vi absolutbeloppet V och argumentet φ = arg{v } av V och skriver direkt upp v(t) som v(t) = V sin(ωt + φ). Kommentarer De tidsharmoniska spänningarna och strömmarna uppfyller differentialekvationer vilka kan vara komplicerade att lösa. De komplexa spänningarna och strömmarna uppfyller i stället algebraiska ekvationer, vilka oftast är enkla att lösa. När man använder de tidsberoende storheterna brukar man säga att man är i tidsplanet medan man är i frekvensplanet när de komplexa storeheterna används. Vi kommer att vara betydligt mer i frekvensplanet än i tidsplanet när vi kommer in på växelström. Hambley använder ett förkortat skrivsätt för de komplexa talen på polär form. Han skriver t.ex. z = + j = e jπ/4 på formen z = 45 och mer allmänt Z = Z arg{z} där vinkeln arg{z} skrivs i grader. Hambleys skrivsätt har fördelen att det refererar till det komplexa talplanet. Problem Skriv följande komplexa tal på rektangulär form z = a + jb: a) ( + j4)(3 j5) b) j( j3) c) j j 3 + j4 d) j( j) e) (3 + j)e jπ f) e jπ/3 g) ( j)e jπ/4 h) je jπ/ i) j j

5 5 Skriv följande komplexa tal på polär form. ita in dem i komplexa talplanet för att kontrollera att argumentet och absolutbeloppet som du bestämt är rimliga: a) + j b) j c) j d) j e) j( j) f) j + j 3 I denna uppgift betecknar resistans, C kapacitans, ω vinkelfrekvens och L induktans. Skriv följande komplexa tal på polär form: a) + jωl b) + + jωl c) + /() 4 Bestäm med realdelskonventionen den komplexa spänningen i följande fall a) v(t) = V 0 cos(ωt + π/4) b) v(t) = V 0 sin(ωt) 5 Bestäm med imaginärdelskonventionen den komplexa strömmen i följande fall a) i(t) = I 0 sin(ωt + π/4) b) i(t) = I 0 sin(ωt + π/3) + I 0 sin(ωt)

6 6 6 Vinkelfrekvensen är ω, cosωt är riktfas och V 0 är reell. Bestäm den tidsberoende spänningen v(t) om den komplexa spänningen är a) V = V 0 ( + j) b) V = jv 0 c) V = V 0 + jωl d) V = V 0 + jωl j( + /()) Svar till problemen : a) 3 + j7 b) 3 + j c) j d) 7+j 4 e) 3 j f) j 3 g) h) i) e π/ ty j j = (e jπ/ ) j = e jjπ/ = e π/ : a) e jπ/4 b) e jπ/4 c) e jπ/ d) e jπ/ e) e jπ/4 f) j + j = e jπ/4 e jπ/4 = e jπ/4 e jπ/4 = e jπ/ 3: a) + (ωl) e j arctan(ωl/) b) + /(ωc) j arctan(/(ωc)) e c) + (ωl) + /(ωc) ej(arctan(ωl/)+arctan(/(ωc)) 4: a) V = V 0 e jπ/4 b) V 0 e jπ/ 5: a) I 0 e jπ/4 + j (3 = I 0 b) I 0 (e jπ/3 + ) = I 0 + j ) 3 = I 0 3e jarctan(/ 3) 6: a) V 0 cos(ωt+π/4) b) V 0 cos(ωt+π/) c) V 0 cos(ωt arctan(ωl/)) +(ωl) d) V +(ωl) 0 cos(ωt + arctan(ωl/) + arctan(/(ωc)) π/) +(/ωc) eller alternativt V +(ωl) 0 cos(ωt + arctan(ωl/) arctan(ωc)) +(/ωc)

