=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

Storlek: px
Starta visningen från sidan:

Download "=============================================== Plan: Låt π vara planet genom punkten P = ( x1,"

Transkript

1 Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) P v Räta linjens ekvation på paametefom en vektoekvation) x, y, = x, y, z ) + t v, v, ) 2 v3 Räta linjens ekvatione på paametefom: te skaläekvatione) = x + t v y = y + t v2 z = z + t v3 =============================================== Plan: Låt π vaa planet genom punkten P = x, y, som ha nomalvekton N = A, B, C) 0 ; låt vidae M x,y, vaa en godtycklig punkt i planet. Då ä PM vinkelät mot nomalvekton N. Däfö ha vi följande ekvatione: Planets ekvation på vektofom: ) N = 0 dä = OM = x, y,, = OP = x, y, ) och O=0,0,0) z Planets ekvation på koodinat fom allmän fom, vesion ) : A x x ) + B y y ) + C z z ) 0 = Efte föenkling ha vi Planets ekvation på allmän fom vesion 2) : Ax + By + Cz + D = 0 P N M Om planet ä paallell med två icke-paallella vektoe a och b skilda fån 0 då kan planets ekvation skivas på paametefom: = + sa + tb elle x, y, = x, y, + s ax, ay, az ) + t bx, by, bz ). Annat skivsätt med kolonnvektoe) x x ax bx y = y + s ay + t by z z az bz ===============================================

2 Amin Halilovic: EXTRA ÖVNINGAR Övningsuppgifte: 2 Räta linje och plan Uppgift. En ät linje gå genom punktena A=,2,3) och B=3,4,0). Bestäm linjens ekvation. v = AB = 2,2,7) ä en iktningsvekto. Linjens ekvation på paametefåm : x,y,=,2,3)+t2,2,7) Sva: x,y,=,2,3)+t2,2,7) Uppgift 2. Ett plan gå genom punkten A=,3,). Planet ä paallell med vektoena u =,2,3) och v =,,2 ). Bestäm planets ekvation a) på paametefom N b) på fomen Ax + By + Cz + D = 0. v a) x,y,=,3,)+t,2,3)+s,,2) b) N = u v =,, ). u Planets ekvation: A x x) + B y y) + C z = 0 x ) + y 3) z ) = 0 x + y z 3 = 0 Sva: Planets ekvation: x + y z 3 = 0 Uppgift 3. Ett plan gå genom punktena A=,, 2) och B=,5,2) och C=3,0,2). Bestäm planets ekvation. N = AB AC = 20,6, 6) Vi kan använda punkten A och vekton N 2 = 0,8, 3) som ä paallell med N ). A x x ) + B y y ) + C z z ) = 0 0 x ) + 8 y ) 3 z + 2) = 0 0x + 8y 3z 24 = 0 Sva: Planets ekvation: 0 x + 8y 3z 24 = 0 Uppgift 4. Ett plan gå genom punktena A=,,2) och B=,2,3). Planet ä paallell med linjen x, y, = 3,4,5) + t2,,) Bestäm planets ekvation. Vektoena u = AB = 0,, ) och linjens iktningsvekto v = 2,, ) Bestäm planets ekvation. N = u v = 0,2, 2). Planets ekvation: ä paallella med planet

3 Amin Halilovic: EXTRA ÖVNINGAR A x x ) + B y y ) + C z z ) = 0 0 x ) + 2 y ) 2 z 2) = 0 2 y 2z + 2 = 0 Sva: Planets ekvation: y z + = 0 3 Räta linje och plan Uppgift 5. En ät linje gå genom punkten A=,2,0). Linjen ä otogonal vinkelät) mot planet x + y + 3 z + = 0. Bestäm linjens ekvation. Planets nomal v =,,3 ) ä en ä en iktningsvekto. Linjens ekvation på paametefåm : x,y,=,2,0)+t,,3) Sva: x,y,=,2,0)+t,,3) Uppgift 6. En ät linje gå genom punkten A=,2,0). Linjen ä paallell med skäningslinjen mellan planen x + y + z 3 = 0 och x + 2 y + 3z + = 0 Bestäm linjens ekvation. Vi löse systemet med Gaussmetoden: + y + z 3 = 0 + y + z 3 = 0 x + 2y + 3z + = 0 y + 2z + 4 = 0 En fi vaiabel z=t. y = 4 2t x = 3 y z x = 7 + t dvs x = 7 + t y = 4 2t z=t Alltså ha skänings linje ekvation x,y,=7, 4,0)+t, 2,) Den sökta linjen ha samma iktnings vekto men gå genom punkten A. Däfö: x,y,=,2,0)+t, 2,) Sva: Linjens ekvation ä x,y,=,2,0)+t, 2,) Uppgift 7. Bestäm eventuella skäningspunkte mellan linjen x,y,=,0,0)+t,2,) och följande plan: a) x + y + z + 3 = 0 b) x y + z = 0 c) x y + z = 0 Fån x,y,=,0,0)+t,2,) ha vi

