Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r

Storlek: px
Starta visningen från sidan:

Download "Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r"

Transkript

1 Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom kan man ange på vekofom elle med e kaläa ekvaione. Räa linjen ekvaion på paameefom advekofom) x, y, x, y, z ) v, v, ) v Vi kan kiva vekoe om kolonne. Räa linjen ekvaion på paameefom kolonnvekofom) x x v y y v z z v Om vi idenifiea koodinae i ovanående ekvaion få vi: Räa linjen ekvaione på paameefom kaläa ekvaione) x x v y y v *) z z v P v Om alla koodinae i linjen ikningveko v v, v, ) ä kilda fån 0 dv v v, v 0 och v 0 kan vi eliminea paamee [fån vaje ekv i *)] och få 0 x x v. y y v z z v Dämed kan vi kiva linjen ekvaion på följande ä x x y y z z **) v v v dä P x, y, ä en punk på linjen och v v, v, v ) ä en veko paallell med linjen. Vi uppepa a fomen **) få använda enda om v, v 0 och v 0, anna bli nämnaen 0. 0 Anmäkning. Va och en av likheea i **)

2 Amin Halilovic: EXTRA ÖVNINGAR Räa linje och plan x x y y y y z z dv och v v v v ä ekvaionen fö e plan Π epekive Π. Dämed kan linjen given på fomen **) uppfaa om käningen mellan vå plan Π och Π Räa linje i xy-plane Räa linjen ekvaion i xy- plane ge ofa på en av följande fom y kx n explici fom [ dv fomen y f x) ] ax by c 0 implici fom [ dv fomen F x, y) 0 ] Linjen i xy-plane kan, lika om i D-umme ange på paameefom. Fö a kiva en linje på paameefom om linjen ä given på explici elle implici fom beeckna vi en vaiabel x elle y) med och löe u den anda vaiabel. Exempel. Ange linjen x y 0 i xy-plane på paameefom. Löning: Vi välje en vaiabel. ex. x och beeckna x. Fån x y 0 y 0 y ) /. Dämed bli linjen ekvaione ekvaione i xy-plane) på paameefom: x y / Anmäkning. I xy-plane, dv D- umme, ä ax by c 0 en ekvaion fö en ä linje. Om vi beaka D umme med xyz-koodinayem då amma ekvaion ax by c 0 bekive e plan med en nomalveko N a, b, 0). Efeom z akna i ekvaionen ä plane paallell med z axeln ) Samma eonemang gälle fö ekvaionen y kx n : I xy-plane bekive y kx n en ä linje. I xyz-koodinayem bekive y kx n e plan paallell med z-axel. Plan: N P Lå π vaa plane genom punken P x, y, ) om ha nomalvekon N A, B, C) 0. z

3 Amin Halilovic: EXTRA ÖVNINGAR Räa linje och plan Plane ekvaion ä A x x ) B y y) C z 0 Efe föenkling ha vi plane ekvaion på allmän fom: Ax By Cz D 0 ÖVNINGAR: Uppgif. En ä linje gå genom punkena A,,) och B,,0). Beäm linjen ekvaion. Löning: v AB,,) ä en ikningveko. Linjen ekvaion på paameefom : x,y,,,),,) x y z Sva: x,y,,,),,) Uppgif. En ä linje gå genom punkena A,,) och B,,). Beäm linjen ekvaion på a) paameefom x, y, x, y, z ) v, v, ) v x x y y z z b) på fomen om möjlig) v v v Löning: v AB,, ) ä en ikningveko. a) Linjen ekvaion på paameefom ä x,y,,,),,) b) Linjen ekvaion på fomen x x y y z z v v v ä x y z. Uppgif. En ä linje gå genom punken P,,) och ha ikningveko v, 0, 5). a) Ange linjen ekvaion på paameefom x, y, x, y, v, v, v ). x x y y z z b) Kan man ange linjen ekvaion på fomen v v v Sva: a) x, y,,,), 0, 5) ä linjen ekv. på paameefom. b) Nej, efeom v 0 uycke ä ine definiead om nämnaen ä 0)