7 Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, TV, mobiltelefoner, kabel-tv, bredband till datorer mm, utnyttjar sinusformade signaler. Informationen överförs genom att modulera amplitud, frekvens eller fas. Det gäller både digitala och analoga system. Växelström i tidsdomän [5.] För att beskriva den tidsharmoniska signalen v(t) = V 0 cos(ωt + φ) används V 0 : φ : ω : T : amplitud fas vinkelfrekvens(ω = πf) perioid(t = /f) Exempel: Hushållsel För v(t) = 30 cos(00 π t 0.5) V är V 0 = 30 V 35 V, φ = 0.5 rad, ω = 00 π rad/s, f = 50 Hz, T = 0.0 s V m v(t) T t Växelström i frekvensdomän [5.] Den metod som används för att analysera tidsharmoniska signaler i elektriska kretsar är jω-metoden. Den utnyttjar komplexa representationer av de tidsharmoniska spänningarna och strömmarna. Fördelen med metoden är att alla tidsderivator och tidsintegraler försvinner. Kretsar som hade lett till komplicerade differentialekvationer för de tidsberoende spänningarna och strömmarna ger algebraiska ekvationer för de komplexa spänningarna och strömmarna. Bakgrund till jω-metoden Eulers formel för komplexa tal säger att om A och α är reella tal så gäller Ae jα = A(cos α + j sin α) A cosα = e{ae jα } Det innebär att en tidsharmonisk signal med spänning v(t) = V 0 cos(ωt + φ) och ström i(t) = I 0 cos(ωt + ψ) kan skrivas v(t) = e { V 0 e j(ωt+φ)} = e { V 0 e jφ e jωt)} = e { V e jωt} i(t) = e { I 0 e j(ωt+ψ)} = e { I 0 e jψ e jωt)} = e { Ie jωt} (0.)

8 där V = V 0 e jφ och I = I 0 e jψ. För en kondensator gäller i(t) = C dv(t) och därmed i(t) = C dv(t) = C d e { V e jωt} } = Ce {V dejωt = e { V e jωt} För en induktans gäller v(t) = L di(t) och därmed v(t) = L di(t) = e { jωlie jωt} För en resistans gäller fortfarande Ohms lag, dvs v(t) = i(t) = e { Ie jωt}, De komplexa talen V och I kallas för den komplexa spänningen och den komplexa strömmen. Sambanden mellan komplexa strömmar och spänningar för resistans, kapacitans och induktans är därmed V = I V = jωli V = I för resistans för induktans L för kapacitans C (0.) Impedanser Sambandet mellan en komplex spänning och en komplex ström kan alltid skrivas som V = ZI där det komplexa talet Z kallas för impedans. Impedans ser alltså ut som en komplex resistans. Impedanserna för resistansen, induktansen och kapacitansen är, enligt ekvation (0.) resistor Z = jωl induktans kapacitans Strömmen skall som vanligt gå in vid + och ut vid -, som i figuren nedan

9 3 Tidsdomän d jω Frekvensdomän i(t) v(t) + - v(t) = i(t) I V + - V = I i(t) + v(t) L - v(t) = L di(t) I V + - jωl V = jωli v(t) i(t) + - C C dv(t) = i(t) I V + - V = I Kommentar: eglerna för seriekoppling och parallellkoppling av resistanser gäller även för impedanser. Två seriekopplade impedanser Z och Z ger impedansen Z + Z. Två parallellkopplade impedanser ger impedansen Z = Z Z Z + Z. På samma sätt kommer alla andra metoder som gäller för resistiva nät också att gälla för de komplexa spänningarna och strömmarna, t.ex., nodanalys, spänningsdelning, strömgrening och Theveninekvivalenter. jω-metoden [5.4] Inför komplexa spänningar och strömmar enligt transformationsregeln i ekvation (0.) v(t) = V 0 cos(ωt + φ) V = V 0 e jφ Notera att absolutbeloppet V = V 0 är amplituden för sinussignalen och argumentet arg{v } = φ är fasvinkeln relativt cos ωt. äkna med de komplexa spänningarna och strömmarna på exakt samma sätt som för resistiva nät. Istället för Ohms lag v = i används V = ZI. När man räknat färdigt och fått fram en komplex spänning eller ström kan motsvarande tidsuttryck bestämmas. Det görs genom att först skriva den komplexa spänningen (eller strömmen) på polär form, d.v.s. V = V e jarg{v }. Tidsuttrycket ges då av v(t) = V cos(ωt + arg{v }) (0.3)

