A-del. (Endast svar krävs)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "A-del. (Endast svar krävs)"

Transkript

1 Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna i 3i k. Svar: 13/1. Vad är lutningen av linjen genom punkterna (, 3) och ( 6, 7)? Svar: 1/ 5. Vi vet att arg(z) = π/3 och att z = 3. Skriv z på formen a + ib, där a och b inte får innehålla sinus och cosinus. Svar: 3 + i För vilka x gäller det att x = x + 011? Svar: x = 0 7. Vad är x om lg(x) + lg(x ) = 6? Svar: x = Bestäm skärningspunkterna mellan linjen y = x + 1 och cirkeln x + y = 1. Svar: ( 1, 0) och (0, 1). 1

2 B-del. (Fullständiga lösningar krävs) 9. Hur många ord med sju bokstäver kan bildas med hjälp av bokstäverna i ISGLASS, om varje bokstav ska användas precis en gång? Lösning. Låt oss kalla de tre S:n för S 1, S och S 3. Nu ska vi bilda ord med hjälp av de sju olika bokstäverna IS 1 GLAS S 3. Något sådant kan göras på 7! sätt. Nu ska vi ta bort siffrorna 1,, och 3 igen och vi ser av varje permutation av dessa ger upphov till samma ord. Alltså har varje ord räknats 3! = 6 gånger var. Det rätta svaret är därför 7!/6 = = 80. Svar: På 80 olika sätt. 10. Bestäm alla z sådana att { z + z = z z = 1. Lösning. Vi skriver z = x + iy, där x och y är reella tal. Då är z = x iy varför z + z = x + iy + x iy = x och z z = (x + iy)(x iy) = x + y. Ekvationssystemet blir därför { x = x + y = 1. Första raden ger x = 1 och stoppar vi in detta i andra raden får vi y = 0. Alltså är z = x + iy = 1 + i 0 = 1. Svar: z = Vilka x uppfyller att x = x? Lösning. Eftersom x är lika med x måste x vara lika med (x ), dvs det måste gälla att x = (x ). Observera dock att vi inte kan vara säkra på att x = x bara för att x = (x ) utan vi kan ha skapat falska rötter då vi kvadrerade ekvationen. Vi måste därför kontrollera de lösningar vi hittar. Vi vecklar ut kvadraten och får x = x x+, vilket kan skrivas som x 5x + = 0. Vi kvadratkompletterar och får (x 5/) = (5/) = 9/. Alltså är x 5/ = ±3/ varför x = 5/ + 3/ = eller x = 5/ 3/ = 1. Vi kontrollerar nu x = genom att stoppa in x = i ekvationen: Vänsterledet blir = och högerledet blir = så detta stämmer, x = är en lösning. Vi kontrollerar nu x = 1 genom instoppning i ekvationen: Vänsterledet blir 1 = 1 och högerledet blir 1 = 1 så x = 1 är en falsk rot. Svar: x =. 1. Ordna de tre talen (( 10 ) 10 ) 10, (10) och i storleksordning, börja med det minsta. Motivera ditt svar. Lösning. Vi börjar med att observera att 10 = 10 > 1000 = Detta ger att (10) > 1000 = (( 10 ) 10 ) 10.