4 Amin Halilovic: EXTRA ÖVNINGAR Räa linje och plan Uppgif. Vi beaka linjen L: x,y,0,,),,0) Beäm a) en ikningveko, dv en veko bland ändlig många) paallell med linjen b) en enheveko paallell med linjen de finn vå ådana enhevekoe) c) punke bland oändlig många) om ligge på linjen L. Löning: a) En ikningveko ä v,, 0) Noea a vaje veko av yp k v k, 0), k 0 ä ockå linjen ikningveko. T ex 0, 0, 0) elle 0, 0, 0) ockå ä linjen ikningvekoe. b) En enhe veko paallell med linjen ä e v,,0 ). v 5 [ Den anda ä e v,,0 ) ] v 5 c) Te punke fö vi om vi ubiuea e väden vilka om hel) på paameen i ekvaionen x, y, x, y, v, v, v) : T ex. 0 x,y,0,,)0,,0) 0,,) x,y,0,,),,0),,) 0 x,y,0,,)0,,0) 0,,) Sva: a) En ikningveko ä v,,0). b) En enhe veko paallell med linjen ä e v,,0 ). v 5 c) Te punke 0,,),,,) och 0,,). Uppgif 5. Linjen L ä given på följande fom x y z. a) Ange linjen ekvaion på paameefom. b) Beäm en ikningveko och e punke på linjen L c) Beäm punke bland ändlig många) om ligge på linjen L. Löning: a) Vi beeckna de e lika uyck med x y z

5 Amin Halilovic: EXTRA ÖVNINGAR 5 Räa linje och plan och däefe löe x, y, z. Vi ha x x y y z z Allå x,y,,, ),,) ä linjen ekvaion på paameefom x Alenaiv kivä y z b) En ikningveko ä ä v,,). c) Vi ubiuea e -väden, ex 0, och och få e punke A,, ), B, 0, ) och C 5, ) Uppgif 6. Beäm vilka av följande punke A,0, ), B,, ), C, 8, ) ligge på linjen L: x,y,0,,),,0). Löning: i) Punken A,0, ) ligge på linjen x,y,0,,),,0) om och enda om de finn e väde på paameen å a,0, ) 0,,),,0) dv om de finn e -väde å a alla e kaläa ekvaione amidig ä uppfyllda. Fån föa ekvaionen ha vi. Samma aifiea ockå anda och edje ekvaionen och dämed ligge punken A på linjen L punken vaa mo ) ii) Fö punken B,, ) ha vi följande vekoekvaion,, ) 0,,),,0) om ä ekvivalen med de e kaläa ekvaionena 0

6 Amin Halilovic: EXTRA ÖVNINGAR 6 Räa linje och plan 0 Föa ekvaionen ge. Dämed, om de finn en löning på fö alla e ekvaionen då ä ). Vi kolla om aifiea de kvaående ekvaione. Subiuionen i anda ekvaionen ge OK) men inäning i den edje ekvaionen ge om ä ine an. Punken B ligge allå ine på linjen L. iii) Med amma meod ine vi a punken C få u ekvaionen om, dv C ligge på linjen L Sva. A och C ligge på L medan B ine ligge på linjen L. Uppgif. D umme) Vi beaka den äa linje i xy-plane dimenionella umme ) om ha ekvaionen L: x y 0. a) Beäm linjen ekvaion på explici fom y kx n b) Ange linjen på paameefom c) Beäm en veko paallell med linjen L d) Beäm vå enhevekoe paallella med linjen. e) Beäm en veko i xy-plane om ä vinkelä mo linjen L Löning: a) Vi löe u y u ekvaionen x y 0, x x y 0 y y x explici fom) b) Vi beeckna x och få enkel fån explici fom) linjen på paamee fom x y x Vi kan ockå kiva x, y), ) elle. y / / c) Vi kan välja vå punke på linjen genom a välja väden på x elle på i paameefom) och beäkna y. Vi kan ex välja följande punke A0, / ) och B, /) och beäkna AB, / ). Vaje veko paallell med AB ä ockå paallell med linjen. Vi kan även använda paameefom och diek välja vekon, / ) ) Som en ikningveko bland oändlig många) kan vi ange v AB, ) med helalkoodinae. d) De finn vå enhevekoe om ä paallella med linjen L e, ± v ±, ) v e) En veko n a, b) ä vinkelä mo linjen L om och enda om) den ä vinkelä mo linjen ikningveko v, ) och däfö ä kaläpoduken n v 0.