10 4 Phasors [5.] Hambley, och en del andra böcker, inför begreppet phasor. En phasor motsvarar den komplexa strömmen eller spänningen. Istället för att representera den tidsharmoniska signalen v(t) = V cos(ωt+φ) med det komplexa talet V = V e jφ använder Hambley phasor-representationen V = V φ. Det markerar på ett tydligt sätt att amplituden är V och fasen relativt cosωt är φ. Phasors är inte ett vedertaget begrepp inom andra områden av fysiken där jω-metoden används. Av denna anledning används inte phasors i kursen. Impedans, admittans, resistans och reaktans [5.3] Sambandet mellan den komplexa spänningen och strömmen är som sagt V = ZI där Z = för resistansen, Z = jωl för induktansen och Z = / för kapacitansen. Sambandet V = ZI gäller även för flera kretskomponenter. Följande gäller för impedansen för en passiv tvåpol (dvs en tvåpol som saknar källor, eller där alla oberoende källor är nollställda): V = ZI Z = + jx = impedansen = e{z} = resistansen X = Im{Z} = reaktansen I + V - Z I = Y V Y = G + jb = admittansen G = e{y } = konduktansen B = Im{Y } = susceptansen Begreppen impedans, resistans och reaktans är mycket vanliga och dessa skall alla kunna. Exempel: C krets med tidsharmonisk källa C-kretsen till höger drivs av spänningskällan med v in (t) = V 0 cos(ωt). Bestäm spänningen v(t) som funktion av tiden. v in (t) + C + v(t) Lösning Vi använder jω-metoden för att bestämma strömmarna. Detta sker i tre steg

11 5 : Transformation till frekvensdomänen Spänningarna v in (t) och v(t) motsvaras i frekvensdomänen av V in och V där v in (t) = e{v in e jωt } = V 0 cos(ωt) = e{v 0 e jωt } V in = V 0 v(t) = e{v e jωt } V Kretsschemat i frekvensdomänen ges i figuren till höger. Observera att man anger impedansen för kapacitansen. V in + + V : Bestämning av den komplexa spänningen V. Spänningsdelning i frekvensdomänen ger V = V 0 + = V 0 + Den komplexa spänningen skrivs på polär form för att kunna transformeras tillbaka till tidsdomänen (se häftet om komplexa tal) V = V 0 arctan(ωc) e j + (ωc) 3: Transformation tillbaka till tidsdomänen. Tidsdomänstorheterna erhålls enligt definitionen ovan. Detta ger v(t) = e{v e jωt } = e{ + (ωc) e j arctan(ωc) e jωt } = = V 0 V 0 + (ωc) e{ej(ωt arctan(ωc)) } V 0 cos(ωt arctan(ωc)) + (ωc) Vi kan snabba upp punkt 3 genom att utnyttja att en komplex spänning V = V e jφ ger den tidsberoende spänningen v(t) = V cos(ωt + φ). Absolutbeloppet av V är V V = 0 och argumentet är φ = arctan(ωc). +(ωc) Observera att det är viktigt att kunna transformera komplexa tal från rektangulär till polär form. Om du känner dig osäker bör du repetera det som står i häftet om komplexa tal.

12 6 Imaginärdelskonventionen När man transformerar mellan tids- och frekvensplanet genom att använda regeln i ekvation (0.3) använder man den så kallade realdelskonventionen. Om en given ström eller spänning har tidsberoendet sinωt är det lämpligt att ha sinωt som riktfas. Denna konvention kallas imaginärdelskonventionen och ges av v(t) = Im{V e jωt } och i(t) = Im{Ie jωt } där V och I är komplexvärderna till ögonblicksvärdena v(t) och i(t). Tidssignalen v(t) = V 0 sin(ωt + φ) transformeras på följande sätt: v(t) = Im{V e jωt } = V 0 sin(ωt + φ) = Im{V 0 e j(ωt+φ) } = Im{V 0 e jφ e jωt } V = V 0 e jφ eal- och imaginärdelskonventionen skiljer sig endast åt vid tranformationen mellan tids- och frekvensplanet. Kommentar: Hambley använder endast realdelskonventionen. Exempel Bestäm strömmen i (t) då i(t) = I 0 sin(ωt + φ). i(t) C i (t) Lösning Vi använder jω-metoden för att bestämma strömmen. Detta sker i tre steg : Transformation till frekvensdomänen (jω-domänen eller jω-planet). Imaginärdelskonventionen ger strömmarna i frekvensdomänen i(t) = Im{Ie jωt } = I 0 sin(ωt + φ) = Im{I 0 e j(ωt+φ) } = Im{I 0 e jφ e jωt } I = I 0 e jφ i (t) = Im{I e jωt } I Den ekvivalenta frekvensdomänkretsen ges i figuren till höger. I I

13 7 : Beräkning av strömmen i frekvensdomänen (komplexvärden). Strömgrening ger I = + I = I + = I 0e jφ + Vi skriver komplexvärderna på polär form för att kunna transformera tillbaka till tidsdomänen I = I 0e jφ + = I 0 e jφ + (ωc) e jarctan(ωc) = I 0 + (ωc) ej(φ arctan(ωc)) 3: Transformation tillbaka till tidsdomänen. Tidsdomänstorheterna erhålls m.h.a. Im-konventionen enligt definitionen ovan. Detta ger i (t) = Im{I e jωt } = Im{ I 0e j(φ arctan(ωc)) e jωt } = I 0 Im{e j(ωt+φ arctan(ωc)) } + (ωc) + (ωc) = I 0 sin(ωt + φ arctan(ωc)) + (ωc) Vi kan snabba upp punkt och 3 genom att utnytta att en spänning v(t) = V 0 sin(ωt + φ) ger, med imaginärdelskonventionen, den komplexa spänningen V = V 0 e jφ och att den komplexa strömmen I = I e jα ger den tidsberoende strömmen i(t) = I sin(ωt + α).

