UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1.

Storlek: px
Starta visningen från sidan:

Download "UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1."

Transkript

1 LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjär hölje Definiion. (LINJÄR KOMBINATION Lå V ara e ekorrm. En ekor w är linjär kombinaion a,,, nn om de finn kalärer (al,,, nn å a ww nn nn Eempel. Beäm om w är linjär kombinaion a och då a ww (8, 7, 6, (,, och (,, b ww (,, 6, (,, och (,, a Vi öker om de finn en löning ill ww d (8, 7, 6 (,, (,, Vi idenifierar koordinaer och får re kalära ekaioner: Seme har (preci en löning, Därmed kan ww kria om en linjär kombinaion a och : ww b I dea fall ww ger (,,6 (,, (,, Vi idenifierar koordinaer och får re kalära ekaioner: 6 Seme SAKNAR löning ( konrollera. Därmed kan ww INTE kria om en linjär kombinaion a och. Sar a ja b nej UNDERRUM Definiion a. Lå W ara en icke om delmängd ill ekorrmme VR n. Mängden W är e nderrm ill V om och enda om följande re illkor är ppfllda: Vilkor : W ara en icke om delmängd ill R n Vilkor :, W W ( om, illhör W då mman illhör ockå W, i äger a W är len nder addiion Vilkor: ( W, R W ( om illhör W då illhör ockå W för arje kalär, i äger a W är len nder mliplikaion med kalär Sida a

2 Anmärkning. Från illkor, för, får i a W, d e nder rm måe innehålla nollekorn. Därmed kan nderrmme definiera på följande ekialena ä: Definiion b. Lå W ara en delmängd ill ekorrmme V. Mängden W är e nderrm ill V om och enda om följande re illkor är ppfllda: Vilkor: W ( nollekorn illhör W Vilkor:, W W ( om, illhör W då mman illhör ockå W, i äger a W är len nder addiion Vilkor: ( W, R W ( om illhör W då illhör ockå W för arje kalär, i äger a W är len nder mliplikaion med kalär Eempel. Via a mängden W a alla ekorer ar koordinaer aifierar z ekaionen z (* är e nderrm ill R. Med andra ord, ia a W { : z } z är e nderrm ill R. Vi ka ia a alla re illkor i oanående definiion är ppfllda. Vilkor Nollekorn W eferom de koordinaer,, z ppenbar aifierar ekaionen z. Därmed är Vilkor ppfll. Vilkor. Lå och ara å ekorer i W. Då dera koordinaer aifierar ekaionen d då gäller och. För a ia a W, måe i ia a koordinaer ill ockå aifierar ekaionen (*. Vi bierar koordinaer i änerlede och får Sida a

3 ( ( ( ( ( Därför W och därmed är Vilkor ppfll. Vilkor. Lå ara en ekor W och e reell al (kalär. Då är ar koordinaer aifierar ekaionen (* eferom (. Därför W och därmed är Vilkor ppfll Generaliering: På amma ä om i oanående eempel kan man ia a mängden a alla ekorer n ar koordinaer aifierar e linjär homogen ekaionem är e nderrm ill R n. Eempeli, mängden W a alla ekorer ar koordinaer aifierar följande homogena ekaionem 7 5 är e nderrm ill R. Krae a eme är homogen är ikig. Om eme ine är homogen å nollekorn illhör ine W. ( Se nedanående eempel Eempel. Via a mängden W a alla ekorer z ar koordinaer aifierar ekaionen 5 8 z INTE är e nderrm ill R. Nollekorn ligger ine i W eferom 5 8. Villkor är INTE ppfll och därmed är W INTE e nderrm. Sida a

4 Eempel. Beäm om följande mängder är nderrm i R a W är mängden a alla ekorer i R om har föra och redje koordinaen, d W {(,,,, ddärr, RR} ( b W är mängden a alla ekorer i R om har föra och redje koordinaen, d W {(,,,, ddärr, RR} a Om i äljer och i (* får i a er i a nollekorn (,,, ligger i W och därmed är Villkor ( i definiionen för nderrm ppfll. Vi ear Villkor Vi anar a, W d (,,, och (,,, Då gäller (,,, W ( för föra och redje koord. är och Villkor är ppfll ( Vi äger a W är len nder addiion. N konrollerar i Villkor Vi anar W d (,,,. Då, för e al R, i har (,,, W ( för föra och redje koord. är och Villkor är ppfll ( Vi äger a W är len nder mliplikaion med al. Eferom Villkor, Villkor och Villkor är ppfllda är mängden W e nderrm ill V. Sar a W är e nderrm ill V. b Vi anar a, W d (,,, och (,,, Då gäller (,,, W eferom koordinaer på föra och redje pla är och ine om i mängden W. Med andra ord mman a å elemen i W hamnar anför W. Villkor är ine ppfll och därför W är INTE e nderrm ill V. ( Lägg märke ill a arken Villkor eller Villkor är ppfll Sar b W är INTE e nderrm ill V. BASER Definiion (BAS Lå V ara e ekorrm ( eller nderrm. Vekorerna,,, nn gör en ba i rmme V om följande å illkor är ppfllda:. Vekorerna,,, nn är linjär oberoende. Varje ekor i V kan kria om en linjär kombinaion a,,, nn. Sa ( Anale elemen i en ba. Om,,, nn är en ba för V då arje ba för rmme V har amma anal ekorer, n. Sa ( Koordinaer för en ekor i en gien ba. Sida a

