sluten, ej enkel Sammanhängande område

Storlek: px
Starta visningen från sidan:

Download "sluten, ej enkel Sammanhängande område"

Transkript

1 POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge att = ( t), a t b ä en enkel, sluten kuva om ( a) = ( b) och ( t1) ( t) om t 1 < t och ( t1, t) ( a, b). enkel sluten kuva ej sluten kuva sluten, ej enkel Definition B1. Ett omåde Ω i R n kallas sammanhängande om två godtckliga punkte i Ω kan föbindas med en kontinuelig kuva som helt ligge i Ω. Ej sammanhängande omåde ( dela) Sammanhängande omåde Definition B.( R )Ett sammanhängande omåde Ω i planet R kallas enkelt sammanhängande om vaje enkel, sluten kontinuelig kuva i Ω omslute ett omåde som helt ligge i Ω. ( Med anda od Ω ä ett sammanhängande omåde utan hål) Sammanhängande men ej enkelt sammanhängande Enkelt sammanhängande omåde (omåde utan hål) 1 av 8

2 Definition B3. (R 3 ) Ett sammanhängande omåde Ω i planet R 3 kallas enkelt sammanhängande om vaje enkel, sluten kontinuelig kuva L i Ω kan kontinueligt defomeas, utan att lämna Ω, till en punkt i Ω. ( Med anda od, till vaje enkel, sluten kontinuelig kuva L kan vi skapa en ta som ligge i Ω och ha L som anden. ) POTENTIALFÄLT ( =konsevativt fält) Vi betakta ett vektofält definiead i ett öppet omåde Ω,,,, i, elle,,,,,,,, i. Definition1. Vektofältet kallas ett potentialfält elle ett konsevativt fält i omådet Ω om det finns en C 1 funktion sådan att Funktionen kallas då en potential till fältet elle en potentialfunktion till. Eftesom, och,, kan vi skiva (*) på följande sätt: Definition a (fö ä. Vektofältet, kallas ett potentialfält elle ett konsevativt fält i ett öppet omådet Ω om det finns en C 1 funktion sådan att Definition b. Vi säge att uttcket Pdx + Qd ä en exakt diffeential i finns en C 1 - funktion U så att du = Pdx + Qd i omådet Ω. Sats om exakta diffeentiale i R :, ä ett potentialfält i Ω med potentialen U då och endast då gälle du = Pdx + Qd dvs uttcket Pdx + Qd ä en exakt diffeential i Ω. Ω R, om det Definition 3a (fö ä. Vektofältet,, kallas ett potentialfält elle ett konsevativt fält i ett öppet omådet Ω om det finns en C 1 funktion sådan att, av 8

3 3 Definition 3b. Vi säge att uttcket Pdx + Qd + Rdz ä en exakt diffeential i Ω R om det finns en C 1 -funktion U så att du = Pdx + Qd i omådet Ω. Sats om exakta diffeentiale i R 3 : {,, ä ett potentialfält i Ω med potentialen U} { du = Pdx + Qd + Rdz dvs uttcket Pdx + Qd + Rz ä en exakt diffeential i Ω. } ================================================================ Exempel 1. a) Visa att F = (x, x + 3) ä ett potentialfält (dvs att F ha en potentialfunktion U ( x, ). b) Bestäm fö vektofältet F den potentialfunktion U( x, som satisfiea U ( 1,1) = 3. Lösning: a) Vi löse sstemet: U x U = x = x Ekv Ekv Ekv 1 medfö U ( x, = xdx = x + ϕ ( (*) Fö att bestämma ϕ ( substituea vi (*) i ekv U = x + 3 x + ϕ ( = x + 3 ϕ ( = 3 ϕ = 3 + C Alltså ha fältet en potential U ( x, = x + ϕ ( = x C Kontoll : 3 Dämed ha vi visat att fältet ä ett potentialfält (= konsevativt fält) Sva a), 3 b) Villkoet U ( 1,1) = 3 C= 1 och däfö, 31 Sva b), 31 ================================================ Nödvändiga och tilläckliga villko fö ett potentialfält Ett nödvändigt villko fö ett potentialfält i R. Låt, vaa ett C 1 vektofält ( dvs P och Q ha kontinueliga deivato) i ett öppet omådet Ω i R. Om ä ett potentialfält då gälle {Eftesom } ö,. 3 av 8