7 Amin Halilovic: EXTRA ÖVNINGAR Räa linje och plan Allå a b 0 a b /. Vi öke en vinkelä veko bland oändlig många ådana vekoe) å a vi kan välja b, ex kan vi a b och få a. Dämed bli n, ) en veko vinkelä mo L. Noea a vaje veko paallell med n, ) ockå ä vinkelä mo L. Uppgif 8. E plan gå genom punken A,,). Plane ä paallell med vekoena u,,) och v,, ). Beäm plane ekvaion a) på paameefom N b) på fomen Ax By Cz D 0. Löning: v a) x,y,,,),,),,) b) N u v,, ). u Plane ekvaion: A x x) B y y) C z 0 x ) y ) z ) 0 x y z 0 Sva: Plane ekvaion: x y z 0 Uppgif 9. E plan gå genom punkena A,, ) och B,5,) och C,0,). Beäm plane ekvaion. Löning: N AB AC 0,6, 6) Vi kan använda punken A och vekon N 0,8, ) om ä paallell med N ). A x x ) B y y ) C z z ) 0 0 x ) 8 y ) z ) 0 0x 8y z 0 Sva: Plane ekvaion: 0 x 8y z 0 Uppgif 0. E plan gå genom punkena A,,) och B,,). Plane ä paallell med linjen x, y,,,5),,) Beäm plane ekvaion. Löning: Vekoena u AB 0,, ) och linjen ikningveko v,, ) Beäm plane ekvaion. N u v 0,, ). Plane ekvaion: ä paallella med plane

8 Amin Halilovic: EXTRA ÖVNINGAR A x x ) B y y ) C z z ) 0 0 x ) y ) z ) 0 y z 0 Sva: Plane ekvaion: y z 0 8 Räa linje och plan Uppgif. En ä linje gå genom punken A,,0). Linjen ä oogonal vinkelä) mo plane x y z 0. Beäm linjen ekvaion. Löning: Plane nomal v,, ) ä en ä en ikningveko. Linjen ekvaion på paameefåm : x,y,,,0),,) Sva: x,y,,,0),,) Uppgif. En ä linje gå genom punken A,,0). Linjen ä paallell med käninglinjen mellan planen x y z 0 och x y z 0 Beäm linjen ekvaion. Löning: Vi löe yeme med Gaumeoden: x y z 0 x y z 0 x y z 0 y z 0 En fi vaiabel z. y x y z x dv x y z Allå ha käning linje ekvaion x,y,,,0),,) Den öka linjen ha amma ikning veko men gå genom punken A. Däfö: x,y,,,0),,) Sva: Linjen ekvaion ä x,y,,,0),,) Uppgif. Beäm evenuella käningpunke mellan linjen x,y,,0,0),,) och följande plan: a) x y z 0 b) x y z 0 c) x y z 0 Sva: a) x 0, y, z b) Ingen löning c) Linjen ligge i plane. Uppgif. Beäm evenuella käningpunke mellan följande linje

9 9 Amin Halilovic: EXTRA ÖVNINGAR Räa linje och plan x,y,,,),,) och x,y,,5,),,). Löning: Linjena ekvaione kan kiva om z y x L :, z y x L 5 : Vi löe yeme: 5 Häav x, y och z Sva: Skäningpunken ä P,,). Uppgif 5. Vi beaka vå ymdfakoe i e lämplig vald koodinayem. En ymdfako ö ig läng banan x, y,,, ) dv fakoen befinne ig i punken x,y, vid idpunken. En annan ymdfako ö ig länga banan x,y,,6, ). a) Kocka fakoena? Moiveing käv!) b) Skä fakoena bano vaanda? Moiveing käv!) Löning: a) Sva: Fakoena kollidea ej efeom yeme 6 akna löninga b) Både fakoena ö ig läng äa linje. Dea bano ha följande ekvaione: L:,, ) L:,6, ) Vi öke käningen mellan linjena och få ekvaionyeme 6 om ha löningen,. Sva: Banona kä vaanda. Fako ä i käningpunke vid idpunken idenhee; fako ä i amma punk vid idpunken idenhee.