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 5

Ellära och Elektronik Moment AC-nät Föreläsning 5 Ellära och Elektronik Moment A-nät Föreläsning 5 Visardiagram Impendans jω-metoden Komplex effekt, effekttriangeln Visardiagram Om man tar projektionen på y- axeln av en roterande visare får man en sinusformad

Läs mer

Växelström K O M P E N D I U M 2 ELEKTRO

Växelström K O M P E N D I U M 2 ELEKTRO MEÅ NIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 999-09- Rev.0 Växelström K O M P E N D I M ELEKTRO INNEHÅLL. ALLMÄNT OM LIK- OCH VÄXELSPÄNNINGAR.... SAMBANDET MELLAN STRÖM

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Spolen och Kondensatorn motverkar förändringar

Spolen och Kondensatorn motverkar förändringar Spolen och Kondensatorn motverkar förändringar Spolen och kondensatorn motverkar förändringar, tex vid inkoppling eller urkoppling av en källa till en krets. Hur går det då om källan avger en sinusformad

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)

Läs mer

Sven-Bertil Kronkvist. Elteknik. Komplexa metoden j -metoden. Revma utbildning

Sven-Bertil Kronkvist. Elteknik. Komplexa metoden j -metoden. Revma utbildning Sven-Bertil Kronkvist Elteknik Komplexa metoden j -metoden evma utbildning KOMPEXA METODEN Avsnittet handlar om hur växelströmsproblem kan lösas med komplexa metoden, jω - eller symboliska metoden som

Läs mer

Tentamen i Elektronik för E, 8 januari 2010

Tentamen i Elektronik för E, 8 januari 2010 Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen F330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8 F/Ö9

Läs mer

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015 Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och

Läs mer

1 Grundläggande Ellära

1 Grundläggande Ellära 1 Grundläggande Ellära 1.1 Elektriska begrepp 1.1.1 Ange för nedanstående figur om de markerade delarna av kretsen är en nod, gren, maska eller slinga. 1.2 Kretslagar 1.2.1 Beräknar spänningarna U 1 och

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elektronik F F3 F4 F Ö Ö P-block Dokumentation, Seriecom Pulsgivare,,, P, serie och parallell KK AB Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs lagar Nodanalys Tvåpolsatsen

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska Svar och ösningar Grundläggande Ellära. Elektriska begrepp.. Svar: a) Gren b) Nod c) Slinga d) Maska e) Slinga f) Maska g) Nod h) Gren. Kretslagar.. Svar: U V och U 4 V... Svar: a) U /, A b) U / Ω..3 Svar:

Läs mer

2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar.

2. DC (direct current, likström): Kretsar med tidskonstanta spänningar och strömmar. Introduktion till elektronik Introduktionen är riktad till studenter på Pi-programmet på Lund universitet och består av följande avsnitt: 1. Grundläggande begrepp: Potential, spänning, ström, resistans,

Läs mer

3.4 RLC kretsen. 3.4.1 Impedans, Z

3.4 RLC kretsen. 3.4.1 Impedans, Z 3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna

Läs mer

Instruktioner för laboration 2, Elektromagnetism och elektriska nät 1TE025 Elektriska system 1TE014

Instruktioner för laboration 2, Elektromagnetism och elektriska nät 1TE025 Elektriska system 1TE014 Instruktioner för laboration 2, Elektromagnetism och elektriska nät 1TE025 Elektriska system 1TE014 Mattias Wallin Datum: 15 februari 2010 16 februari 2010 1 Inledning I denna laboration ingår förberedande

Läs mer

Föreläsning 29/11. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt 1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

insignal H = V ut V in

insignal H = V ut V in 1 Föreläsning 8 och 9 Hambley avsnitt 5.56.1 Tvåport En tvåport är en krets som har en ingångsport och en gångsport. Den brukar ritas som en låda med ingångsporten till vänster och gångsporten till höger.