4 Amin Halilovic: EXTRA ÖVNINGAR 4 Räta linje och plan = + t L : y = 2t z = t a) Vi substituea linjens ekvatione x = + t, y = 2t och z = t i planets ekvation x + y + z + 3 = 0 och få + t + 2t + t + 3 = 0 t = Fö t = ha vi x=+t = 0, y=2t = 2 och z = t =. Dämed ha vi fått en skäningspunkt P 0, 2, ) b) Vi substituea linjens ekvatione x = + t, y = 2t och z = t i planets ekvation x y + z = 0 och få + t 2t + t = 0 0 = Ingen lösning c) Vi substituea linjens ekvatione x = + t, y = 2t och z = t i planets ekvation x y + z = 0 och få + t 2t + t + = 0 0 = 0, sant fö vaje t vaje punkt på linje ligge i planet. Sva: a) P 0, 2, ) b) Ingen lösning c) Linjen ligge i planet. Uppgift 8. Bestäm eventuella skäningspunkte mellan följande linje x,y,=,2,3)+t,,) och x,y,=3,5,7)+s,2,3). Linjenas ekvatione kan skiva som x = + t = 3 + s L : y = 2 + t, L2 : y = 5 + 2s z = 3 + t z = 7 + 3s Vi löse systemet: + t = 3 + s t = 2 + t = 5 + 2s s = 3 + t = 7 + 3s Häav x=2, y=3 och z=4 Sva: Skäningspunkten ä P=2,3,4). Uppgift 9. Vi betakta två ymdfakoste i ett lämpligt vald koodinatsystem. En ymdfakost ö sig längs banan x, y, =2+3t, +2t, 3+7t) dvs fakosten befinne sig i punkten x,y, vid tidpunkten t.

5 Amin Halilovic: EXTRA ÖVNINGAR 5 Räta linje och plan En annan ymdfakost ö sig länga banan x,y,= +3t,6 t, +4t). a) Kocka fakostena? Motiveing kävs!) b) Skä fakostenas bano vaanda? Motiveing kävs!) a) Sva: Fakostena kollidea ej eftesom systemet 2 + 3t = + 3t + 2t = 6 t 3 + 7t = + 4t sakna lösninga b) Både fakostena ö sig längs äta linje. Deas bano ha följande ekvatione: L: 2+3t, +2t, 3+7t) L2: +3s,6 s, +4s) Vi söke skäningen mellan linjena och få ekvationssystemet 2 + 3t = + 3s + 2t = 6 s 3 + 7t = + 4s som ha lösningen s=3, t=2. Sva: Banona skä vaanda. Fakost ä i skäningspunkte vid tidpunkten t=2 tidsenhete; fakost 2 ä i samma punkt vid tidpunkten t=3 tidsenhete. Uppgift 0. Ett plan α ha en nomalvekto n =,0,3). Punktena A =,0,) och B =,2,) ligge i planet α. Låt L beteckna den linje som gå genom punktena A och B. a) Bestäm en vekto i planet α som ä vinkelät mot linjen L. 2p) b) Bestäm en vekto i planet α som bilda 45 gades vinkel mot linjen L. 2p) a) Vekton u =,2,),0,)=0,2,0) ä linjens iktningsvekto. Vi söke en vekto som ligge i planet och som ä vinkelät mot linjens iktningsvekto. Alla vektoe som ligge i planet ä vinkeläta mot n =,0,3). Däfö ä v vinkelät mot både n =,0,3) och u = 0,2,0). En sådan vekto ä i j k v = n u = 0 3 = i j + k = 6i + 2k = 6,0,2) b) Vi nomea vektoena u och v : u v 3 Beteckna u ˆ = = 0,2,0) = 0,,0 ) och v ˆ = = 6,0,2) =, 0, ). u 4 v

6 Amin Halilovic: EXTRA ÖVNINGAR 6 Räta linje och plan Vinkeläta enhetsvektoena û och vˆ spänne upp en kvadat. Däfö bli vinkeln mellan o diagonalen u ˆ + vˆ ) och linjen som bestäms av û lika med 45. Alltså ä vekton 3 3 d = uˆ + vˆ = 0,,0) +, 0, ) =,, ) en vekto som bilda 45 gades vinkel mot linjen. 3 Anmäkning: Den anda diagonalen uˆ vˆ =,, ) bilda också en 45 gades 0 0 vinkel mot linjen. Sva a) 6,0,2) elle en annan vekto paallell med 6,0,2), till ex. 3,0, ) ) b) En lösning ä 3,, ) Vaje vekto som ä paallell med 3,, ) elle med,, ) ä också en lösning) Uppgift. Låt θ vaa vinkeln mellan tedimensionella elle tvådimensionella vektoe a och b θ θ vaa. Bestäm en vekto som bilda vinkeln med a och samma vinkel med b. 2 2 a Som en lösning kan vi ta diagonalen i den omb vas sido ä enhetsvektoe a b och. Alltså a b d = + b a b Sva: En lösning ä a b d = +. Vaje vekto av typ kd, k > 0 ä också en lösning. a b

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + ) LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

HIGH SCHOOL ANSVAR TRYGGHET KVALITET SEDAN 1958 WWW.STS.SE ÖPPNA DITT HEM BLI VÄRDFAMILJ!

HIGH SCHOOL ANSVAR TRYGGHET KVALITET SEDAN 1958 WWW.STS.SE ÖPPNA DITT HEM BLI VÄRDFAMILJ! HIGH SCHOOL ANSVAR TRYGGHET KVALITET SEDAN 1958 WWW.STS.SE ÖPPNA DITT HEM BLI VÄRDFAMILJ! HEJ! VÄLKOMMEN TILL STS. V ö x ö ä. M, äj äöä ä. V pp p p? T p ä p ä ä S p. N, ä p ö, ä ä.. N äj j. E! STS p p.

Läs mer

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar 1(5) & nt s MLJösÄKRtNG INNENALLER MILJöPOLICY ch ARBETSMILJöPOLIGY K:\Malla MILJOPOLICY 2(5) # nt s Denna miljöplicy gälle Elcente. Syfte Elcente ska följa aktuell miljölagstiftning, egle, kav ch nme

Läs mer

Ta ett nytt grepp om verksamheten

Ta ett nytt grepp om verksamheten s- IT ä f f A tem, sys knik & Te Ta ett nytt gepp om veksamheten Vå övetygelse ä att alla föetag kan bli me lönsamma, me effektiva och me välmående genom att ha ätt veksamhetsstöd. Poclient AB gundades

Läs mer

Surveysektionens årsmöte 20 oktober 2004.

Surveysektionens årsmöte 20 oktober 2004. uvesektonens åsmöte oktobe 4. åga aspekte på anals av suvedata av Lennat odbeg, CB ----------------------------------------------------------------- Anals av suve-data kan betda allt mölgt...tll eempel:

Läs mer

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform)

Radien r och vinkeln θ för komplexa tal i polär form och potensform: KOMPLEXA TAL. ) (polär form) (potensform) Armn Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL a + b, där a, b R (rektangulär form r(cosθ + snθ (polär form θ re (potensform Om a + b och a, b R då gäller: a kallas realdelen av och betecknas Re( b kallas magnärdelen

Läs mer

Kartläggning av brandrisker

Kartläggning av brandrisker Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog

Läs mer

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 18.3.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 8..05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Algebra, exponentialekvationer och logaritmer

Algebra, exponentialekvationer och logaritmer Höstlov Uppgift nr 1 Ge en lösning till ekvationen 0 434,2-13x 3 Ange både exakt svar och avrundat till två decimalers noggrannhet. Uppgift nr 2 Huvudräkna lg20 + lg50 Uppgift nr 3 Ge en lösning till ekvationen

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,

Lösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall, Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte):

Med ett samband menar vi hur något beror av någonting annat. Det skulle t.ex. kunna vara (sant eller inte): Linjära samband Räta linjens ekvation Förmågan att se, analsera och förstå olika samband är egenskaper som är viktiga att ha i vardagslivet men oundvikliga för kommande studier och arbetsliv. Med ett samband

Läs mer

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8 Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft

Läs mer

Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen.

Ditt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen. Ditt nya dömboende finns hä. I Nykvan. 72 toppmodena hyesätte 1-4 um och kök i kv. Kaaffen. Fötätning i centalt läge. Kaaffen bestå av två punkthus om sex våninga samt två tevånings vinkelhus, samtliga

Läs mer

Vakuumpumpar/-ejektorer Large

Vakuumpumpar/-ejektorer Large P6040 Tekniska data Vakuumflöde Patenterad COAX teknologi. Trestegs COAX cartridge MIDI Välj en Si cartridge för extra vakuum flöde, en Pi cartridge för högt flöde vid lågt drivtryck och Xi cartridge om

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 172 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 172 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 12-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Analys av mätdata för beräkning av noggrannhet i fordonsklassificering och hastighetsregistrering. Rapport 01

Analys av mätdata för beräkning av noggrannhet i fordonsklassificering och hastighetsregistrering. Rapport 01 Analys av mätdata fö beäkning av noggannhet i sklassificeing och hastighetsegisteing Rappot 01 Mätning i Klett nov 2011 och Amsbeg januai 2012 Kund Tafikveket Mottagae Pe Melén, Dennis Andesson Vesion

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

7. Sampling och rekonstruktion av signaler

7. Sampling och rekonstruktion av signaler Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid

Läs mer

Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika

Solenergi. Clearline. en introduktion. Solenergi. Solenergi En introduktion (v1.0) Warm-Ec Scandinavia AB Box 110 671 23 Arvika En intoduktion (v1.0) en intoduktion En intoduktion (v1.0) Innehåll 1.0 Olika fome av solenegi... 3 1.1 Passiv solinvekan...3 1.2 Solfångae...3 1.3 Solcelle...3 1.4 Koncentation av solljuset...4 2.0 Hu

Läs mer

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109 PCA/MFFM, ES/NS 2-4-29 (7) Föetagens ekonomi Tillbakaäkning i SNI27 NV9 Innehållsföteckning. Sammanfattning... 2 2. Bakgund... 2 2. Den nya näingsgensindelningen (SNI27)... 2 2.2 Föetagens ekonomi... 2

Läs mer

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn Eic Sandstöm Diekt telefon 044-781 46 29 E-post:eic.sandstom@fuuboda.se 2003-10-20 Till Folkbildningsådet Sammanfattande edovisning av ådslag/konfeens om Folkbildningens famsyn 1. Fakta om seminaiet/ådslaget

Läs mer

Särskild utbildning för vuxna

Särskild utbildning för vuxna Säskild ubildning fö vuxna I KATRINEHOLM OCH VINGÅKER Kunskape och fädighee fö ETT GOTT LIV www.viadidak.se Telefon: 0150-48 80 90, 0151-193 00 E-pos: info@viadidak.se Viadidak ä en gemensam fövalning

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 270 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 270 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 14-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Föräldrabarometer 2013

Föräldrabarometer 2013 Föbundet Hem och Skola i Finland Föäldabaomete 2013 Cilla yman (ed.) Innehåll Föod... 2 1 Inledning... 3 2 Undesökningens genomföande... 4 2.1 Föäldabaomete 2013... 4 2.2 De svaandes bakgundsuppgifte...

Läs mer

ligger sydväst o m Norrköping och på ett afstånd af endast 20 minuters väg från staden,

ligger sydväst o m Norrköping och på ett afstånd af endast 20 minuters väg från staden, : 29 (604) P M P P Å : 5: M M P B > 5 : M P > 3 : - V Ö : VJ ÖMMP: 8 Ö B P P V 2 P Ö WÖ V: B Ä Ä 2 3 : J 2: Å 899 MM XP: ÖV PÅ Y 6 Ä ÖMÅ V ÖPP 0 5 BYÅ M 6 4 7 6 4 6 20 w B w M V B B P JÖM! V V ' W 0 V

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

Vi kan printlösningar

Vi kan printlösningar Pintlösninga Vi kan pintlösninga l en l i t n e Väg e a t a sm iljö m a v i sk UTMANINGARNA Fågona hopa sig fö dig som ansvaa fö pint Va femte skivae som säljs i Sveige komme fån Dustin. Vi ä väl medvetna

Läs mer

ll Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17

ll Frakka ab - vårt arbete i programmet Energivision (2 rapporter per ED) Energideklarationsarbetet HSB:s Brf Kuberna i Stockholm Stockholm 2010-05-17 ll Fakka ab Stockholm 2010-05-17 Enegideklaationsabetet HSB:s Bf Kubena i Stockholm Vi ä nu fädiga med enegideklaationsabetet fö HSB:s Bf Kubena i Stockholm. Enegideklaationena ä inskickade och godkända

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

Livslängd vägen till lönsammare produktion

Livslängd vägen till lönsammare produktion ! L ä f ä b ö F ö. ä s s y p b sx föbä sä A. h p s s bhös. A föä föä h hö. å b f fö å ps yc DL K Lsä ä ös p Ks sä ä s fö ös jöp. Fö s h ö s sä bhö få h å sp sh få fs, f, f, p hässy p ch p. Lsä h föä s

Läs mer

Protokoll Styrelsemöte, 13:e april 2011 kl:17.15

Protokoll Styrelsemöte, 13:e april 2011 kl:17.15 Potokoll Styelsemöte, 13:e apil 2011 kl:17.15 1 Fomalia 1.1 Mötets öppnande Mötet föklaas öppnat kl 17.17 1.2 Mötets behöiga utlysande Mötet anses behöigt utlyst 1.3 Val av seketeae Maco Sätheblom väljs

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

49728_Omslag 08-06-30 10.25 Sida 1 FJÄDRAR FRÅN LAGER

49728_Omslag 08-06-30 10.25 Sida 1 FJÄDRAR FRÅN LAGER 49728_Omslag 08-06-30 10.25 Sida 1 FJÄDRAR FRÅN LAGER 49728_Omslag 08-06-30 10.25 Sida 2 FJÄDRAR FRÅN LAGER LEVERANS INOM 24 TIMMAR Hela vårt lagersortiment, både bredd och djup, är uppbyggt och anpassat

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

NU-SJUKVÅRDEN. EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Granskning ur ett ledningsperspektiv

NU-SJUKVÅRDEN. EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Granskning ur ett ledningsperspektiv NU-SJUKVÅRDEN EN ÖVERGRIPANDE RISKBEDÖMNING ANVÄNDBAR UR SÅVÄL REVISIONS- SOM LEDNINGSPERSPEKTIV Ganskning u ett ledningspespektiv Ganskning genomföd på uppdag av Västa Götalandsegionens evisoe Vilhelm

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Vad kan 90 gram räknare göra?

Vad kan 90 gram räknare göra? NR 1-2015 21:a årgången Den nya ClassWizserien. Casio lanserar de nya tekniska räknarna FX-82EX, FX-85EX och FX-991EX ur den nya ClassWiz-serien. De erbjuder olika nyheter: högupplösta displayer, snabbbare

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Konsultarbete, Hitta maximal volym fo r en la da

Konsultarbete, Hitta maximal volym fo r en la da Konsultarbete, Hitta maximal volym fo r en la da Uppgift 2. Maximal låda. I de fyra hörnen på en rektangulär pappskiva klipper man bort lika stora kvadrater. Flikarna viks sedan upp så att vi får en öppen

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Energieffektiva småhus. En marknadsöversikt för dig som ska bygga nytt

Energieffektiva småhus. En marknadsöversikt för dig som ska bygga nytt Eff E ö fö by y y fö f! I ä ö ö ff. y ö pp fö ff by. D f p p f ä ä y b. H by b ä f f. G ö p b p ö fö. O ä by ff b p, ö f b y ä. I by f fö bpp ( * x). O ä ä p by äp ä by f f by ff,. L, C 154. I: L Pb Ey

Läs mer

... !rlt{; I Å L. Sammanfattning av energideklaration Operan 12 2010-09-06

... !rlt{; I Å L. Sammanfattning av energideklaration Operan 12 2010-09-06 I I :Iti 'xni hi[^]t ;:N!lt{; I Å L Sammanfattning av enegideklaation Opean 12 2010-09-06 lndependia Enegi AB nu godkänt och skickat in e enegideklaation till Boveket Vi skicka en kopia på deklaationbn

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Rivstarta hösten SPECIAL: AV GUSTAF BRICKMAN OCH MAJA-STINA SKARSTEDT

Rivstarta hösten SPECIAL: AV GUSTAF BRICKMAN OCH MAJA-STINA SKARSTEDT HITTA DIN DRIVKRAFT Stressa ner och känn efter vad du vill. Experten visar dig hur. Sid 18 ALDRIN FICK HJÄLP AV KUNDEN Aldrin fick tillbaka motivationen med hjälp av en kund. Sid 21 TESTA DIG SJÄLV Vad

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 4, 94 Årgång 4, 94 Första häftet 47. Om en triangels hörn speglas i motstående sidor, bilda spegelbilderna en liksidig triangel. Beräkna den ursprungliga triangelns vinklar. 48. Att konstruera