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

=============================================== Plan: Låt vara planet genom punkten )

=============================================== Plan: Låt vara planet genom punkten ) Amin Hliloic: EXTRA ÖVNINGAR Rä linje och pln RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punken P som ä pllell med ekon 0 3. Rä linjens ekion på pmeefom en ekoekion 3 Rä linjens ekione på pmeefom:

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)

2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p) Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15 Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs

Läs mer

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl

Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 3

Föreläsningar i Mekanik (FMEA30) Del1: Statik och partikeldynamik. Läsvecka 3 Mekanik, Del, Saik- och aikeldynaik 4, Ugåva Föeläninga i Mekanik (FMEA3) Del: Saik och paikeldynaik Lävecka 3 Föeläning : Födelade kafe (Diibued foce) (5. 5.4). Föuo ye av punkkafe (och oen) av ypen F

Läs mer

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel

TENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel. Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på

Läs mer

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1.

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjär hölje Definiion. (LINJÄR KOMBINATION Lå V ara e ekorrm. En ekor w är linjär kombinaion a,,, nn om de finn kalärer (al,,, nn å a ww nn nn Eempel.

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ

Läs mer

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:

TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid: TENTAMEN Kusnumme: HF Memik fö så I Momen: TEN Pogm: Teknisk så Rände läe: Nicls Hjelm Emino: Nicls Hjelm Dum: -- Tid: :-: Hjälmedel: Fomelsmling: ISBN 98-9--9-8 elle ISBN 98-9--- un neckning. Ing nd fomelsmling

Läs mer

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt

Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3). TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge

Läs mer

{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät

{ ( )} = X s. ( ) /< t. Stabilitet för energifria LTI-system. L{ } e(t) i 0 (t) E(s) I 0 (s) ( ) ( )e st 0. Kretsberäkningar, linjära RLMC-nät Kap 4 Laplaceanfomanaly av idkoninueliga yem 9 Sabilie fö enegifia LTI-yem Maginell abil yem: De flea begänade inignale ge upphov ill begänade uignale Kap 4 Laplaceanfomanaly av idkoninueliga yem 0 Sabilie

Läs mer

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)

Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0) Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006

Medborgarnas synpunkter på skattesystemet, skattefusket och Skatteverkets kontroll Resultat från en riksomfattande undersökning hösten 2006 M y å y, S R å ö ö 2006 R 2007:3 3 Fö S ö 1996 å ö å å ö. Uö ä å ä: Mä ( ä) ä. Mä ä å y y,, ä ä å y S ä. I å 2006 å ö ä y, (ä). D (ä) 2007:4, M y å S ä. Uö y : ö ö ä y S, ö ö ö å S,, ä ä å ä å y ö. Fä

Läs mer

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.

Datum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna. Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15 Tentamen i Matemati, HF sep, l 8:-: Examinato: min Halilovic Undevisande läae: Fedi Begholm, Jonas Stenholm, Elias Said Fö godänt betyg ävs av max poäng Betygsgänse: Fö betyg, B, C, D, E ävs,,, espetive

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algorimer, daarukurer och komplexie Övning Anon Grenjö grenjo@cc.kh.e okober 20 Anon Grenjö ADK Övning okober 20 / 38 Överik Kurplanering F2: Grafer: MST och Dijkra Ö4: Dynamik programmering F3: Grafer:

Läs mer

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar)

Specifik ångbildningsentalpi (kj/kg) 10 0.012271 2477 20 0.023368 2453 30 0.042418 2406 40 0.073750 2592 10p. (bar) B yckfalle öve e ösysem som anspoea olja 60 km ä 6. a. e fösa 0 km anspoeas oljan i en pipeline och efe 0 km dela oljan sig i vå paallella pipelines, se figu. Röens diamee ä 0. m och oljans viskosie ä

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Föreläsning 3: Fler grafalgoritmer. Kortaste vägar mellan alla noder

Föreläsning 3: Fler grafalgoritmer. Kortaste vägar mellan alla noder Föreläning 3: Fler grafalgorimer Korae vägar mellan alla noder Maximal flöde i graf Bipari machning Korae vägar mellan alla noder Dijkra och Bellman-Ford algorimer beräknar korae avånd från en nod ill