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik IE06 Inbyggd Elektronik F F3 F4 F Ö Ö PI-block Dokumentation, Seriecom Pulsgivare I,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs lagar Nodanalys

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.

Läs mer

VÄXELSTRÖM SPÄNNINGSDELNING

VÄXELSTRÖM SPÄNNINGSDELNING UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1996-06-12 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Introduktion till modifierad nodanalys

Introduktion till modifierad nodanalys Introduktion till modifierad nodanalys Michael Hanke 12 november 213 1 Den modifierade nodanalysen (MNA) Den numeriska simuleringen av elektriska nätverk är nära besläktad med nätverksmodellering. En väletablerad

Läs mer

LabVIEW - Experimental Fysik B

LabVIEW - Experimental Fysik B LabVIEW - Robin Andersson Anton Lord robiand@student.chalmers.se antonlo@student.chalmers.se Januari 2014 Sammandrag Denna laboration går ut på att konstruera ett program i LabVIEW som kan på kommando

Läs mer

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1 1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

Växelspänning och effekt. S=P+jQ. Olof Samuelsson Industriell Elektroteknik och Automation

Växelspänning och effekt. S=P+jQ. Olof Samuelsson Industriell Elektroteknik och Automation Växelspänning och effekt S=P+jQ VA W var Olof Samuelsson Industriell Elektroteknik och Automation Översikt Synkronmaskinens uppbyggnad Växelspänning Komplexräkning Komplex, aktiv och reaktiv effekt Ögonblicksvärde

Läs mer

Växelspänning och effekt. S=P+jQ. Ingmar Leisse Industriell Elektroteknik och Automation

Växelspänning och effekt. S=P+jQ. Ingmar Leisse Industriell Elektroteknik och Automation Växelspänning och effekt S=P+jQ VA W var Ingmar Leisse Industriell Elektroteknik och Automation Översikt Synkronmaskinens uppbyggnad Växelspänning Komplexräkning Komplex, aktiv och reaktiv effekt Ögonblicksvärde

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av U och I F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö8

Läs mer

IN Inst. för Fysik och materialvetenskap ---------------------------------------------------------------------------------------------- INSTRUKTION TILL LABORATIONEN INDUKTION ---------------------------------------------------------------------------------------------

Läs mer

Fö 3 - TSFS11 Energitekniska system Trefassystemet

Fö 3 - TSFS11 Energitekniska system Trefassystemet Fö 3 - TSFS11 Energitekniska system Trefassystemet Christofer Sundström 11 april 2016 Kursöversikt Fö 11 Fö 5 Fö 4 Fö 2 Fö 6 Fö 3 Fö 7,8,10 Fö 9 Fö 12 Fö 13 Outline 1 Repetition växelströmslära 2 Huvudspänning

Läs mer

Sammanfattning av likströmsläran

Sammanfattning av likströmsläran Innehåll Sammanfattning av likströmsläran... Testa-dig-själv-likströmsläran...9 Felsökning.11 Mätinstrument...13 Varför har vi växelström..17 Växelspännings- och växelströmsbegrepp..18 Vektorräknig..0

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd

Läs mer

LABORATION 3. Växelström

LABORATION 3. Växelström Chalmers Tekniska Högskola november 01 Fysik 14 sidor Kurs: Elektrisk mätteknik och vågfysik. FFY616 LABORATION 3 Växelström Växelströmskretsar (seriekoppling), Serieresonans. Förberedelse: i) Läs noggrant

Läs mer

Impedans och impedansmätning

Impedans och impedansmätning 2016-09- 14 Impedans och impedansmätning Impedans Många givare baseras på förändring av impedans Temperatur Komponentegenskaper Töjning Resistivitetsmätning i jordlager.... 1 Impedans Z = R + jx R = Resistans

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

Sammanfattning. ETIA01 Elektronik för D

Sammanfattning. ETIA01 Elektronik för D Sammanfattning ETIA01 Elektronik för D Definitioner Definitioner: Laddningsmängd q mäts i Coulomb [C]. Energi E ( w ) mäts i enheten Joule [J]. Spänning u ( v ) är hur mycket energi (i Joule) som överförs

Läs mer

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10) Sammanfattning av kursen ETIA0 Elektronik för D, Del (föreläsning -0) Kapitel : sid 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd q mäts

Läs mer

40 V 10 A. 5. a/ Beräkna spänningen över klämmorna AB! µu är en beroende spänningskälla. U får inte ingå i svaret.

40 V 10 A. 5. a/ Beräkna spänningen över klämmorna AB! µu är en beroende spänningskälla. U får inte ingå i svaret. Exempelsamling 1. Likström mm 1. a/ educera nedanstående nät så långt som möjligt! 100 Ω 100 Ω 100 Ω 50 Ω 50 Ω 50 Ω b/ educera källorna anslutna till punkterna AB resp. D, men behåll de ursprungliga resistanserna!

