Om komplexa tal och funktioner

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Om komplexa tal och funktioner"

Transkript

1 Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH

2 Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen brukar införas genom att man inför i = 1 som en lösning till ekvationen x + 1 = 0, och sedan komplexa tal som tal a + bi där a, b är reella tal. Det var dock inte riktigt så behovet av komplexa tal dök upp i historien: de behövdes då man sökte metoder att lösa allmänna tredjegradsekvationer. Vi ska inte följa upp den historiska tråden här, utan istället införa de komplexa talen som talpar (x, y) försedda med en metod att multiplicera sådana. Med det synsättet blir användandet av komplexa tal för att lösa problem som bara involverar reella tal ett kraftfullt hjälpmedel som egentligen inte ändrar problemens natur. Om koordinatsystem i planet Om vi vill beskriva punkter i ett plan i form av reella tal måste vi införa något att relatera punkterna till. För detta behöver vi först en fixpunkt, vilken vi kallar origo och betecknar med 0. Sedan behöver vi ett sätt att relatera en punkt till origo. Ett sätt att göra detta är att införa ett s.k. Cartesiskt koordinatsystem, i vilket vi lägger två koordinataxlar vinkelräta mot varandra genom origo. En punkt anges m.a.p. detta koordinatsystem i sina koordinater (x, y). Vi kan uttrycka detta som att vi kommer till punkten (x, y) från origo genom att förflytta oss enligt vektorn (x, y). En sådan vektor betecknar vi ofta u (även om vi med tiden gärna utelämnar pilen) och vi säger då att vektorn u har koordinaterna (x, y) och vi ritar den som en pil i talplanet. Sådana förflyttningar kan vi addera genom att göra förflyttningar efter varandra. Vi uttrycker detta som att vi adderar två vektorer u 1 = (x 1, y 1 ) och u = (x, y ) till den nya vektorn u 1 + u = (x 1 + x, y 1 + y ). y u (x, y) u Detta illustreras i figuren nedan, som också visar att u 1 + u = u + u 1. u 1 u 1 + u x u u u 1 Vidare kan vi multiplicera en vektor u = (x, y) med ett reellt tal a och få en vektor a u = (ax, ay) som har samma riktning som u, men är a gånger så lång. Om a < 0 betyder detta att vi vänder på riktningen förutom längdkorrigeringen. Men det finns andra sätt att beskriva punkter i planet. Ett ofta använt sätt är att använda polära koordinater, eftersom dessa i många praktiska situationer ofta är mer naturliga än

3 Om komplexa tal och funktioner (11) de Cartesiskt koordinaterna som diskuterades ovan. Referenssystemet för polära koordinater består av origo tillsammans med en stråle från origo (till oändligheten). Har vi dessa kan en godtycklig punkt beskrivas med hjälp av två tal: hur långt r det är från origo till punkten, och vilken vinkel θ motsvarande vektor har med referensstrålen. Detta illusteras i vidstående figur, i vilken vi också lagt in ett Cartesiskt koordinatsystem sådant att dess positiva x-axel sammanfaller med det polära koordinatsystemets stråle. r sin θ r (x, y) Från figuren ser vi att sambandet mellan de två koordinatsystemen är att om en punkt anges av (x, y) i det Cartesiska koordinatsystemet och av (r, θ) i det polära koordinatsystemet, så gäller att x = r cos θ, y = r sin θ. θ r cos θ Anmärkning Vi ser att hjälpvinkelmetoden [1], som innebar att göra omskrivningen a cos x + b sin x = A sin(x + φ), bygger på att vi inför polära koordinater för punkten (a, b). φ är då vinkeln och A är radien. Vi har sett hur vissa plana kurvor kan beskrivas i Cartesiska koordinater []. T.ex. beskrivs enhetscirkeln som x + y = 1 medan en rät linje har ekvationen ax + by + c = 0. Men vi kan också skriva dessa i polära koordinater. Eftersom r = x + y, blir ekvationen för enhetscirkeln väldigt enkel, den är helt enkelt r = 1. Ekvationen för en stråle utgående från origo blir också enkel, nämligen θ = θ 0. Anmärkning Däremot blir ekvationen för en allmän rät linje krångligare: r(a cos θ + b sin θ) + c = 0 r sin(θ + φ) + d = 0 där d = c/ a + b och φ är den polära vinkeln för (a, b). Geometriskt innebär detta att d är det kortaste avståndet från linjen till origo, medan φ är den vinkel som normalvektorn till linjen har relativt koordinatsystemets referenslinje. Vissa kurvor beskrivs gärna i form av en ekvation där radien bestäms av vinkeln. Vi säger då att kurvan anges på polär form.