Läs mer

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3

Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3 levaiabelanals I Vinten 9 Övesikt föeläsninga läsvecka Det teje kapitlet i kusen behanla ubbel- och tippelintegale. Den integalen vi känne till fån envaiabelanalsen, f ( ) b a, kan ju ofta ses som aean

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0

I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0 Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde

Läs mer

Elektronik. Kapacitanser, induktanser, transienter. Översikt. Kapacitanser och induktanser. Plattekondensator

Elektronik. Kapacitanser, induktanser, transienter. Översikt. Kapacitanser och induktanser. Plattekondensator Elekronik Överik Kapacianer, indukaner, raniener Piero Andreani Iniuionen för elekro och informaioneknik Lund univerie Kapacianer () och indukaner (L) Srömmar och pänningar i kapacianer och indukaner Ömeiga

Läs mer

v p ORTOGONALT KOMPLEMENT TILL ETT UNDERRUM

v p ORTOGONALT KOMPLEMENT TILL ETT UNDERRUM OROGONL KOMPLEMEN ILL E UNDERRUM Definiion 7 Lå ara e underrum i R n De orogonala omlemene ill är mängden a de eorer i R n om är orogonala mo alla eorer i : n { R : för alla i } n Sa : Om an å är en eor

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

Hur simuleras Differential-Algebraiska Ekvationer?

Hur simuleras Differential-Algebraiska Ekvationer? Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering

Läs mer

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av

Magnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

Lösningar till övningsuppgifter. Impuls och rörelsemängd

Lösningar till övningsuppgifter. Impuls och rörelsemängd Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10

Läs mer

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic

Tentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIKPROV, LÅNG LÄROKURS 904 BESKRIVNING AV GODA SVAR De beskivninga av svaens innehåll och oängsättninga som ges hä ä inte bindande

Läs mer

DÄR VÅRA VÄGAR KORSAS

DÄR VÅRA VÄGAR KORSAS DÄR VÅRA VÄAR KORSAS h yf föå fö, fä, ä, ä äy ch! h ö Sf, y ä ch ä fä j ö fö f. E fy å ch ö h å ch å. Å c å, ch å fö ö ch. PERSPEKTIV NYA PARKEN I RÅDUSESPLANADENS FÖRLÄNNIN SITUATIONSPLAN 1:1/A1 1:2/A3

Läs mer

INGENJÖRSMATEMATISK FORMELSAMLING

INGENJÖRSMATEMATISK FORMELSAMLING Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system

Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om

Läs mer

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT EKVATIONER I de vsni sk vi i på den enklse fomen v ekvione de linjä. ALGEBRAISK LÖSNING AV EKVATIONER Meoden nä mn löse ekvione v fös gden, llså ekvione som innehålle -eme men ej eme v pen,,...

Läs mer

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def

1 av 9 SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE. Skalärprodukt: För icke-nollvektorer u r och v r definieras skalärprodukten def Amin Hlilic: EXTRA ÖVNINGAR 9 Skläpkt ch ektpjektin SKALÄRPRODUKT PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Skläpkt: Fö icke-nllekte ch efinies skläpkten ef cs enligt följne Om minst en ch ef ä nllekt å

Läs mer

det bästa sättet för e n författare att tala är a tt skriva

det bästa sättet för e n författare att tala är a tt skriva 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 b e a h d g e a c g e f b d d c b f h d h b a h e c f d g b a c a d f

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av

Läs mer

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Särskild utbildning för vuxna

Särskild utbildning för vuxna Säskild ubildning fö vuxna I KATRINEHOLM OCH VINGÅKER Kunskape och fädighee fö ETT GOTT LIV www.viadidak.se Telefon: 0150-48 80 90, 0151-193 00 E-pos: info@viadidak.se Viadidak ä en gemensam fövalning

Läs mer

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.