Läs mer

styrningen 2 Styrbara ett av fordonets aktiva säkerhetselement www.eurecar.org Introduktion bakaxlar 10 Tekniska anmärkningar 14

styrningen 2 Styrbara ett av fordonets aktiva säkerhetselement www.eurecar.org Introduktion bakaxlar 10 Tekniska anmärkningar 14 4 Den modena teknika inynen i nya innovatione Numme 4 / JUNI 2015 tyningen ett av fodonet aktiva äkehetelement i detta numme Intoduktion 2 Stybaa bakaxla 10 Hydaulik evotyning 3 Elektik evotyning 5 Vanliga

Läs mer

Kapitel Grafer för koniska sektioner

Kapitel Grafer för koniska sektioner Kapitel 14 Grafer för koniska sektioner Det går att rita en graf över följande koniska sektioner med hjälp av räknarens inbyggda funktioner. Parabelgraf Cirkelgraf Elliptisk graf Hyperbelgraf 14-1 Före

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

NYTTIGT, ÄKTA OCH HIMMELSKT GOTT

NYTTIGT, ÄKTA OCH HIMMELSKT GOTT NYTTIGT, ÄKTA OCH HIMMELSKT GOTT Älska du som vi att äta och bjuda på hemlagat men få inte alltid tiden att äcka till? Gö livet enklae genom att blanda ihop våa ekologiska åvaumixa. Inga konseveingsmedel

Läs mer

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H. HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Högskoleverket. Delprov NOG 2002-10-26

Högskoleverket. Delprov NOG 2002-10-26 Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset

Läs mer

Energieffektiva småhus. En marknadsöversikt för dig som ska bygga nytt

Energieffektiva småhus. En marknadsöversikt för dig som ska bygga nytt Eff E ö fö by y y fö f! L, C 154. I: L Gfö ö ö f ö. D f f ff 150. 21 ö bä fö f äföb. F b f bä f p: p://b./ff 2 3 T ä b f bö! F 1. Jäfö ä p ä! 5. ä ä 4. 3. Uy 2. M b 1. M äb, Ry 161. F: 4 5 . F 2. T y 50

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

m a g a s i n n y h e t s s a j t n y h e t s b r e v e t n d i r e k t t i d n i n g e n s o m ä l s k a r e l e k t r o n i k å r e t r u n t

m a g a s i n n y h e t s s a j t n y h e t s b r e v e t n d i r e k t t i d n i n g e n s o m ä l s k a r e l e k t r o n i k å r e t r u n t Mediakit 2015 m a g a i n n y h e t a j t n y h e t b e v e t n d i e k t t i d n i n g e n o m ä l k a e l e k t o n i k å e t u n t Sid 2 (7) Elektoniktidningen ha edan taten 1992 föett venk elektonikinduti

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

ing. Hösten 2013 konsoliderades även en del nya flöden in till Göteborg. Flytten av delar av lagerverksamheten

ing. Hösten 2013 konsoliderades även en del nya flöden in till Göteborg. Flytten av delar av lagerverksamheten Byggmax miljöappot Inledning Unde 2009 påböjade Byggmax sitt miljöabete genom att skapa en miljöpolicy med miljömål. Som en följd av detta policyabete ha en miljöappot uppättats och ett kontinueligt föbättingsabete

Läs mer

Tillämpad Matematik III Övning ODE

Tillämpad Matematik III Övning ODE HH/IDE/BN Tillämpad Matematik III, Övning ODE 0 0-0 -0 5 0 5 0 5 Tillämpad Matematik III Övning ODE Allmänt Övningsuppgifterna, speciellt Tpuppgifter i första hand, är exempel på uppgifter du kommer att

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Eulers polyederformel och de platonska kropparna

Eulers polyederformel och de platonska kropparna Eulers polyederformel och de platonska kropparna En polyeder är en kropp i rummet som begränsas av sidoytor som alla är polygoner. Exempel är tetraedern och kuben, men klotet och konen är inte polyedrar.

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

gör skolavslutningen till ett kul minne!

gör skolavslutningen till ett kul minne! gö kolavlutningen till ett kul minne! lä om vad om gö och vad om föälde kan göa! Lot of Love ä en fetival av ungdoma fö unga i Kaltad. Fetivalen ä helt gati och bjude på två cene fullpackade med atite

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

17.10 Hydrodynamik: vattenflöden

17.10 Hydrodynamik: vattenflöden 824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl

Läs mer