4 Alltså ä ett nödvändigt villko fö att ett C 1 vektofält, bli potentialfält i omådet Ω. Nödvändiga villko fö ett potentialfält i R 3. Låt,, vaa ett C 1 vektofält ( dvs P och Q ha kontinueliga deivato) i ett öppet omådet Ω i R. Om ä ett potentialfält då gälle {Eftesom, },, ö,, Alltså,, ä nödvändiga villko fö att ett C 1 vektofält,, bli potentialfält omådet Ω. Tilläckliga villko fö ett potentialfält Om omådet Ω ä ett enkelt sammanhängande omåde ( ett sammanhängande omåde utan hål) då ä ovanstående villko även tilläckliga fö att ett C 1 vektofält bli ett potentialfält. T ex fö R 3 ha vi följande Om följande villko ä uppfllda 1. Ω ä ett enkelt sammanhängande omåde.,, ha kontinueliga patiella deivato 3.,, då ä,,) ett potentialfält i Ω. Exempel. Avgö om följande vektofält ä potentialfält i Ω. a),5 dä Ω ä hela R b) 5, 10 8 dä Ω ä hela R Sva a) 10,. Nej, eftesom i R. Sva b) Ja eftesom, P, Q ha kontinueliga patiella deivato och 10 i hela R ( som ä ett enkelt sammanhängande omåde) Exempel 3. Avgö om följande vektofält ä potentialfält i hela R. 4 av 8

5 a),, 3, dä Ω ä klotet 1 b),,, dä Ω ä klotet 1 Sva a) Nej, eftesom 0 1. Sva b) Ja eftesom, 1. Ω ä ett enkelt sammanhängande omåde.,, ha kontinueliga patiella deivato 3.,, Uppgift 1. Avgö om vekto fältet ä ett potentialfält i R. Om detta ä fall bestäm fältets potential U(x, om U ( 1,1) = 4. a),4 b) 5, Lösning a) 4, 0 Sva a) Fältet ä inte ett potentialfält eftesom. Lösning b) Fältet ä ett potentialfält eftesom och alla patiella deivato ä kontinueliga i R. Vi löse sstemet: U x = U = + Ekv 1 medfö U( x, = dx = + ϕ ( (*) Fö att bestämma ϕ ( substituea vi (*) i ekv U = + + ϕ ( = + ϕ ( = ϕ = + C Alltså U ( x, = + ϕ ( = + + C Statvillkoet U ( 1,1) = 4 C=1/ och U ( x, = + 1 Sva b) U ( x, = + + Uppgift. Avgö om vektofältet ä ett potentialfält i R 3. Om detta ä fall bestäm fältets potential. 5 av 8

6 a),, 3 b) ( x + z, + xz, x + 3) Lösning a) Vi kolla de nödvändiga villkoen,, ä uppfllda. Eftesom 3, se vi att anda villkoet ä INTE uppflld. Sva a) Fältet ä inte ett potentialfält eftesom. Lösning b) P,Q,R ha kotinueliga deivato i hela R 3 och villkoen,, ä uppfllda. alltså ä ett potentialfält. Fö att finna potentialen U löse vi sstemet : U x = x + z ( ekv1) U = + xz ( ekv) U z = x + 3 ( ekv3) Fån ekv1 ha vi U ( x,, = (x + dx = x + xz + g(, (*) Fö att finna g (, substituea vi (*) i (ekv ) U = + xz xz + g ý (, = + xz g ý (, = g( x, = + Detta och (*) ge U ( x,, = x + xz + + h( (**) Fö att finna h ( substituea vi (**) i (ekv3) U z = x + 3 x + h z ( = x + 3 h( = 3z + C Detta och (**) ge U ( x,, = x + xz + + 3z + C. ( Kontoll U x = x + z = P, U = + xz = Q, U z = x + 3 = R h(. Sva b) U ( x,, = x + xz + + 3z + C KURVINTEGRALER I ETT POTENTIALFÄLT Potentialfält ( =konsevativa fält) ha en viktig egenskap: deas kuvintegale ä obeoende av vägen utan endast av kuvans stat- och ändpunkt. Sats 1a. (Om kuvintegale i ett potentialfält. ) Låt ä ett potentialfält med potentialen U i det öppna sammanhängande omådet Ω. Fö vaje kuva i Ω, med statpunkt i A och ändpunkt i B, gälle då att. Fån ovanstående fomell ha vi speciellt att kuvintegalen i ett potentialfält ä obeoende av vägen. Integalen beo endast av statpunkten A och ändpunkten B. 6 av 8