4 Om komplexa tal och funktioner 3 (11) Exempel 1 Den kurva som ges av ekvationen r(θ) = 1 + cos θ kallas cardoiden. I varje riktning ligger det en punkt på denna. För θ = 0 får vi punkten (, 0), för θ = ±π/ får vi punkterna (0, ±1) och för θ = π får vi origo. Vidare är r(θ) en π-periodisk funktion. En stunds eftertanke visar att kurvan ser ut som i figuren till höger. θ 1 + cos θ Det komplexa talplanet Att införa komplexa tal är egentligen samma sak som att införa en multiplikation av talpar, nämligen att (x 1, y ) (x, y ) = (x 1 x y 1 y, x 1 y + x y 1 ). Men det är inte så man brukar göra. Istället inför man komplexa tal så att talet (x, y) svarar mot z = x + iy. Detta innebär att vi skriver (1, 0) som talet 1 och (0, 1) som talet i. Då har vi ju (x, y) = x(1, 0) + y(0, 1) = x + yi. Det innebär att de vanliga lagarna för addition och multiplikation [3] av tal gäller, med det tillägget att i = (0, 1) (0, 1) = ( 1, 0). Med andra ord i = 1. Multiplicerar vi nu två komplexa tal så har vi att z 1 z = (x 1 + iy 1 )(x + iy ) = x 1 x + iy 1 x + ix 1 y + i y 1 y = x 1 x y 1 y + i(x 1 y + x y 1 ), vilket är samma regel vi började avsnittet med att diskutera. För att förstå vad multiplikationen betyder geometriskt inför vi polära koordinater i det komplexa talplanet. Vi börjar då med att skriva punkten (cos θ, sin θ) som det komplexa talet f(θ) = cos θ + i sin θ. Det finns en naturlig beteckning för detta tal som grundar sig på observationen att Vi ser alltså att f(θ) löser problemet f (θ) = sin θ + i cos θ = i(cos θ + i sin θ) = if(θ). f (θ) = if(θ), f(0) = 1, vilket borde betyda (i varje fall om i hade varit ett reellt tal) att f(θ) = e iθ. Vi inför därför beteckningen/definitionen e iθ = cos θ + i sin θ.

5 Om komplexa tal och funktioner 4 (11) Uttrycket ska alltså vara en exponentialfunktion, och då vill vi att det ska gälla att e i(θ+φ) = e iθ e iφ. Att så är fallet följer av additionsformlerna för sinus- och cosinusfunktionerna: e iθ e iφ = (cos θ +i sin θ)(cos φ+i sin φ) = cos θ cos φ sin θ sin φ+i(cos θ sin φ+sin θ cos φ). Enligt nämnda additionsformler kan det sista uttrycket skrivas cos(θ + φ) + i sin(θ + φ) = e i(θ+φ). Additionsformeln för e iθ är därför ekvivalent med additionsformlerna för sinus och cosinus. Att skriva ett komplext tal i polära koordinater blir nu detsamma som att skriva z = re iθ. Talet r betecknas också z, kallas absolutbeloppet av z och betyder alltså längden av den vektor som definierar talet (d.v.s. avståndet från origo till punkten). Vinkeln θ kallas för argumentet för z och betecknas arg z. Mutiplicerar vi z med e iφ får vi talet vilket innebär att re iθ e iφ = re i(θ+φ), Att multiplicera ett tal med e iφ betyder geometriskt att vi roterar motsvarande vektor vinkeln φ moturs. Om vi istället har z 1 = r 1 e iθ 1, z = r e iθ z 1 z = r 1 r e i(θ 1+θ ), så ser vi att d.v.s produkten z 1 z är det komplexa tal som har längden och argumentet z 1 z = z 1 z arg(z 1 z ) = arg z 1 + arg z. Har vi multiplikation vill vi kunna dividera. För att göra det inför vi först konjugatet av ett tal z = x + iy genom z = x iy. Geometriskt innebär det att vi speglar vektorn z i den reella axeln. Konjugatet har den viktiga egenskapen att Im z φ e iφ z z z Re z z z = z. z Skriver vi på polär form ser vi att om z = re iθ, så gäller att z = re iθ. Multiplicerar vi ihop dessa får vi att z z = r = z. Vi kan nu lösa ekvationen az = b där a, b är komplexa tal. För att göra detta multiplicerar vi ekvationen med ā, vilket ger a z = āb. Division med a ger sedan z.