Övning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper. Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =

Läs mer

Sebastian det är jag det! eller Hut Hut den Ovala bollen

Sebastian det är jag det! eller Hut Hut den Ovala bollen i y n io a ä m S som info s a d n e (.! ) e ck ll läa I boken Sebasian de ä jag de! elle Hu Hu den Ovala bollen följe vi Sebasian fån ban ill ungdom. Han gö efaenhee som få honom a fundea. Vad eflekea

Läs mer

Gravitation och planetrörelse: Keplers 3 lagar

Gravitation och planetrörelse: Keplers 3 lagar Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade

Läs mer

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)

Upp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm) Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm

Läs mer

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2

x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 Problem 1. Avgör för vilka värden på a som ekvationssystemet nedan har oändligt antal lösningar. Ange lösningarna i dessa fall! Lösning: Genom x+2y 3z = 7 x+ay+11z = 17 2x y+z = 2 1 2 3 1 a 11 2 1 1 =

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN okt, HF6 och HF8 Moment: TEN (Lnjä lgeb), 4 hp, skftlg tentmen Kuse: Anls och lnjä lgeb, HF8, Klsse: TIELA, TIMEL, TIDAA Td: 5-75, Plts: Cmpus Hnnge Läe: Rchd Eksson, Inge Jovk och Amn Hllovc

Läs mer

NATIONALEKONOMISKA INSTITUTIONEN Uppsala universitet Examensarbete D Författare: Martin Solberger Handledare: Johan Lyhagen Termin och år: VT 2008

NATIONALEKONOMISKA INSTITUTIONEN Uppsala universitet Examensarbete D Författare: Martin Solberger Handledare: Johan Lyhagen Termin och år: VT 2008 NATIONALEKONOMISKA INSTITUTIONEN Uppsala univesie Examensabee D Föfaae: Main Solbege Handledae: Johan Lyhagen Temin och å: VT 008 Hypoespövning på e långsikig penningefefågesamband och ansmissionsmekanismen

Läs mer

Institutionen för medicin och hälsa Avdelningen för radiologiska vetenskaper Medicinsk radiofysik Hälsouniversitetet. Fanos Teorem

Institutionen för medicin och hälsa Avdelningen för radiologiska vetenskaper Medicinsk radiofysik Hälsouniversitetet. Fanos Teorem Intittionen fö medicin och häla Avdelningen fö adiologika vetenkape Medicink adiofyik Häloniveitetet Fano eoem Gdn Alm Calon Depatment of Medical and Health Science Diviion of Radiological Science Radio

Läs mer

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF jan 2016, kl. 8:15-12:15 Tentmen i Mtemtik, HF9 7 jn, kl 8:5-:5 Eminto: Amin Hlilovi Unevisne läe: Feik Begholm, Jons Stenholm, Elis Si Fö gokänt etg kävs v m poäng Betgsgänse: Fö etg A, B, C, D, E kävs, 9,, espektive poäng Kompletteing:

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O

LEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man

Läs mer

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.

Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd. Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

===================================================

=================================================== AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)

Läs mer

PROV 5 Skogars ekologi och användning

PROV 5 Skogars ekologi och användning Helingfor univerie Urvalprove 3.5. Agrikulur-forveenkapliga fakuleen POV 5 Skogar ekologi och användning Man ka få min poäng i urvalprove å a han eller hon för vardera A- och B-delen får min 5 poäng. Om

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln Bastermin HT, Matematik Högskolan i Halmstad Version 00-08-0/0-08-5 Bertil Nilsson/Mats Gunnarsson Häfte A Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln. Förenkla

Läs mer

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.

Upp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige. Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa

Läs mer

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spidning av elektomagnetisk stålning [Jakson 9.6-] Med spidning avses mest allmänt poessen dä stålning antingen av patikel- elle vågnatu) växelveka med något objekt så att dess fotskidningsiktning

Läs mer

9. Diskreta fouriertransformen (DFT)

9. Diskreta fouriertransformen (DFT) Arbesmaerial 6, Signaler&Sysem I, 2003/E.. 9. Diskrea ourierransormen (DF) 9.1 eriodicie pulsåg Av 6.3(i), arb.mar.4, sid 50, ramgick a ourierransormen (F) av en unkion är e pulsåg X[k]δ( k/) med pulsavsånd

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

file:///c:/users/engström/downloads/resultat.html

file:///c:/users/engström/downloads/resultat.html M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8

Läs mer

1 Elektromagnetisk induktion

1 Elektromagnetisk induktion 1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.

Läs mer