Läs mer

Elektriska drivsystem Föreläsning 2 - Transformatorer

Elektriska drivsystem Föreläsning 2 - Transformatorer Elektriska drivsystem Föreläsning 2 - Transformatorer Mattias Krysander Institutionen för systemteknik Linköpings universitet matkr@isy.liu.se 2010-09-23 1/36 Dagens föreläsning Använda kunskapen om magnetiska

Läs mer

Onsdagen den 16 mars 2005, 8:00 13:00

Onsdagen den 16 mars 2005, 8:00 13:00 Onsdagen den 16 mars 2005, 8:00 13:00 Tentamen omfattar fem uppgifter och till samtliga skall fullständiga lösningar lämnas. Maximal poäng per uppgift är 5. Godkänt garanteras på 11 poäng. Som hjälpmedel

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen F330 Ellära F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK LAB Mätning av och F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK LAB Tvåpol mät och sim F/Ö0 F/Ö9

Läs mer

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4) 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen

Läs mer

Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar

Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar Fö 2 - TMEI01 Elkraftteknik Trefas effektberäkningar Per Öberg 16 januari 2015 Outline 1 Trefaseffekt 2 Aktiv, reaktiv och skenbar effekt samt effektfaktor 3 Beräkningsexempel 1.7 4 Beräkningsexempel 1.22d

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är

Läs mer

Svar till Hambley edition 6

Svar till Hambley edition 6 Svar till Hambley edition 6 Carl Gustafson, Bertil Larsson 2011-01-20, mod 2012-11-07, mod 13-11-19 1 Svar Kapitel 1 P1.21P a = 60 W P b = 60 W P c = 210 W Positiv: absorbed (=upptagen, förbrukad) och

Läs mer

Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström

Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström Kapitel: 31 Växelström Beskrivning av växelström och växelspänning Phasor-diagram metoden Likriktning av växelström Relation mellan ström och spänning i R, L och C. RLC-krets Elektrisk oscillator, RLC-krets

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00 Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna

Läs mer

Impedans och impedansmätning

Impedans och impedansmätning Impedans och impedansmätning Impedans Många givare baseras på förändring av impedans Temperatur Komponentegenskaper Töjning Resistivitetsmätning i jordlager.... 1 Impedans Z = R + jx R = Resistans = Re(Z),

Läs mer

Signaler några grundbegrepp

Signaler några grundbegrepp Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett

Läs mer

Institutionen för Fysik

Institutionen för Fysik Institutionen för Fysik KURS-PM KURS: Elektronik 1: Ellära FYD101 LÄSÅR: 16/17 HT16 FÖR: Datorstödd Fysikalisk Mätteknik (samt fristående kurs) EXAMINATOR: Vitali Zhaunerchyk 031-786 9150 KURSANSVARIG:

Läs mer

Växelström och reaktans

Växelström och reaktans Växelström och reaktans Magnus Danielson 6 februari 2017 Magnus Danielson Växelström och reaktans 6 februari 2017 1 / 17 Outline 1 Växelström 2 Kondensator 3 Spolar och induktans 4 Resonanskretsar 5 Transformator

Läs mer

Tentamen i Elektronik, ESS010, och Elektronik för D, ETI190 den 10 jan 2006 klockan 14:00 19:00

Tentamen i Elektronik, ESS010, och Elektronik för D, ETI190 den 10 jan 2006 klockan 14:00 19:00 Tentamen i Elektronik, ESS00, och Elektronik för D, ETI90 den 0 jan 006 klockan 4:00 9:00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, och Elektronik för D,

Läs mer

Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1

Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1 Ellära 2, ema 3 Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Innehåll Periodiska signaler Storlek, frekvens,... Filter Överföringsfunktion, belopp och fas, gränsfrekvens ville.jalkanen@umu.se

Läs mer

1. Skriv Ohm s lag. 2. Beräkna strömmen I samt sätt ut strömriktningen. 3. Beräkna resistansen R. 4. Beräkna spänningen U över batteriet..