6 Om komplexa tal och funktioner 5 (11) Exempel För att beräkna talet (1 + i)/( i) förlänger vi med konjugatet till nämnaren: 1 + i i = (1 + i)( + i) ( i)( + i) = 1 + i( + 1) + 1 = i3 5. Låt oss avsluta avsnittet med en kommentar om att beskriva kurvor i planet på polär form. I det komplexa talplanet får en sådan kurva parametriseringen Det är nu lätt att beräkna dess derivata: z(θ) = r(θ)e iθ. z (θ) = r (θ)e iθ + r(θ)ie iθ = (r (θ) + ir(θ))e iθ. Liksom tidigare är det en vektor som pekar i tangentens riktning. Dess längd ges av z (θ) = r (θ) + ir(θ) = r (θ) + r(θ). Denna observation är användbar när vi längre fram ska beräkna längden av kurvor som är givna på polär form. Polynom i komplexa variabler När vi kan multiplicera godtyckliga komplexa tal kan vi också bilda godtyckliga polynom p(z) = n a k z k k=0 av komplexa tal. Dessa blir då funktioner C C och en intressant fråga är om det alltid finns lösningar till ekvationen p(z) = w för givet w. Eftersom w är givet kan vi plocka in det i den konstanta termen i polynomet och ställa den viktiga frågan Har ett komplext polynom, som har ett gradtal som är minst ett, alltid ett nollställe? Svaret är ja, ett påstående som går under namnet Algebrans fundamentalsats. Dess bevis är utanför denna kurs [4]. En direkt konsekvens av algebrans fundamentalsats och faktorsatsen [5] (som fungerar lika bra för komplexa polynom) är att vi kan faktorisera ut ett nollställe lika många gånger som gradtalet på polynomet. Varje n:te-gradspolynom har alltså precis n nollställen och vi kan faktorisera det i n förstagradsfaktorer. Att de facto hitta nollställen till ett polynom är dock väsentligen lika svårt som i det reella fallet. Andragradspolynom löses dock ungefär som i det reella fallet: man kvadratkompletterar först.

7 Om komplexa tal och funktioner 6 (11) Exempel 3 För att lösa ekvationen z (3 i)z = 0, kvadratkompletterar vi först uttrycket till (z 3 i ) = 1 16i. För att hitta z sätter vi nu w = z 3 i. Vi ska då lösa ekvationen w = 1 16i. Ett analytiskt sätt att göra det på är att skriva w = x + iy. Då blir ekvationen { x y x y = 1 + ixy = 1 16i. xy = 16 Detta är ett ekvationssystem som vi kan lösa, men det finns ett trick som förenklar räkningarna något. Av ekvationen vet vi att w = 1 16i w = 0 x + y = 0. Vi har därför tre ekvationer: x y = 1, x + y = 0, xy = 8 och här är det lätt att lösa ut x och y ur de första två till x = 16, y = 4. Det enda vi behöver använda den tredje ekvationen till är att avgöra vilka tecken vi får använda. Eftersom produkten xy ska vara negativ ska x och y har olika tecken och vi får till slut att w = x + iy = ±(4 i). Eftersom z = w + (3 i)/, får andragradsekvationen de två lösningarna z 1 = 11 5 i, z = i. Anmärkning Det finns ett geometriskt sätt att lösa ekvationen z = w. Formeln man får är z = ± r w + r w + r, där r = w. Förklaringen ges i följande figur: Im z w r φ w + r φ φ Re z