7 Omvänt påstående ä också sant, och dämed ha vi följande ekvivalens som kaakteisea potentialfält (= konsevativa fält): Sats 1b. Låt ä ett kontinueligt vektofält i det öppna sammanhängande omådet Ω och γ en C 1 kuva som ligge i Ω. Då gälle : { F = ( P, Q) ä potentialfält} {Integalen F d beo ej av vägen } γ Ett annat sätt att fomulea sats 1a ä följande sats. Sats. ( Om kuvintegale längs en sluten kuva i ett potentialfält.) Låt ä ett kontinueligt potentialfält med potentialen U i det öppna sammanhängande omådet Ω. Då gälle att kuvintegal längs vaje sluten stckvis C 1 kuva i Ω ä 0 d v s 0. Uppgift 3. Avgö om vektofältet, ä ett potentialfält i R. Om detta ä fall bestäm fältets potential och beäkna med hjälp av en potentialfunktion längs då a) ä linjestcken fån A (0,0) till 4,6 och fån 4,6 till 1, / b) ä cikeln 4. Lösning : Eftesom P, Q ha kontinueliga patiella deivato och 0 i hela R ( som ä ett enkelt sammanhängande omåde) se vi att ä ett potentialfält. Vi bestämme, fån ekvationena U x ekv1 U cos ekv Fån ekv1 ha vi, som vi substituea i ekv fö att få f(: Vi substituea i (*) och få potentialen, a) Fö att beäkna kuvintegalen i potentialfältet behöve vi inte äkna diekt längs kuvan utan vi använde en potentialfunktion t ex ( om vi ta C=0),. Vi ha ä 1, / 0,0 0 ( mellan punkt 4,6 spälla ingen i det hä fallet) b) I det hä fallet ä en sluten kuva (cikeln 4 och däfö ä kuvintegalen lika med 0, 0. 7 av 8

8 Uppgift 4. Beäkna längs dä,, och ä linjestckena fån (0,0,0) till (4,5,6) och fån (4,5,6) till (1,1,1) Sva: Vi läse ekvationena U U U ekv1 ekv ekv3 och få potentialen U C med hjälp av en potentialfunktion ( Kontollea själv). Däefte äkna vi kuvintegalen ä 1,1,1 0,0,0 1 ( mellanpunkten 4,5,6 spälla ingen i det hä fallet). Uppgift Beäkna längs dä F = ( z, xz, 3x z + längs γ som definieas av π 3 π π ( t) = ( t cos( t 1), t sin( t ), t (sin( t ) + cos( t )) dä 0 t 1 3 Lösning: Fältet ha potentialen U = x z + z ( kontollea själv); dessutom t=0 svaa mot punkten (0,0,0) t=1 ge punkten (1,1,1) Vi ha ä 1,1,1 0,0,0 Uppgift 6. Bestäm p, om möjligt så att fältet F bli konsevativt (= potentialfält ) i hela R 3 dä a) F = ( z, xz, px z + b) F = ( z, 3xz, px z + Tips: a) Fösta två, bland 3 nedanstående villko, ä uppenbat uppfllda 1. Ω (hela R 3) ä ett enkelt sammanhängande omåde.,, ha kontinueliga patiella deivato 3.,, Vi bestämme p så att tedje villkoet dvs,, också bli uppflld Sva a) p= b) Saknas lösning eftesom Q x = 3z P = z (obeoende av p). 8 av 8

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0) Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll

Läs mer

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)

2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig) 1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIKPROV, LÅNG LÄROKURS 904 BESKRIVNING AV GODA SVAR De beskivninga av svaens innehåll och oängsättninga som ges hä ä inte bindande

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15 Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna. Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

14. Potentialer och fält

14. Potentialer och fält 4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

dx x2 y 2 x 2 y Q = 2 x 2 y dy, P dx + Qdy. Innan vi kan använda t.ex. Greens formel så måste vi beräkna de vanliga partiella derivatorna.

dx x2 y 2 x 2 y Q = 2 x 2 y dy, P dx + Qdy. Innan vi kan använda t.ex. Greens formel så måste vi beräkna de vanliga partiella derivatorna. Uppgift Beräkna kurvintegralen + d där är kurvan = från (, ) till (4, ). Lösning Här har vi ett fält F =(P, Q), där d, () så integralen är på formen P = +, Q = d, P d + Qd. Innan vi kan använda t.e. Greens

Läs mer

1.1 Stokes sats. Bevis. Ramgard, s.70

1.1 Stokes sats. Bevis. Ramgard, s.70 1 Föreläsning 7 1.1 tokes sats ats 1 åt vara en yta i R med randen. Vi antar att orienteringen på och är vald på ett sådant sätt att om man går längs i den valda riktningen då ligger till vänster (på vänstersidan).