1. Skriv Ohm s lag. 2. Beräkna strömmen I samt sätt ut strömriktningen. 3. Beräkna resistansen R. 4. Beräkna spänningen U över batteriet.. ÖVNNGSPPGFTER - ELLÄRA 1. Skriv Ohm s lag. 2. Beräkna strömmen samt sätt ut strömriktningen. 122 6V 3. Beräkna resistansen R. R 0,75A 48V 4. Beräkna spänningen över batteriet.. 40 0,3A 5. Vad händer om

Läs mer

ETE115 Ellära och elektronik, tentamen oktober 2006

ETE115 Ellära och elektronik, tentamen oktober 2006 (2) 9 oktober 2006 Institutionen för elektrovetenskap Daniel Sjöberg ETE5 Ellära och elektronik, tentamen oktober 2006 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna inte är

Läs mer

Elektroteknikens grunder Laboration 1

Elektroteknikens grunder Laboration 1 Elektroteknikens grunder Laboration 1 Grundläggande ellära Elektrisk mätteknik Elektroteknikens grunder Laboration 1 1 Mål Du skall i denna laboration få träning i att koppla elektriska kretsar och att

Läs mer

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths

Föreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths 1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de

Läs mer

Grundläggande ellära - - 1. Induktiv och kapacitiv krets. Förberedelseuppgifter. Labuppgifter U 1 U R I 1 I 2 U C U L + + IEA Lab 1:1 - ETG 1

Grundläggande ellära - - 1. Induktiv och kapacitiv krets. Förberedelseuppgifter. Labuppgifter U 1 U R I 1 I 2 U C U L + + IEA Lab 1:1 - ETG 1 IEA Lab 1:1 - ETG 1 Grundläggande ellära Motivering för laborationen: Labmomenten ger träning i att koppla elektriska kretsar och att mäta med oscilloskop och multimetrar. Den ger också en koppling till

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar 6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)

Läs mer

Impedans! och! impedansmätning! Temperatur! Komponentegenskaper! Töjning! Resistivitetsmätning i jordlager!.!.!.!.!

Impedans! och! impedansmätning! Temperatur! Komponentegenskaper! Töjning! Resistivitetsmätning i jordlager!.!.!.!.! Impedans och impedansmätning Impedans Temperatur Komponentegenskaper Töjning Resistivitetsmätning i jordlager.... Impedans Z = R + jx R = Resistans = Re(Z), X = Reaktans = Im(Z) Belopp Fasvinkel Impedans

Läs mer

Läsanvisningar till kapitel Komplexa tals algebraiska struktur

Läsanvisningar till kapitel Komplexa tals algebraiska struktur Läsanvisningar till kapitel 1.1. Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt

Läs mer

~ växelström. växelström 1. Heureka B Natur och Kultur 91-27-56722-2

~ växelström. växelström 1. Heureka B Natur och Kultur 91-27-56722-2 ~ växelström Det flyter växelström och inte likström i de flesta elnät världen över! Skälen är många. Hittills har det varit enklare att bygga generatorer som levererar växelspänning. Transport av elenergi

Läs mer

TSFS11 - Energitekniska system Kompletterande lektionsuppgifter

TSFS11 - Energitekniska system Kompletterande lektionsuppgifter 014-05-19 ISY/Fordonssystem TSFS11 - Energitekniska system Kompletterande lektionsuppgifter Lektion Uppgift K.1 En ideal enfastransformator är ansluten enligt följande figur R 1 = 1 kω I U in = 13 V N1

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

ELLÄRA Laboration 4. Växelströmslära. Seriekrets med resistor, spole och kondensator

ELLÄRA Laboration 4. Växelströmslära. Seriekrets med resistor, spole och kondensator ELLÄA Laboration 4 Växelströmslära Moment 1: Moment 2: Moment 3: Moment 4: Moment 5: Moment 6: eriekrets med resistor och kondensator eriekrets med resistor och spole Parallellkrets med resistor och spole

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

Växelström. Emma Björk

Växelström. Emma Björk Växelström Emma Björk Varför har vi alltid växelström i våra elnät? Faradayslag gör det möjligt att låta magnetfältet från en varierande ström i en spole inducera en ström i en närbelägen spole. Om den

Läs mer

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Lektion 1: Automation. 5MT001: Lektion 1 p. 1 Lektion 1: Automation 5MT001: Lektion 1 p. 1 Lektion 1: Dagens innehåll Electricitet 5MT001: Lektion 1 p. 2 Lektion 1: Dagens innehåll Electricitet Ohms lag Ström Spänning Motstånd 5MT001: Lektion 1 p.