8 Om komplexa tal och funktioner 7 (11) Vi ser här att de tre talen origo, w och w + r bildar en likbent triangel och från det ser vi att de tre vinklarna som är betecknade φ alla är lika stora. Men arg w = φ, så argumentet för en lösning z på ekvationen ska vara φ/. Figuren visar därför att talet w + r har rätt argument, det återstår bara att korrigera längden så att den blir rätt. Vilket är vad som är gjort i formeln ovan. Exempel 4 Vi kan illustrera metoden i anmärkningn ovan genom att lösa den kvadratkompletterade ekvationen från föregående exempel, z = 4(3 4i) = w. Då är r = w = 0 och w + r = 3 16i = 16( i), varför w + r = Lösningen ges därför av z = ± 3 16i = ±(4 i). Ett annat sätt att lösa ekvationen z = w är att bestämma lösningen på polär form. Detta kan göras tämligen enkelt för alla ekvationer på formen z n = w där n är ett positivt heltal. Man löser en sådan ekvation, som kallas en binomisk ekvation, genom att skriva w = ae ib och z = re iθ och sätta in det i ekvationen: { r n e inθ = ae ib r n = a. nθ = b + kπ Detaljerna överlåtes åt läsaren, men man ser att lösningarna ligger på en cirkel med radien a 1 n och bildar en reguljär n-hörning. Argumentet för ett av hörnen är b/n, och de övriga fås successivt genom rotation vinkeln π/n. I figuren har vi lösningarna till ekvationen z n = 1 för n = 8, vilka ges av z k = e i( π 8 +k π 4 ), k = 0, 1,..., 7, som bildar en regelbunden åttahörning. z z 1 z 3 z 0 z 4 z 7 z 5 z 6 En annan speciell situation som är av intresse är när ett polynom p(z) är sådant att alla dess koefficienter är reella. Då kan man nämligen säga något om dess nollställen, i varje fall de som inte är reella: om ett komplext, icke-reellt, tal är ett nollställe till ett polynom med reella koefficienter gäller att även dess konjugat är ett nollställe.

9 Om komplexa tal och funktioner 8 (11) Sats 1 Om p(z) har reella koefficienter och p(α) = 0, så gäller även att p(ᾱ) = 0. Bevis. 0 = p(α) = p(α) = p(α) [6]. Exempel 5 Polynomet p(z) = z 4 z 3 + 7z + 18z + 6 har nollstället z = 1 + i. Eftersom koefficienterna är reella har det därför också nollstället 1 i och därmed de två faktorerna (z ( 1 + i)) och (z ( 1 i). Vi kan därför dela polynomet med (z + 1 i)(z i) = (z + 1) + 1 = z + z +. Kvoten blir, efter polynomdivision, q(z) = z 4z + 13 = (z ) + 9, och detta polynom har nollställena ± 3i. Vi ser därför att de fyra nollställena till p(z) är 1 ± i, ± 3i. En konsekvens av att det för ett reellt polynom gäller att alla icke-reella nollställen kommer i par med sitt konjugat, är att det alltid går att faktorisera ett reellt polynom i förstaoch andragradsfaktorer, som följande exempel illustrerar. Exempel 6 Faktorisera polynomet x i andragradsfaktorer. Polynomet har inga reella nollställen, så vi väljer att faktorisera det genom att bestämma alla komplexa nollställen. Det innebär att lösa den binomiska ekvationen z 6 = e iπ. Lösningarna är z k = e iπ/6+kπ/3, k = 0,..., 5, vilka kan skrivas ±i, ±( 3 + i )), ±( 3 + i )). Samlar vi ihop de som är komplexkonjugat får vi följande andragradsfaktorer: (z ( Med andra ord: (z i)(z + i) = z + 1, 3 + i 3 ))(z ( i 3 )) = (z ) = z 3z + 1 (z ( 3 + i ))(z ( 3 i )) = z + 3z + 1. z = (z + 1)(z + 3z + 1)(z 3z + 1).

10 Om komplexa tal och funktioner 9 (11) Den komplexa exponentialfunktionen Om vi definierar så får vi från diskussionen ovan att e z = e x e iy, z = x + iy, e z 1+z = e z 1 e z. Vi kallar den den komplexa exponentialfunktionen. Den kan ses som en funktion från R R om vi vill, men hellre som en funktion C C. Den har egenskapen att den aldrig blir noll; för att den ska bli noll måste vi hitta ett x sådant att e x = 0, och det vet vi inte går. Med hjälp av den komplexa exponentialfunktionen kan vi också definiera de trigonometriska funktionerna för alla komplexa tal. Vi har nämligen för reella x att cos x = eix + e ix, sin x = eix e ix. i Dessa formler kallas Eulers formler och kan användas till mycket. Exempel 7 Vi har att ( e cos 3 ix + e ix x = ) 3 = 1 8 (e3ix + 3e ix + 3e ix + e 3ix ) = cos(3x) cos x. 4 Exempel 8 (Cosinussatsen) Denna kända sats från trigonometrin säger som bekant att c = a + b ab cos θ där a, b, c är sidorna i en triangel och θ vinkeln mellan a och b. För att bevisa satsen lägger vi en reell tallinje genom sidan a med origo i skärningen mellan sidorna a och b. Då representeras sidan a av det komplexa talet a och sidan b av det komplexa talet be iθ. Följaktligen representeras sidan c av talet a be iθ. Men då följer att θ b a c c = a be iθ = (a be iθ )(a be iθ ) = (a be iθ )(a be iθ ) = a ab(e iθ + e iθ ) + b e iθ e iθ = a ab cos θ + b. Därmed har vi bevisat cosinussatsen.

11 Om komplexa tal och funktioner 10 (11) Den allmänna definitionen av de trigonometriska funktioner för komplexa z blir nu Sätter vi här z = ix, ser vi att cos z = eiz + e iz, sin z = eiz e iz. i cos(ix) = cosh(x), sin(ix) = i sinh(x), där cosh x = ex + e x, sinh x = ex e x kallas de hyperboliska funktionerna [7]. Problemet med att definiera komplexa logaritmer Låt oss nu betrakta ekvationen z = w igen, där w är ett givet komplext tal. Vi har då sett att denna ekvation har två lösningar z 1 = re iθ/ och z = re iθ/+π = z 1, där w = re iθ. Om w är ett positivt reellt tal, alltså θ = 0, så blir z 1 = w och z = w. Det kan nu kännas naturligt att tro att vi kan definiera en funkton w för godtyckliga komplexa tal w genom att säga att w = z 1. Naturligtvis kan vi göra det, men den funktion vi får blir inte kontinuerlig i hela det komplexa talplanet. T.ex gäller enligt denna definition att 1 = 1, och vi man ser lätt att om ɛ > 0, så gäller att 1 + iɛ 1 då ɛ 0. Detta därför att argumentet för 1 + ɛ går mot noll då ɛ 0. Däremot gäller att 1 iɛ 1. Vi har nämligen att 1 iɛ har ett argument θ ɛ som går mot π då ɛ 0, vilket betyder att z 1 = e iθɛ e iπ = 1 då ɛ 0. w = re iθ/ z = re iθ θ w = r r w = r Vi kan alltså inte på detta sätt definiera en kontinuerlig funktion : C C. Men om vi skär bort den positiva reella axeln och definierar rotfunktionen på resten, får vi en kontinuerlig funktion där den är definierad. Priset är att vi kan inte dra roten ur positiva tal! Men vi måste inte skära bort just den positiva reella axeln, vi kan skära bort vilken stråle som utgår från origo som vi vill och definiera en rotfunktion på resten. När man gör sådana val säger man att man väljer gren av rot-funktionen. [8] Det gör att man kan inte utan vidare skriva ut ett uttryck som 3 4i det är i allmänhet inte klart vad man menar med det. Skriv inte z för ett icke-reellt, komplext, tal z, om du inte är väldigt tydlig med vad du menar!

12 Om komplexa tal och funktioner 11 (11) Samma problem har vi när vi försöker definiera en logaritmfunktion av komplexa tal. En sådan ska vara lösningen på ekvationen e z = w. Igen kan det verka gå bra från början: skriv w = re iθ = e ln r+iθ. Ekvationen löses då av alla tal z k = ln r + i(θ + kπ) = ln z + i(arg z + kπ), där k är ett heltal. Det finns alltså oändligt många lösningar. Låt oss bestämma oss för att vi tar k = 0. Om vi, liksom ovan, närmar oss den positiva reella axeln från ovan, så gäller att z ln r, medan om vi närmar oss den nerifrån så gäller att z ln r + πi. Samma problem som ovan, och lösningen blir samma som ovan: vi kan bara definiera logaritmfunktionen i planet minus en stråle. Om man väljer att skära bort den positiva reella axeln kan vi inte beräkna logaritmen av positiva tal, så man skär ofta bort den negativa reella axeln istället: och kan då inte beräkna logaritmen av negativa reella tal. Olika val av stråle att skära bort leder till olika logaritmfunktioner. Eller grenar av logaritmfunktionen, som man säger. Den här diskussionen fortsätts i den komplexa analysen [9], men budskapet är att att man inte utan vidare kan beräkna logaritmen av t.ex. negativa, reella, tal. Resultatet beror av vilken gren av logaritmen man väljer att arbeta med. Noteringar 1. Se kapitlet Om de trigonometriska funktionerna. Se kapitlet Om de trigonometriska funktionerna 3. Dvs de kommutativa lagarna x + y = y + x, xy = yx, de associativa lagarna (x + y) + z = x + (y + z), (xy)z = x(yz) och den distributiva lagen x(y + z) = xy + xz. 4. Se dock kapitlet Ett bevis för algebrans fundamentalsats för ett intuitivt enkelt bevis. 5. Se t.ex. kapitlet Analys av polynomfunktioner 6. Skriv ut beviset ordentligt med p(z) = a 0 + a 1 z a n z n, så ser du vad som händer i de olika likheterna. 7. För mer om dessa funktioner, se kapitlet Om trigonometriska och hyperboliska funktioner. 8. Man kan alternativt tänka på rot-funktionen som en flervärd funktion, men vi låter denna diskussion tillhöra den komplexa analysen. 9. Se t.ex. artikeln Vad är Riemannytor och vad är de bra till?

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Sommarmatte. del 2. Matematiska Vetenskaper

Sommarmatte. del 2. Matematiska Vetenskaper Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

KAPITEL 5. Komplexa tal. 1. Introduktion.

KAPITEL 5. Komplexa tal. 1. Introduktion. KAPITEL 5 Komplexa tal. Your momma thinks square roots are vegetables (förolämpning i ett Calvin och Hobbesalbum) 1. Introduktion. 1.1. Bakgrund. Att något är ett tal innebär löst sagt att det ska gå att

Läs mer

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)

c d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc) 1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Komplexa tal. z 2 = a

Komplexa tal. z 2 = a Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

Läsanvisningar till kapitel Komplexa tals algebraiska struktur

Läsanvisningar till kapitel Komplexa tals algebraiska struktur Läsanvisningar till kapitel 1.1. Jag tänkte bara kort berätta hur strukturen hos dessa läsanvisningar kommer vara innan vi kör gång på allvar. Jag kommer i dessa läsanvisningar säga vad jag anser är viktigt

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Gamla tentemensuppgifter

Gamla tentemensuppgifter Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna

f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Mat Grundkurs i matematik 1, del I

Mat Grundkurs i matematik 1, del I Mat-1.1510 Grundkurs i matematik 1, del I G. Gripenberg TKK 8 oktober 2009 G. Gripenberg (TKK) Mat-1.1510 Grundkurs i matematik 1, del I 8 oktober 2009 1 / 47 Mängder Det enklaste sättet att beskriva en

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

M0038M Differentialkalkyl, Lekt 8, H15

M0038M Differentialkalkyl, Lekt 8, H15 M0038M Differentialkalkyl, Lekt 8, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 29 Läsövning Summan av två tal Differensen mellan två tal a + b a b Produkten av två tal