3 Med hjälp av samma olikhet, dvs 10 > 10 3, ser vi också att (( 10 ) 10 ) 10 = ( 10 ) 100 > (10 3 ) 100 = så är minst, (( 10 ) 10 ) 10 är mellanstort och (10) är störst. Svar: < (( 10 ) 10 ) 10 < (10 ) 13. Hur många olika par, dvs två kort med samma valör, går det att bilda med hjälp av en vanlig kortlek? (Hjärter tillsammans med Ruter är ett par, Hjärter tillsammans med Spader ett annat, däremot är Ruter tillsammans med Hjärter samma par som det första.) En kortlek består av totalt 5 kort, 13 olika valörer med kort i fyra olika färger var. Lösning. Vi börjar med att observera att det finns 13 olika valörer man kan få par i. I varje valör finns ( olika kort och varje val av två av dessa ger ett par. Antalet sätt att välja av saker på är = 3/ = 6. Totala antalet par ges därför enligt multiplikationsprincipen ) av 13 6 = 78. Svar: Man kan bilda 78 olika par. 1. Lös ekvationen z =. Lösning. har absolutbeloppet och argumentet π. Låt z ha absolutbeloppet r och argumentet θ. Då har z absolutbeloppet r och argumentet θ varför vi ser att r = och θ = π + nπ, där n är ett heltal. Den första ekvationen ger r = och den andra ger θ = π/+nπ/. Totalt söker vi fyra lösningar och vi får dessa genom att sätta n = 0, 1,, 3. De fyra lösningarna är därför z 1 = (cos(π/) + i sin(π/)) = ( 1 + i ) = 1 + i, z = (cos(3π/) + i sin(3π/)) = ( 1 + i ) = 1 + i, z 3 = (cos(5π/) + i sin(5π/)) = ( 1 i ) = 1 i och z = (cos(7π/) + i sin(7π/)) = ( 1 i ) = 1 i. Svar:z = 1 ± i och z = 1 ± i. C-del. (Fullständiga lösningar krävs) 15. Bevisa med hjälp av induktion att n k 3 = n (n + 1) för alla heltal n 1. 3

4 Lösning. Det minsta tal vi ska visa påståendet för är n = 1, därför ska vi börja med att visa påståendet just för n = 1. För n = 1 blir vänsterledet 1 k3 = 1 3 = 1 och högerledet är 1 (1+1) = 1 så påståendet är sant för n = 1. Vi antar nu att påståendet är sant för något heltal n = p (precis som det är för n = 1), dvs vi antar att p k 3 = p (p + 1). Vi ska nu visa att då gäller påståendet även för n = p + 1. Vänsterledet blir p+1 k 3 = p k 3 + (p + 1) 3. Enligt induktionsantagandet är summan detsamma som p (p+1) p+1 k 3 = p (p + 1) = (p + 1) (p + ) + (p + 1) 3 = (p + 1) (p + (p + 1)) = = (p + 1) ((p + 1) + 1). så därför har vi att (p + 1) (p + p + ) Alltså har vi visat att påståendet är sant för n = p+1 och enligt induktionsprincipen gäller därför att n k 3 = n (n + 1) för alla heltal n Vilken sorts geometrisk figur beskrivs av ekvationen y = 8 36x(x 1)? Vilket är det största värde som x kan anta i ekvationen ovan och vilket är det största värde som y kan anta? Lösning. Vi skriver om ekvationen genom att flytta allt utom konstanten till vänsterledet, då får vi 36x 36x + y = 8. Vi kvadratkompletterar och får ( 36 x 1 ) 36 + y = 8 så ekvationen kan skrivas som (x 1/) (1/6) + y 1 = 1. Detta är en ellips vars huvudaxlar har längden 1/6 i x led och 1 i y led och som har centrum i (1/, 0). Därför är x som mest 1/ + 1/6 = /3 och y som mest = 1. Svar: Figuren är en ellips, x är som mest /3 och y är som mest 1.

5 17. Polynomet p(z) = z 16z + 0z 5 har ett nollställe i z = i. Hitta samtliga nollställen till p(z). Lösning. Eftersom i är en rot och polynomet är reellt måste även i = + i vara en rot. Enligt faktorsatsen är därför z + i och z i faktorer i p(z). Vi multiplicerar ihop dessa faktorer och får och detta måste dela p(z). Vi beräknar att (z + i)(z i) = z z + 5 p(z) z z+5 (tex med hjälp av liggande stolen) och får p(z) z z + 5 = z + z 5. För att hitta de sista två nollställena måste vi därför lösa ekvationen z + z 5 = 0. Detta ger (z + ) = 9 så z + = ±3 varför z = ± 3. Alltså är de två sista nollställena z = 1 och z = 5. Svar: Nollställena är z = 1, z = 5 och z = ± i. 18. Lös ekvationen tan x + 1 tan x =. Lösning. Vi börjar med att använda att tan x = sin x cos x sin x cos x + cos x sin x =. Vi skriver detta på gemensam nämnare och får sin x + cos x sin x cos x =. Enligt trigonometriska ettan är täljaren 1 så ekvationen blir sin x cos x = 1. för att få ekvationen Enligt sinus för dubbla vinkeln är sin x = sin x cos x så detta kan skrivas som sin x = 1/. Detta ger x = π/6 + πn eller x = 5π/6 + πn, där n är ett heltal. Vi delar med två och får x = π/1 + πn och x = 5π/1 + πn. Svar: Lösningarna är x = π/1 + πn och x = 5π/1 + πn, där n är ett godtyckligt heltal. 5

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

forts. Kapitel A: Komplexa tal

forts. Kapitel A: Komplexa tal forts. Kapitel A: Komplexa tal c 005 Eric Järpe Högskolan i Halmstad Andragradsekvationer Obs! i är antingen 1 1 + i) eller 1 1 + i), dvs i = 1 1 + i). Obs! Se upp med roten ur negativa tal: regeln ab

Läs mer

Referens :: Komplexa tal

Referens :: Komplexa tal Referens :: Komplexa tal Detta dokument sammanställer och sammanfattar de mest grundläggande egenskaperna för komplexa tal. Definition av komplexa tal Definition 1. Ett komplext tal z är ett tal på formen

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat

2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat 2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln

Läs mer

Föreläsning 9: Komplexa tal, del 2

Föreläsning 9: Komplexa tal, del 2 ht016 Föreläsning 9: Komplexa tal, del Den komplexa exponentialfunktionen För att definiera den komplexa exponentialfunktionen utgår vi ifrån att den ska följa samma regler som för reella tal. Vi minns

Läs mer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer

TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer TATM79: Föreläsning 7 Komplexa exponentialfunktionen och binomiska ekvationer Johan Thim 9 september 05 Komplexa tal på polär form Ett komplex tal z = a+bi kan som bekant betraktas som en punkt i komplexa

Läs mer

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009 KTH Matematik SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 9 1. a) Visa att sin(6 ) = /. () b) En triangel har sidor av längd 5 och 7, och en vinkel är 6 grader. Bestäm

Läs mer

Lösning av trigonometriska ekvationer

Lösning av trigonometriska ekvationer Lösning av trigonometriska ekvationer Uppsala universitet 06 Per Engström per.engtrom@math.uu.se Inledning För att lösa problem i som innehåller trigonometriska funktioner kan mab bahöva lösa trigonometriska

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

sin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x

sin (x + π 2 ) = sin x cos π 2 + cos x sin π 2 = cos π 2 = 0 sin π 2 = 1 Svar: cos x 33 a Använd additionsformel för sinus sin(x + 55 ) = sin x cos 55 + cos x sin 55 cos 55 och sin 55 beräknas med tekniskt hjälpmedel TI-räknare c Använd additionsformel för sinus sin (x + π ) = sin x cos

Läs mer

TATM79: Matematisk grundkurs HT 2017

TATM79: Matematisk grundkurs HT 2017 TATM79: Matematisk grundkurs HT 017 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y 1 y = 1/x 1 x x TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim

Läs mer

TATM79: Matematisk grundkurs HT 2016

TATM79: Matematisk grundkurs HT 2016 TATM79: Matematisk grundkurs HT 016 Föreläsningsanteckningar för Y, Yi, MED, Mat, FyN, Frist Johan Thim, MAI y 1 y = 1/x 1 x x TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim

Läs mer

Om komplexa tal och funktioner

Om komplexa tal och funktioner Analys 360 En webbaserad analyskurs Grundbok Om komplexa tal och funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om komplexa tal och funktioner 1 (11) Introduktion De komplexa talen

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning Absolutbelopp, summor och binomialkoefficienter Johan Thim 15 augusti 015 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0 x

Läs mer

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi

A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall

Läs mer

1 Tal, mängder och funktioner

1 Tal, mängder och funktioner 1 Tal, mängder och funktioner 1.1 Komplexa tal Här skall vi snabbt repetera de grundläggande egenskaperna hos komplexa tal. För en mera utförlig framställning hänvisar vi till litteraturen i Matematisk

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter TATM79: Föreläsning 2 Absolutbelopp, summor och binomialkoefficienter Johan Thim 2 augusti 2016 1 Absolutbelopp Absolutbelopp Definition. För varje reellt x definieras absolutbeloppet x enligt { x, x 0

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Läsanvisningar till kapitel 4 i Naturlig matematik

Läsanvisningar till kapitel 4 i Naturlig matematik Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