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt

Läs mer

Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den.

Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den. Laborationsrapport Kurs Elinstallation, begränsad behörighet Lab nr 2 version 3.1 Laborationens namn Växelströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall

Läs mer

Formelsamling i kretsteori, ellära och elektronik

Formelsamling i kretsteori, ellära och elektronik Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik Lunds tekniska högskola Februari FORMELSAMLING I KRETSTEORI, ELLÄRA OCH ELEKTRONIK Kretsteori Komplexvärden Realdelskonvention:

Läs mer

Ellära och Elektronik Moment AC-nät Föreläsning 4

Ellära och Elektronik Moment AC-nät Föreläsning 4 Ellära och Elektronik Moment AC-nät Föreläsning 4 Kapacitans och Indktans Uppladdning av en kondensator Medelvärde och Effektivvärde Sinsvåg över kondensator och spole Copyright 8 Börje Norlin Kondensatorer

Läs mer

Elektronik grundkurs Laboration 1 Mätteknik

Elektronik grundkurs Laboration 1 Mätteknik Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna

Läs mer

Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00

Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00 LE1460 Föreläsnng 1 2005-11-02 Sal alfa. 08.15 12.00 pprop. Föreslagen kurslitteratur Elkretsanalys av Gunnar Petersson KTH Det finns en många böcker inom detta område. Dorf, Svoboda ntr to Electric Circuits

Läs mer

ETE115 Ellära och elektronik, tentamen januari 2008

ETE115 Ellära och elektronik, tentamen januari 2008 januari 2008 (8) Institutionen för elektro och informationsteknik Daniel Sjöberg ETE5 Ellära och elektronik, tentamen januari 2008 Tillåtna hjälpmedel: formelsamling i kretsteori. Observera att uppgifterna

Läs mer

Sedan tidigare P S. Komplex effekt. kan delas upp i Re och Im. Skenbar effekt är beloppet av komplex effekt. bestämmer hur hög strömmen blir

Sedan tidigare P S. Komplex effekt. kan delas upp i Re och Im. Skenbar effekt är beloppet av komplex effekt. bestämmer hur hög strömmen blir Trefas Komplex effekt * I edan tidigare jϕ Ie kan delas upp i Re och Im P + jq kenbar effekt är beloppet av komplex effekt * * P + Q I I I I bestämmer hur hög strömmen blir Aktiv och reaktiv effekt P I

Läs mer

Omtentamen i IE1206 Inbyggd elektronik fredagen den 8 januari

Omtentamen i IE1206 Inbyggd elektronik fredagen den 8 januari Omtentamen i IE6 Inbyggd elektronik fredagen den 8 januari 6 4.-8. Samtidigt går en liknande tentamen för IF33 välj rätt tentamen! Allmän information ( Ask for english version of this text if needed )

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

TENTAMENSUPPGIFTER I ELEKTROTEKNIK

TENTAMENSUPPGIFTER I ELEKTROTEKNIK ELEKTOTEKNK MSKNKONSTKTON KTH Tentamen med lösningsförslag. En del skrivutrymme borttaget. nlämningstid Kl: TENTMENSPPGFTE ELEKTOTEKNK Elektroteknik för Media och CL. MF035 (4F4) 0 05 5 9:00 3:00 För godkänt

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Komplexa tal. z 2 = a

Komplexa tal. z 2 = a Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga

Läs mer

Föreläsning 8 och 9. insignal. utsignal. Tvåport. Hambley avsnitt 5.5-6.1

Föreläsning 8 och 9. insignal. utsignal. Tvåport. Hambley avsnitt 5.5-6.1 1 Föreläsning 8 och 9 Hambley avsnitt 5.56.1 Tvåport En tvåport är en krets med en ingångsport och en gångsport. Dess symbol är en rektangel med ingångsporten till vänster och gångsporten till höger. Tvåporten

Läs mer

Elektricitetslära och magnetism - 1FY808

Elektricitetslära och magnetism - 1FY808 Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Laborationshäfte för kursen Elektricitetslära och magnetism - 1FY808 Ditt namn:... eftersom labhäften far runt i labsalen. 1 1. Instrumentjämförelse

Läs mer

TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR

TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR ELEKTROTEKNIK MASKINKONSTRKTION KTH TENTAMENSPPGIFTER I ELEKTROTEKNIK MED SVAR Elektroteknik för MEDIA och CL, MF1035 015-08-4 14:00-18:00 Du får lämna salen tidigast 1 timme efter tentamensstart. Du får,

Läs mer

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.

Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar. Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer