Kap.7 uppgifter ur äldre upplaga

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Kap.7 uppgifter ur äldre upplaga"

Transkript

1 Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti m.a.. y-aeln), ( a; b) symmetisk i oigo. Aean (aean i fösta kvadanten) ; dä abs.belo inte sela någon oll (Obs. att vi inte ha kunnat häleda någa allmänna fomle fö deivation/integation av funktione med absolutbelo, annat än D ln jj : Det som då stå till buds ä att dela u i intevall, så att funktionen kan uttyckas utan absolutbelo å va och ett av intevallen): y d d Tänk nu å följande tick att eliminea ottecknet ([PB,sid. 55 (), E.6]) f() [f() sin t; tig.ettan] Insieade häav fotsätte vi så hä: q d sin t sin t d sin t cos t dt sin t cos t dt 5 Fö den sistnämnda integalen nns en standadmetod, om än något omständlig Eules fomle [PB,sid.78 (6)]. Kotae äkninga fås genom sin t sin t cos t sin t cos t sin t cos t cos t sin t cos + cos t t ::: sin t dt + sin C t cos t dta 8 Fö den fösta integalen nns en genväg läs kommentaen till 7. sin t dt Fö den anda integalen kan man skiva u imitiv funktion diekt i och med att cos t D sin t : sin t cos t dt (sin t) 6 Nollan ä en konsekvens av att funktionen ha udda symmeti king : cos t y sin t cos t sin t cos t sin t cos t

2 99: 7. Beäkna aean mellan gafen av funktionen f () sin (ln ) ; 99: 7.9 Genom att skäa en ät cikulä cylinde med adien med ett lan genom en diamete i bottenytan få man en kilfomig ko av följande utseende: och -aeln. sin (ln ) d Fö imitiv se 5.5a ln t e t ln sin t e t dt 99: 7.6 En ak tunn tåd av längden ` ha i vaje unkt en densitet, som ä omvänt ootionell mot kvadatoten u odukten av unktens avstånd till tådens ända. Bestäm tådens massa. Lägg tåden utefte -aeln med ändana i es. `: Kalla ootionalitetsfakton c: m ()d ` c (` ) d Kvadatkomlettea uttycket unde ottecknet: Låt h den maimala höjden, d.v.s. stösta avståndet (till vänste i guen mellan det skäande lanet och bottenlanet. Beäkna koens volym. Lägg in ett koodinatsystem med oigo i bascikelns mitt, en -ael ekandes till vänste vinkelät mot eggen, en y-ael längs eggen och en z-ael uåt. Altenativ : (` ) ` ( `) (`) (`) ( `) [By ut så att konstanten bli ] (`) ` ` Nu ä vi endast ett linjät vaiabelbyte fån deivatan av acsin " # ` c ` d ` t (` ) d ` dt c (`) dt (`) t c [acsin t] c Dela in koen i tunna vetikala skivo aallellt med eggen. En skiva å avståndet fån eggen ä då ektangulä med hoisontell kantlängd ; vetikal kantlängd h (likfomiga tiangla) tjocklek d V h d h h ( ) d " # :::

3 Altenativ : Altenativ : Dela in i vetikala skivo vinkelätt mot eggen. En skiva å avståndet y fån z-lanet ä då tiangulä med bas y ; höjd (likfomighet som ovan) tjocklek dy V h h y h; y y h dy y y imlighetskontoll kan göas med dimensionsbetaktelse En volym ha dimensionen [längd] : Det ha också våt sva i föegående ugift: Både och h ha dimensionen längd, så h ha dimensionen [längd] : Hade vi fått fam, säg, V h + ; så skulle vi tagit ett djut andetag och böjat leta efte fel... Dela in i hoisontella skivo. En skiva å avståndet z fån y-lanet ä då en bit av en cikelskiva med aean (åteigen samma likfomighet fö att få unde gänsen) zh d [ sin t; [PB, sid. (8)]] t + sin t acsin(zh) [sin t sin t cos t] " acsin z # z z h h h {z } A(z) Totala volymen ä h h A (z) dz dz acsin + hd acsin d acsin d acsin d acsin + h h [ acsin ] h h i + h Som du se, ä ea olika väga möjliga, men vissa kan vaa jobbigae än anda