Fall 1 2x = sin 1 (1) + n 2π 2x = π 2 + n 2π. x = π 4 + n π. Fall 2 2x = π sin 1 (1) + n 2π. 2x = π π 2 + n 2π

Fall 1 2x = sin 1 (1) + n 2π 2x = π 2 + n 2π. x = π 4 + n π. Fall 2 2x = π sin 1 (1) + n 2π. 2x = π π 2 + n 2π 48 a sin x + cos x = cos x Trigonometriska ettan sin v + cos v = 1 1 = cos x cos x = 1 x = ±cos 1 (1) + n π x = 0 + n π x = n π b sin x cos x = 1 Multiplicera båda led med sin x cos x = 1 sin x cos x =

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

vilket är intervallet (0, ).

vilket är intervallet (0, ). Inledande kurs i matematik, avsnitt P. P..3 Lös olikheten 2x > 4 och uttryck lösningen som ett intervall eller en union av intervall. P..7 Lös olikheten 3(2 x) < 2(3 + x), Multiplicera båda led med 2.

Läs mer

Tentamen i Matematik, del B, för Tekniskt basår

Tentamen i Matematik, del B, för Tekniskt basår Tentamen i Matematik, del B, för Tekniskt basår Kurskod: MVE45 B Telefonvakt: tel. Datum: 4 augusti 016 Tid för tentamen: 14.00-18.00 Hjälpmedel: Inga Betygsgränser: Betyg : 0-1, Betyg 4: - 41, Betyg 5:

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Experimentversion av Endimensionell analys 1

Experimentversion av Endimensionell analys 1 Matematikcentrum Matematik Eperimentversion av Endimensionell anals Alternativ eamination Under lp 999 kommer för Bi 99, L 99 och V 99 att ges en något modifierad kurs i Endimensionell anals. Kursen avviker

Läs mer

en primitiv funktion till 3x + 1. Vi får Integralen blir

en primitiv funktion till 3x + 1. Vi får Integralen blir Avsnitt, Integraler 6b Beräkna integralen 4 + 3 Integranden är en rationell funktion som vi kan skriva som 4 + 3. 4 3 + 3 + 3. Vi delar upp integralen i två delar och integrerar delarna var för sig, 4

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A 1 a Bestäm de komplexa koefficienterna a, b och c så att polynomet Pz z 3 + az 2 + bz + c har nollställena

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström LMA222a Matematik DAI1 och EI1 MATEMATIK Hjälpmedel: inga Calmers tekniska ögskola Datum: 1015 kl. 0.0 12.0 Tentamen Telefonvakt: Jonny Lindström 07 607040 LMA222a Matematik DAI1 oc EI1 Tentan rättas oc bedöms anonymt. Skriv tentamenskoden

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla

Läs mer

Matematik 4 Kap 4 Komplexa tal

Matematik 4 Kap 4 Komplexa tal Matematik 4 Kap 4 Komplexa tal Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande aktivitet

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden

TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden TATM79: Föreläsning 7 Arcusfunktioner och hjälpvinkelmetoden Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

Uppgiftshäfte Matteproppen

Uppgiftshäfte Matteproppen Uppgiftshäfte Matteproppen Emma ndersson 0 Joar Lind 0 Sara Lundsten 05 Malin Forsberg 06 UPPSL UNIVERSITET Innehåll Uppdelning av häfte Uppgifter Block. Bråkräkning........................ Uttryck..........................

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac

Rekursionsformler. Komplexa tal (repetition) Uppsala Universitet Matematiska institutionen Isac Hedén isac Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 21. Vi nämner något kort om rekursionsformler för att avsluta [Vre06, kap 4], sedan börjar vi med

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

Komplexa tal. z 2 = a

Komplexa tal. z 2 = a Moment 3., 3.2.-3.2.4, 3.2.6-3.2.7, 3.3. Viktiga exempel 3.-3.8, 3.9,3.20 Handräkning 3.-3.0, 3.5a-e, 3.7, 3.8, 3.25, 3.29ab Datorräkning Komplexa tal Inledning Vi skall i följande föreläsning utvidga

Läs mer

M0038M Differentialkalkyl, Lekt 8, H15

M0038M Differentialkalkyl, Lekt 8, H15 M0038M Differentialkalkyl, Lekt 8, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 29 Läsövning Summan av två tal Differensen mellan två tal a + b a b Produkten av två tal

Läs mer

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22

Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom de kommer att användas i detta avsnitt. a 11 a 12 a 21 a 22 Moment 5.3, 4.2.9 Viktiga exempel 5.13, 5.14, 5.15, 5.17, 4.24, 4.25, 4.26 Handräkning 5.35, 5.44a, 4.31a, 4.34 Datorräkning Determinant Vi förekommer bokens avsnitt, som handlar om determinanter eftersom

Läs mer

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,...