Läs mer

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar

FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar FFM234, Klassisk fysik och vektofält - Föeläsningsanteckninga Chistian Fossén, Institutionen fö fysik, Chalmes, Götebog, Sveige Oct 16, 2018 11. Elektomagnetiska fält och Maxwells ekvatione Vi stata med

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys Föreläsning 13 Institutionen för matematik KTH VT 2018 Administrativt 0 Anmäl er till tentan! Vektoranalys 1 Dagens program: Vektorfält Konservativa vektorfält Potentialfunktioner Bokens kapitel 15.1-15.2

Läs mer

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper. Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =

Läs mer

6 KVANTSTATISTIK FÖR IDEALA GASER

6 KVANTSTATISTIK FÖR IDEALA GASER Kvantstatistik fö ideala gase 6 6 KVANTSTATISTIK FÖR IDEALA GASER 6. Fomuleing av det statistiska poblemet Vi betakta en gas av identiska patikla inneslutna i en volym V vilken befinne sig i ämvikt vid

Läs mer

Föreläsning 13, SF1626 Flervariabelanalys

Föreläsning 13, SF1626 Flervariabelanalys Föreläsning 13, SF1626 Flervariabelanalys Haakan Hedenmalm (KTH, Stockholm) 28 november 2017 KTH Rekommenderade uppgifter: 15.1: 3, 5, 17. 15.2: 3, 5, 7, 21. Vektorfält DEFINITION Ett skalärfält Φ på ett

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man

Läs mer

Vektoranalys, snabbrepetition. Vektorfält

Vektoranalys, snabbrepetition. Vektorfält Vektorfält Ett vektorfält F är en funktion F : R 2 R 2. (Eller mer allmänt en funktion R n R n.) Observera att F(x, y) har två komponenter, som båda beror av x och y. Låt oss kalla dessa komponenter för

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z)

Visa att vektorfältet F har en potential och bestäm denna. a. F = (3x 2 y 2 + y, 2x 3 y + x) b. F = (2x + y, x + 2z, 2y 2z) Kap. 15.1 15.2, 15.4, 16.3. Vektorfält, integralkurva, konservativa fält, potential, linjeintegraler av vektorfält, enkelt sammanhängande område, oberoendet av vägen, Greens formel. A 1701. Undersök om

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater.

TATA44 Lösningar 24/8/ ) Låt S vara den del av x 2 + y 2 + z 2 = 2 innanför cylindern x 2 + y 2 = 1. Inför cylinderkoordinater. TATA Lösningar /8/.. Låt vara den del av x + y + z innanför cylindern x + y. Inför cylinderkoordinater. Parametrisera med ortsvektorn r(ρ, φ (ρ cos φ, ρ sin φ, ρ som man kan skriva som r(ρ, φ ρ ˆρ + ρ

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,

Läs mer

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av

Läs mer

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom

Läs mer

EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM

EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 4: Geometriska transformationer och plottning av figurer

TMV166 Linjär algebra för M. Datorlaboration 4: Geometriska transformationer och plottning av figurer MATEMATISKA VETENSKAPER TMV166 2017 Chalmes tekniska högskola Datolaboation 4 Eaminato: Ton Stillfjod TMV166 Linjä algeba fö M Datolaboation 4: Geometiska tansfomatione och plottning av figue Allmänt Vi

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

23 Konservativa fält i R 3 och rotation

23 Konservativa fält i R 3 och rotation Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Lektionsblad 9, tis 16/2 2010

Lektionsblad 9, tis 16/2 2010 Lektionsblad 9, tis 16/2 2010 Först en gång till optimering med bivillkor. Lös uppgifterna 4.25 (om du har problem med denna väldigt typiska uppgift, så studera även lösningen till 4.24), 4.26 (nästan

Läs mer

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med

TATA44 ösningar till tentamen 13/01/ ) Paraboloiden z = 2 x 2 y 2 skär konen z = x 2 + y 2 då x 2 + y 2 = 2 x 2 y 2. Med TATA44 ösningar till tentamen 1/1/211. 1. Paraboloiden z 2 x 2 y 2 skär konen z x 2 + y 2 då x 2 + y 2 2 x 2 y 2. Med ρ x 2 + y 2 då är ρ 2 + ρ 2 vilket ger ρ + 2ρ 1. åledes är ρ 1 ty ρ. Vi betecknar den

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

TMV036 Analys och Linjär Algebra K Kf Bt, del C

TMV036 Analys och Linjär Algebra K Kf Bt, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola Datum: -- kl 4 8 Tentamen Telefonvakt: Richard Lärkäng tel 3-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C Tentan rättas och bedöms anonymt Skriv

Läs mer

TATA44 Lösningar 26/10/2012.