4 99: 7. Två cikuläa, aka cylinda med adien ha es. y-aeln som ael. Tillsammans avgänsa de en ko. Bestäm dess volym. Alt.. Cylinden med -aeln som ael bestå av de unkte (; y; z) fö vilka y + z < Analogt ges den anda cylinden av + z < Den omtalade koen bestå av de unkte som ufylle båda ekvationena samtidigt. Betakta koens snitt med lan z konstant. Alltså, med z givet; hu se mängden av unkte som ufylle båda ovannämnda ekvatione? y + z <, z < y < z + z <, z < < z 99: 7. Beäkna volymen av den otationsko, som ukomme då kuvan y + ; < otea king -aeln. y() d ( + ) d ( + ) d [atiell integation] ::: d.v.s. snittet ä en kvadat med sidan z (om < z <, tomt annas). (Det tält som ä illusteat i ugift 7. ä just hälften av det man få hä.) Volymen bli då z dz Alt.. Av cylindanas ekvatione syns att de unkte (; y; z) som tillhö båda, måste ufylla ; y : Dessa olikhete beskive en kvadat i ylanet. Av symmetiskäl bli volymen (volymen av den del fö vilken y ) Dela in detta omåde i skivo aallella med yzlanet. Dessa ä ektanguläa med tjocklek d och sidolängde es. : Det sista eftesom jzj min ; y V d : 7. Kuvan y ln + ; < kallas Huygens släkuva elle takti. Beäkna längden av den kuvdel som svaa mot Föst äkna ut deivatan: y () h Föläng med i s ds d + dy s + ln dy d d + d :::

5 99: 7. Bestäm tyngdunktens läge i en homogen halvcikelskiva med adien : Låt halvcikelskivan ha ekvationen + y < ; > Segelsymmetin i -aeln ge diekt att y T : T m T dm d 99: 7.5 Bestäm tyngdunkten fö den (homogena) ko som ukomme då kuvan otea king -aeln. y ; h y T z T.g.a. symmetin. dm T dm 99: 7.8 Kuvstycket h ( ) d h ( ) d h h h 99: 7.9 Om en lina med längden ` utsätts fö en dagkaft F; så gälle att linans fölängning ä k F `; dä k ä en mateialkonstant En homogen lina, som ha densiteten (massa e längdenhet) och längden L; hänge fitt. Beäkna linans fölängning å gund av sin egen tyngd. Tänk dig linan uhängd i oigo, med y- aeln ekandes neåt. En liten bit av linan med koodinaten y och längden dy utsätts då fö en dagkaft tyngden av den del av lina som hänge unde (L y) g och däfö fölängs stäckan ds k (L y) gdy Hela linans fölängning summan av alla småbitas fölängninga: ds L kg k (L y) gdy L (L y) kgl q y ( ) + + få otea king aeln. Beäkna volymen av den ukomna otationskoen. y d ( ) ( + ) ( + ) d atialbåksudelning 9 + ( + ) + (8 ln ln 5 ) v.e. d (6, 85) Ingema Stenmak åke nefö backen y Han åke utan att staka elle bomsa, och med fösumba fiktion och luftmotstånd. (Enda veksamma kaften antas alltså vaa tyngdkaften.) Hu lång tid behöve han fån staten i unkten med y-vädet till målet i unkten med y-vädet? Ledning: Enegibetaktelse ge mv mg ( y) (Deloäng utdelas fö ätt uställd integal.) 5

6 Tänk dig banan indelad i många kota stäcko så att ) vaje stäcka ä aoimativt ätlinjig med längden ds d + dy ; ) faten kan anses ungefä konstant å stäckan. Tiden vaje enskild stäcka ta ä då ds v ds g ( y) Totala tiden ä summan av alla deltide: ds t dt v d + dy g ( y) P.g.a. nämnaen ä det nog enklae att abeta med y som vaiabel d dy + ( dy) g ( y) y d dy y 6 y + g ( y) dy q y+ y u; y u u + dy u (u +) du u + ; u du g (u + ) Hä ä det enklae att låta bli att atialbåksudela atialintegea i stället u (u + ) u du u + u + u + du u u + + actan u + C Att stå som integationsgäns betyde att vi skall äkna ut lim g U g + u u + + actan u actan U 99: 7.58 Visa att ln n n + + n nx kn+ k ln n n + + n + Figu, som i [PB, (6)], ge nx kn+ n n k < d n+ < X kn+ Integalens väde ä ln n n+ : Addea n+ till den vänsta olikheten hä, så fås ugiftens höga olikhet. Addea n till den höga olikheten, så fås ugiftens vänsta olikhet. 99: 7.59 Beäkna gänsvädet lim nx n kn+ Såväl vänste- som högeled i 99:7.58 ln ; nä n ; så det måste göa vå summa också. Altenativt med iemannsumma: nx kn+ k nx k k k n n + k n nx + kn n + d k [ln ( + )] ln och obs. nu att actan actan actan tan : Sva: g + 6

7 (6, 86) I en satellit vas livslängd ä beäknad till å skall monteas in elektonisk utustning. Denna ovas föst unde en tid av a å (och antas fungea däefte). Sannolikheten att des åtestående livslängd övestige å ges då av uttycket a+ e (t) dt a dä (t) ä den s.k. intensitetsfunktionen. Bestäm a så att denna sannolikhet bli maimal om man vet att (t) t + t + Vi söke maimum av f (a) e a+ a (t)dt ; a < Undesök deivatans tecken: f (a)) e a+ (t)dt a d da a+ a (t) dt (, 898) Beäkna aean av den otationsyta som ukomme nä funktionskuvan otea king -aeln. y sin ; sin + cos d cos t sin d dt + t dt och se [PB, 7 (9),E.]. Sva: + ln + Låt (t) vaa en imitiv till (t) : Vi behöve faktiskt inte äkna fam (t) elicit: a+ d (t) dt da a d ( (a + ) (a)) da (a + ) (a) (a + ) (a) Alltså ha f samma tecken som ( (a) (a + )) a + a + (a + ) + a + 5 a a + 6 (a + ) (a + 5) (a + 8) (a ) (a + ) (a + 5) vaav syns att f väla tecken fån + till i a ; som alltså ge maimum. 7

8 (5, 8689) En homogen lina som ä uhängd i unktena ; e + e bilda kuvan y e + e ; Bestäm linans tyngdunkt. Tyngdunktens koodinate ges av ds T ds y ds y T ds Utnyttja att ds d + dy s + y cosh ; y sinh ; cosh sinh ; ds ds yds dy d d cosh jämn, sinh udda + sinh d cosh d [sinh ] sinh e e + sinh d ; ty integanden ä udda cosh + sinh d cosh d e + + e d e + e (6, 9) Kuvan y ; oteas king -aeln. Den yta S; som dävid ukomme, antas ha den konstanta ytdensiteten : Bestäm. ytans massa M. ytans masscentum ( t ; y T ; z t ) : Hä ges T av M T dm M och motsvaande fö öviga. y () S q y () + y () d + d sin t d sin t cos t dt 6 6 dm cos t sin t sin t cos t dt 5 cos5 t cos t sin t dt 6 5 som ovan, men fakton sin t tillkomme 6 6 cos sin sin Alltså dm cos t sin t dt cos sin sin sin cos cos 8 8 sin + sin

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12 MA003 Tillämpad Matematik I, 7.5hp, 03-08- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden A.Uppgifte om stödmottagae Namn och adess Enköpings Biodlae c/o Mattias Blixt Kykvägen 3 749 52 GRILLBY Jounalnumme 2012-1185 E-postadess mattias.blixt@enviotaine.com B.Uppgifte om kontaktpesonen Namn

Läs mer

Tentamen i Energilagringsteknik 7,5 hp

Tentamen i Energilagringsteknik 7,5 hp UMEÅ UNIVERSIE illämpad fysik och elektonik Las Bäckstöm Åke Fansson entamen i Enegilagingsteknik 7,5 hp Datum: -3-5, tid: 9. 5. Hjälpmedel: Kusboken: hemal Enegy Stoage - systems and applications, Dince

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Fördjupningsrapport om simuleringar av bombkurvan med Bolins och Eriksson matematisk modell

Fördjupningsrapport om simuleringar av bombkurvan med Bolins och Eriksson matematisk modell 1 Föjupningsappot o siuleinga av bobkuvan e Bolins och Eiksson ateatisk oell Av Peh Bjönbo Rappoten ge en bakgun so beskive Bolin och Eiksson (1959), speciellt eas ateatiska oell fö att siulea ängen aioaktiv

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V CHALMERS 1 () ermodynamik (KVM090) LÖSNINFÖRSLA ENAMEN I ERMODYNAMIK för K2 och Kf2 (KVM090) 2009-01-16 kl. 14.00-18.00 i V 1. I den här ugiften studerar vi en standard kylcykel, som är en del av en luftkonditioneringsanläggning.

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + ) = + + ( ) = + (kdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ektio + p+ q = 0 ) ) ött p p p =

Läs mer

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Ängsbacken Välkommen hem till en modern bullerby

Ängsbacken Välkommen hem till en modern bullerby Ängsbacken Välkommen hem till en moden bulleby BRF Ängsbacken, Hallena i Stenungsund Ett njutbat hemmaliv Nu bygge vi 40 tivsamma lägenhete i ett ofyllt kvate i Hallena, Stenungsund. Hä bo du i ett bostadsomåde

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT EKVATIONER I de vsni sk vi i på den enklse fomen v ekvione de linjä. ALGEBRAISK LÖSNING AV EKVATIONER Meoden nä mn löse ekvione v fös gden, llså ekvione som innehålle -eme men ej eme v pen,,...

Läs mer

Skogsnöten 2009. Namn. Skola. 80 p. Kommun. 19 p

Skogsnöten 2009. Namn. Skola. 80 p. Kommun. 19 p Skgsnöten 009 Namn Skla Kmmun Päng sammanlagt 80 p. Aspen kan me än väl kallas fö en nyckelat i mskgana, då ett stt antal ate ä beende av asp unde lika stadie i dess utveckling. Aspen ä tvåbyggae, dvs.

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Splitsning av flätade linor gjorda av polyester eller nylon.

Splitsning av flätade linor gjorda av polyester eller nylon. Denna splits är inte lämplig för dubbelflätade linor vars styrka enbart beror på styrkan i kärnan. Öglesplitsen används för att placera en permanent ögla i änden av ett rep, i allmänhet för förtöjning

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden A.Uppgifte om stödmottagae Namn och adess Destination Stömsholm Bige Jals väg 9 734 51 Kolbäck Jounalnumme 2009-2686 E-postadess ulla.b-son@telia.com B.Uppgifte om kontaktpesonen Namn och adess Sigwad

Läs mer

Fysik Prov 1 1:e April, 2014 Na1

Fysik Prov 1 1:e April, 2014 Na1 ysik Prov 1 1:e pril, 2014 Na1 Skriv alla dina svar på svarspapper. Redoör LL dina beräkninar och vilka formel som används. ne svar med rätt antal värde siffror och prefi. Kraft E Uppifter. Tre krafter

Läs mer

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel IV. Partikeltalet som termodynamisk variabel & faser Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

x(t) =A cos(!t) sin(!t)

x(t) =A cos(!t) sin(!t) Lösningsförslag. Rörelseevationen för roen ger som vanligt ẍ +! =,! = som tillsamman med begynnelsevilloren () = A, ẋ() = ger a) Så varför mavärdet av hastighetens belo är!a. q m A (t) =A cos(!t) ẋ(t)

Läs mer

Min cykel. 5 Cykelhjälm Det är viktigt att använda cykelhjälm när man cyklar. Men hur ska cykelhjälmen sitta på huvudet för att ge bäst skydd?

Min cykel. 5 Cykelhjälm Det är viktigt att använda cykelhjälm när man cyklar. Men hur ska cykelhjälmen sitta på huvudet för att ge bäst skydd? Min cykl Sidan Innhåll 4 På väg hm Ands och Osca ha båttom hm. Osca måst lämna matvaona han vait och handlat innan han och Ands kan cykla till täningn. 5 Cyklhjälm Dt ä viktigt att använda cyklhjälm nä

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkl ÖVN Lösningsförslag 0.04.0 4.0 6.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts.

http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts. Dokumentet är från sajtsidan Matematik: som ingår i min sajt: http://www.leidenhed.se/matte.html http://www.leidenhed.se Minst och störst Senaste revideringen av kapitlet gjordes 2014-05-08, efter att

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E FORMLER TILL NTIONELLT PROV I MTEMTIK KURS D OH E LGER Rgl dgdsktio kdigsgl kojugtgl Ektio p q ött p p p q o dä p o q p q RITMETIK Pi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko 9 6 - - -

Läs mer

Problem: BOW Bowling. Regler för Bowling. swedish. BOI 2015, dag 1. Tillgängligt minne: 256 MB. 30.04.2015

Problem: BOW Bowling. Regler för Bowling. swedish. BOI 2015, dag 1. Tillgängligt minne: 256 MB. 30.04.2015 Problem: BOW Bowling swedish BOI 0, dag. Tillgängligt minne: 6 MB. 30.04.0 Byteasar tycker om både bowling och statistik. Han har skrivit ner resultatet från några tidigare bowlingspel. Tyvärr är några

Läs mer

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson

Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson , MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA 081 20 AUGUSTI 2010 Institutionen för tillämpad mekanik, halmers tekniska högskola TENTEN I HÅFSTHETSÄ F H 8 UGUSTI ösningar Tid och plats: 8.3.3 i V huset. ärare besöker salen ca 9.3 samt. Hjälpmedel:. ärobok i hållfasthetslära:

Läs mer

UPPGIFT 1 KANINER. Håkan Strömberg 1 Pär Söderhjelm

UPPGIFT 1 KANINER. Håkan Strömberg 1 Pär Söderhjelm UPPGIFT 1 KANINER Kaniner är bra på att föröka sig. I den här uppgiften tänker vi oss att det finns obegränsat med hannar och att inga kaniner dör. Vi ska försöka simulera hur många kaninhonor det finns

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tentamen i Flervariabelanalys F/TM, MVE5 kl.. 8.. jälmedel: Inga, ej räknedosa. Telefon: Lennart Falk, 77 56 För godkänt krävs minst oäng. Betyg : -5 oäng, betyg : 6-7 oäng, betyg 5: 8 oäng eller mera.

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret. Miljö Malmö stad, Gatukontot, maj 2003 Tafiksäka skolan ä famtagt av Upab i Malmö på uppdag av och i samabt md Malmö stad, Gatukontot. Txt: Run Andbg Illustation: Las Gylldoff Miljö Sidan Innhåll 4 Miljö

Läs mer

1. Förklara, utifrån definitioner, trigonometriska samband samt det faktum att π 12 = 1 2 π6, varför följande likhet måste gälla exakt : p 2+ arccos

1. Förklara, utifrån definitioner, trigonometriska samband samt det faktum att π 12 = 1 2 π6, varför följande likhet måste gälla exakt : p 2+ arccos HiH / Georgi Tchilikov ENVARIABELANALYS 5p för LGr&LGy 8 augusti, 9.-. Hjälpmedel: Bifogat formelblad. Miniräknare, dock endast för test och kontroll av resultat. Betygsgränser: p. för Godkänd, 8p. för

Läs mer

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9

Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9 Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos

Läs mer

WALLENBERGS FYSIKPRIS 2014

WALLENBERGS FYSIKPRIS 2014 WALLENBERGS FYSIKPRIS 2014 Tävlingsuppgifter (Finaltävlingen) Riv loss detta blad och lägg det överst tillsammans med de lösta tävlingsuppgifterna i plastmappen. Resten av detta uppgiftshäfte får du behålla.

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

Kapacitansmätning av MOS-struktur

Kapacitansmätning av MOS-struktur Kapacitansmätning av MOS-struktur MOS står för Metal Oxide Semiconductor. Figur 1 beskriver den MOS vi hade på labben. Notera att figuren inte är skalenlig. I vår MOS var alltså: M: Nickel, O: hafniumoxid

Läs mer

någon skulle föreslå, att ur våra räkningar utesluta tecknet "j/, så att man t. ex. skulle skriva lösningen av

någon skulle föreslå, att ur våra räkningar utesluta tecknet j/, så att man t. ex. skulle skriva lösningen av Om någon skulle föreslå, att ur våra räkningar utesluta tecknet "j/, så att man t. ex. skulle skriva lösningen av andragradsekvationen.1 -f 2 där y' 2 = b, eller i st. f. x=y$-\-yj

Läs mer

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik

Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Rapport LUTFD2/TFHF-3089/1-16/(2013) Föreläsningsexempel i Teknisk mekanik Håkan Hallberg vd. för Hållfasthetslära Lunds Universitet December 2013 Exempel 1 Två krafter,f 1 och F 2, verkar enligt figuren.

Läs mer

Aerodynamik - översikt

Aerodynamik - översikt Aerodynamik - översikt Vingprofil Luftens egenskaper Krafter Lyftkraft Motståndskrafter Glidtal Polardiagram Sväng Prestanda 2009-11-22 www.offground.se 1 Aerodynamik vingprofil 2009-11-22 www.offground.se

Läs mer

Speciell relativitetsteori inlämningsuppgift 1

Speciell relativitetsteori inlämningsuppgift 1 Speciell relativitetsteori inlämningsuppgift Christian von Schultz 006 4 Lorentztransformationen och rapiditeten Att visa: Lorentztransformationen { γv) vt) t γv)t v), γv) v ) med c ) kan skrivas som )

Läs mer

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3. UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:

Läs mer

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1

Brandsäker rökkanal. Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 Brandsäker rökkanal Skorstensfolkets guide till en trygg stålskorsten 2008-06-16 1 1 Introduktion Det är bra att anpassa skorstenen efter eldstadens behov. Risken för överhettning till följd av för stora

Läs mer

Energirapport & Energideklaration November 2009

Energirapport & Energideklaration November 2009 BYGGKONSULT i VETLANDA AB Enegiappot & Enegideklaation Novembe 2009.ffi Huden 2Yetlanda Gavagänd7, Vetlanda.'Nuo4". oz f-\ '?eo tge,o,'.åät0,., Abetsnumme: 29 819 Postadess Nygatan 42 574 3I VETLANDA Telefon/fax

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Leton 6: Vämevälae onduton o onveton Gas IN Gas U Vatten U Vatten IN KP400/M406 Stömnng o vametanspot/ vameoveføng Vämevälaö ä en vtg del av vämevälaen, som sn tu ä en enet som används fö effetv vämeöveföng

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

SchySSt kaffe Direktimport från colombia

SchySSt kaffe Direktimport från colombia kaffe Diekimpo fån colombia Älska du kaffe? Fya soes kaffe Vå Schyssa kaffe poduceas på vå olika koopeaiv. Lea du efe en exklusiv gåva ill dig själv elle ill någon annan? Vå kaffe ä diekimpoea fån Huila

Läs mer

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. F5 LE1460 Analog elektronik 2005-11-23 kl 08.15 12.00 Alfa En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. ( Impedans är inte samma sak som resistans. Impedans

Läs mer

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel

Prov i Matematik Prog: NV, Lär., fristående Analys MN UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard, tel 070 4 4075 Prov i Matematik Prog: NV, Lär., fristående Analys MN 006-05-4 Skrivtid: 5 0. Hjälpmedel: Skrivdon. Lösningarna skall åtföljas

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

NOMATEC Krypgrundsisolering. Monteringsanvisning

NOMATEC Krypgrundsisolering. Monteringsanvisning NOMATEC Krypgrundsisolering Monteringsanvisning Förberedelser 1300 mm 650 mm Mur Mark 1. Planera arbetet Först ska väggarna isoleras, därefter läggs isoleringen på marken. Börja arbetet i ett hörn och

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Partiklars rörelser i elektromagnetiska fält

Partiklars rörelser i elektromagnetiska fält Partiklars rörelser i elektromagnetiska fält Handledning till datorövning AST213 Solär-terrest fysik Handledare: Magnus Wik (2862125) magnus@lund.irf.se Institutet för rymdfysik, Lund Oktober 2003 1 Inledning

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE3 Sannolihet, statisti och ris 215-6-4 l. 8.3-13.3 Examinator: Johan Jonasson, Matematisa vetensaper, Chalmers Telefonvat: Johan Jonasson, telefon: 76-985223 31-7723546 Hjälpmedel: Typgodänd

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

10 Beräkning av dubbelintegraler

10 Beräkning av dubbelintegraler Nr,7april-,Amelia Beräkning av dubbelintegraler. Bte av integrationsordning Eempel (96) Kasta om integrationsordningen i a) b) c) Z Z e Z 6 Z d d d Z ln Z f(, )d f(, )d f(, )d. Lösning: Med hjälp av figurer

Läs mer

Åtkomlighet för Räddningstjänsten

Åtkomlighet för Räddningstjänsten PM Åtkomlighet för Räddningstjänsten Upprättad: 2012-10-24/ EM Diarienr: 2012/107-MBR-191 Reviderad: Godkänd av: Stellan Jakobsson Avdelningschef, Mälardalens Brand- och Räddningsförbund Inledning Detta

Läs mer