Komplexa tal. i 2 = 1, i 3 = i, i 4 = i 2 = 1, i 5 = i,... Komplexa tal Vi inleder med att repetera hur man räknar med komplexa tal, till att börja med utan att bekymra oss om frågor som vad ett komplext tal är och hur vi kan veta att komplexa tal finns. Dessa

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

Avsnitt 1, introduktion.

Avsnitt 1, introduktion. KTHs Sommarmatematik Introduktion 1:1 1:1 Kvadratkomplettering Avsnitt 1, introduktion. Det här är en viktig teknik som måste tränas in. Poängen med kvadratkomplettering är att man direkt kan se om andragradsfunktionen

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare

Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare Umeå universitet Tentamen i matematik Institutionen för matematik Introduktion till och matematisk statistik diskret matematik Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare,

Läs mer

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Avsnitt 5, introduktion.

Avsnitt 5, introduktion. KTHs Sommarmatematik Introduktion 5:1 5:1 Avsnitt 5, introduktion. Radianer Vinkelmåttet radianer är i matematiska sammanhang bättre än grader, särskilt när man sysslar med de trigonometriska funktionerna

Läs mer

ÖVNINGAR I MATEMATIK. Göran Forsling. 14 april 2011

ÖVNINGAR I MATEMATIK. Göran Forsling. 14 april 2011 ÖVNINGAR I MATEMATIK Göran Forsling 4 april 0 Förord. Tänker du börja studera på ett tekniskt/naturvetenskapligt program till hösten? Vill du ge dina studier en flygande start? I stort sett vilken teknisk/naturvetenskaplig

Läs mer

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3, Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Sommarmatte. del 2. Matematiska Vetenskaper

Sommarmatte. del 2. Matematiska Vetenskaper Sommarmatte del 2 Matematiska Vetenskaper 7 april 2009 Innehåll 5 Ekvationer och olikheter 1 5.1 Komplea tal.............................. 1 5.1.1 Algebraisk definition, imaginära rötter............. 1

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

1 Primitiva funktioner

1 Primitiva funktioner Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

den reella delen på den horisontella axeln, se Figur (1). 1

den reella delen på den horisontella axeln, se Figur (1). 1 ANTECKNINGAR TILL RÄKNEÖVNING 1 & - KOMPLEXA TAL Det nns era olika talmängder; de positiva heltalen (0, 1,,... kallas de naturliga talen N, tal som kan skrivas som kvoter av andra tal kallas rationella

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

En samling funktionspussel för gymnasienivå

En samling funktionspussel för gymnasienivå En samling funktionspussel för gymnasienivå ü Pusslenas idé Det är lätt att snabbt rita många funktionsgrafer med en grafisk räknare, men hur är det med elevernas vana och förmåga att utläsa information

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

Svar och anvisningar till arbetsbladen

Svar och anvisningar till arbetsbladen Svar och anvisningar till arbetsbladen Repetitionsmaterial (Facit) Anders Källén Notera att detta är första versionen av svaren Både felräkningar och feltrck kan förekomma! Fingeröfningar Övning,, c) 0,

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

ger rötterna till ekvationen x 2 + px + q = 0.

ger rötterna till ekvationen x 2 + px + q = 0. KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 2.1 Introduktion Introduktion Avsnitt 2 handlar om den enklaste typen av algebraiska uttryck, polynomen. Eftersom polynom i princip

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

TATM79: Föreläsning 8 Arcusfunktioner

TATM79: Föreläsning 8 Arcusfunktioner TATM9: Föreläsning 8 Arcusfunktioner Johan Thim augusti 0 Inverser till trigonometriska funktioner Om vi ritar upp funktionen y = sin ser vi följande: y y = sin Självklart går det inte att hitta en invers

Läs mer