TATA44 Lösningar 26/10/2012. TATA44 Lösningar 6/1/1. 1. Lösning 1: Konen z x + y skär sfären x + y + (z 5 5 då 4z + (z 5 5 och enkla räkningar ger nu z z some ger z(z och vi ser att z eller z. Observera att punkter på sfären med z

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Värt att memorera:e-fältet från en punktladdning

Värt att memorera:e-fältet från en punktladdning I summy ch.22 och fomelld ges E fån lddd lednde sfä, linjelddning, cylindisk lddning, lddd isolende sfä, lddd yt och lddd lednde yt Vät tt memoe:e-fältet fån en punktlddning Fån fö föeläsningen: Begeppet

Läs mer

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm) Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm

Läs mer

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2

Lösningsförslag till tentamen TMA043 Flervariabelanalys E2 Lösningsförslag till tentamen TMA4 Flervariabelanalys E2 21-8-1 kl. 8. 12. Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Anders Martinsson, telefon: 7 88 4 Hjälpmedel: bifogat

Läs mer

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13

LUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13 LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4

Läs mer

TENTAMEN VEKTORANALYS ED1110 Vektoranalys SI1143 MatematiskFysik, del 1

TENTAMEN VEKTORANALYS ED1110 Vektoranalys SI1143 MatematiskFysik, del 1 Fusionplasmafysik Skolan fö Elekto- och Systemteknik KTH, Teknikingen Loenzo Fassinetti - Jan Scheffel TENTAMEN VEKTORANALYS ED Vektoanalys SI4 MatematiskFysik, del kl.. - 6. tosdagen 9 oktobe 9 (+ egenättning

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.

Förra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar. Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals

Läs mer

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl

Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: kl MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola atum: 2-3-9 kl. 8.3 2.3 Tentamen Telefonvakt: Richard Lärkäng tel. 73-8834 TMV36 Analys och Linjär Algebra K Kf Bt, del C

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

Tentamen i Mekanik I del 1 Statik och partikeldynamik

Tentamen i Mekanik I del 1 Statik och partikeldynamik Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

Primitiva funktioner i flerdim

Primitiva funktioner i flerdim Analys 36 En webbaserad analyskurs Differentialkalkyl Primitiva funktioner i flerdim Anders Källén MatematikCentrum LTH anderskallen@gmail.com Primitiva funktioner i flerdim 1 (11) 1 Introduktion Att bestämma

Läs mer

AB2.4: Kurvintegraler. Greens formel i planet

AB2.4: Kurvintegraler. Greens formel i planet AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF166 Flervariabelanalys Lösningsförslag till tentamen 15-8- EL A 1. Betrakta funktionen f som är definierad i området där x + y genom f(x, y, z) x z x + y. (a) Beräkna gradienten f(x, y, z). (1 p) (b)

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.

1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende. Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna

Läs mer

= 0 genom att införa de nya

= 0 genom att införa de nya UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.

Läs mer

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat.

Relationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat. Database: Relationsalgeba 2-11 Relationsalgeba Relationsalgeba bestå av en mängd opeatoe som ta en elle två elatione som input och poducea en ny elation som esultat. De fundamentala opeationena ä unäa

Läs mer

x ( f u 2y + f v 2x) xy = 24 och C = f

x ( f u 2y + f v 2x) xy = 24 och C = f Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL 7

LÖSNINGAR TILL PROBLEM I KAPITEL 7 LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen

Läs mer

Övningstenta: Lösningsförslag

Övningstenta: Lösningsförslag Övningstenta: Lösningsförslag Onsdag 5 mars 7 8:-: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. (4 poäng) Bestäm tangentplanet i punkten (,, ) till ytan z f(x, y) där f(x, y) x 4

Läs mer

Kontrollskrivning Mekanik

Kontrollskrivning Mekanik Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)

Läs mer

REDOVISNINGSUPPGIFT I MEKANIK

REDOVISNINGSUPPGIFT I MEKANIK Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)

Läs mer