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

Elteknik. Komplexa tal

Elteknik. Komplexa tal Sven-Bertil Kronkvist Elteknik Komplexa tal Revma utbildning KOMPLEXA TAL Komplexa eller imaginära tal kan användas för algebraiska växelströmsberäkningar på samma sätt som i likströmsläran. Den läsare

Läs mer

Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering

Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Matematik 4 för basår, 8 högskolepoäng Föreläsnings- och lektionsplanering Kursboken innehåller uppgifter på tre nivåer, a,b och c, i stigande svårighetsgrad. Efter varje kapitel finns en bra sammanfattning,

Läs mer

INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället!

INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället! INFÖR TENTAN (Av Göran Rundqvist, goranr@math.kth.se) Allmänna råd: Gör inte för mycket av dina räkningar i huvudet, skriv ner dem istället! Ska du t ex förenkla 2(a + b) 2 3(b a) 2 utför först kvadreringarna

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

Mat Grundkurs i matematik 1, del I

Mat Grundkurs i matematik 1, del I Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK) Mat-11510 Grundkurs i matematik 1, del I 8 oktober 2009 1 / 47 Mängder Det enklaste sättet att beskriva en mängd

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

TATM79: Matematisk grundkurs HT 2017

TATM79: Matematisk grundkurs HT 2017 TATM79: Matematisk grundkurs HT 017 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y 1 y = 1/x 1 x x TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim

Läs mer

3. Analytiska funktioner.

3. Analytiska funktioner. 33 Fysikens matematiska metoder : Studievecka 3. 3. Analytiska funktioner. Varför komplexa tal? Syfte : Att ur vissa funktioners uppträdande utanför reella axeln ( Nollställen poler m.m) kunna sluta sig

Läs mer

TATM79: Matematisk grundkurs HT 2016

TATM79: Matematisk grundkurs HT 2016 TATM79: Matematisk grundkurs HT 016 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y 1 y = 1/x 1 x x TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim

Läs mer

{ 1, om i = j, e i e j = 0, om i j.

{ 1, om i = j, e i e j = 0, om i j. 34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

Föreläsningsanteckningar i linjär algebra

Föreläsningsanteckningar i linjär algebra 1 Föreläsningsanteckningar i linjär algebra Per Jönsson och Stefan Gustafsson Malmö 2013 2 Innehåll 1 Linjära ekvationssystem 5 2 Vektorer 11 3 Linjer och plan 21 4 Skalärprodukt 27 5 Vektorprodukt 41

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

Studiehandledning till. MAA123 Grundläggande vektoralgebra

Studiehandledning till. MAA123 Grundläggande vektoralgebra Studiehandledning till MAA13 Grundläggande vektoralgebra vid kurstillfället i period 4 läsåret 013/14 Version 014-05- Information om kursen MAA13 Avsikt Avsikten med kursen MAA13 Grundläggande vektoralgebra

Läs mer

MATMAT01b (Matematik 1b)

MATMAT01b (Matematik 1b) Sida 1 av 6 MATMAT01b (Matematik 1b) ATT KUNNA TILL PROV MATMAT01b1 - Öka, respektive minska temperaturer - Skriva tal skrivna med text med siffror, Ex två tiondelar = 0,2 - Hitta på två bråk som ger en

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Signaler några grundbegrepp

Signaler några grundbegrepp Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner. Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att

Läs mer

Matematiska uppgifter

Matematiska uppgifter Årgång 54, 1971 Första häftet 8. Bestäm alla reella tal x sådana att x 1 3 x 1 + < 0 (Svar: {x R: 1 < x < 0} {x R: < x < 3}) 83. Visa att om x > y > 1 så är x y 1 > x y > ln(x/y). 84. Undersök om punkterna

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

En samling funktionspussel för gymnasienivå

En samling funktionspussel för gymnasienivå En samling funktionspussel för gymnasienivå ü Pusslenas idé Det är lätt att snabbt rita många funktionsgrafer med en grafisk räknare, men hur är det med elevernas vana och förmåga att utläsa information

Läs mer