5 Om B(,,, nn är en ba för V då gäller följande: Varje ekor w i rmme V kan kria om på eak e ä en linjär kombinaion a,,, nn ww nn nn Tal,,, nn kalla ww: koordinaer i baen B, och kalla koordinaekor i baen B. n Sa. Om,,, nn är n oberoende ekorer i e n- dimenionell ekorrm V då gör ekorerna en ba för V. Definiion (DIMENSION Om ekorrmme V har en ba med n ekorer äger i a V har dimenion n. Eempel a. Vekorerna ii (,, jj (, gör en ba ( andardbaen i rmme R eferom de är linjär oberoende och arje (, ekor i R kan kria om en lin. komb. a, : och R har dimenion. (, (, (, Eempel 5b. Vekorerna (,, (, gör ockå en ba i rmme R eferom de är linjär oberoende och arje w ekor i R kan kria om en lin. komb. a, ( eferom ekaionen ww är allid löbar Eempel 5c. Vekorerna (,, (, är INTE en ba i rmme R eferom de är linjär beroende. Eempel 5d. Vekorerna ii (,,, jj (,,, kk (,, gör en ba ( andardbaen i rmme R Eempel 5e. Vekorerna Sida 5 a

6 (,,, (,,, (,, gör en ba ( andardbaen i rmme R, eferom de är linjär oberoende ekorer i R Eempel 5f. Vekorerna (,,,, (,,,, (,,,, (,,, gör en ba ( andardbaen i rmme R eferom de är linjär oberoende och arje (,,z,w ekor i R kan kria om en lin. komb. a,,, : (,, zz, ww (,,, (,,, zz(,,, ww(,,, och R har dimenion. Eempel 6. Agör om (,,, (,,, (,,, gör en ba i redimenionell ekorrmme R. Vi krier ekorerna om kolonner i en mari och kollar om de är oberoende: ~ ~ Tre ledande ariabler implicerar a re kolonner är oberoende d ekorerna,, är oberoende. Vi har oberoende ekorer i e dimenionell rm och därför gör ekorerna en ba i rmme. Sar: Ja Eempel 7. Agör om (,,, (,,, (,,, gör en ba i rodimenionell ekorrmme R. Vi krier ekorerna om kolonner i en mari och kollar om de är oberoende: ~ ~ Tå ledande ariabler implicerar a ma å kolonner är oberoende d ekorerna,, är beroende ( Vi er a och därför är INTE en ba för rmme R. Sar: Nej Eempel 8. Agör om (,,, (,, gör en ba i redimenionell ekorrmme R. Nej, eferom arje ba i R måe ha ekorer. Sar: Nej Eempel 9. Beäm koordinaekorn för ekorn w(, i baen B(, där (,, (,. Sida 6 a

7 Vi löer ekaionen ww (, (, (, och får, och därmed koordinaekorn i baen B är ] [ B w Sar: ] [ B w Eempel. Lå S ara nderrmme om beår a alla ekorer ar koordinaer aifierar följande homogena ekaionem. 6 5 Beäm en ba ill S. Underrmme S är fakik löningmängden ill de gina ekaioneme. Vi löer eme med e Ga meoden 6 5 ek ek Vi beecknar och, löer ledande ariabler och får och ( Allå delen - och (eparerar } { } { - - S } { } {. Med andra ord kan arje ekor i S ange om en linjer kombinaion a ekorerna och om är ppenbar oberoende ( kolla jäl ekorer. Därmed är (, en ba ill S Sida 7 a

8 Sar: Vekorerna, är en ba ill S Eempel. Lå S ara nderrmme om beår a alla ekorer följande homogena ekaionen z. Korare S {, z } z Beäm en ba ill S. z ar koordinaer aifierar Vi löer ekaionen d i löer den ledande ariabeln z z Vi beeckna och z och får Allå S. z Därmed är arje ekor i S en linjer kombinaion a ekorerna och om är ppenbar oberoende ( kolla jäl ekorer. Därför är är (, en ba ill S. Sar: Vekorerna, bildar en ba ill S LINJÄRT SPANN (eller LINJÄRT HÖLJE Definiion 5. Linjär pann (eller linjär hölje Lå S{,,, nn } ara n ekorer ( beroende eller oberoende i en ekorrm V. Mängden a alla linjära kombinaioner a ekorerna i S kalla de linjära panne ( linjära hölje a S och beeckna Span(,,, nn. Sida 8 a

9 Span(,,, nn är e nderrm ill V. Dimenionen a Span(,,, nn är lika med ( maimala anale oberoende ekorer bland,,, nn. Enlig definiionen en ekor w illhör nderrmme Span(,,, nn om och enda om w kan kria om en linjär kombinaion a,,, nn. Eempel. Lå (,,,,, (,,6,, och (, 6, 9,, a Beäm dimenionen a pan(,, b Beäm en ba för pan(,, bland,, Vi krier ekorer om kolonner i en mari och öerför marien ill rappegform: ~ ~ ~ En ledande ea. Ma anal oberoende kolonner är och därmed Ma anal oberoende ekorer är. pan(,, har dimenion. En ba är (,,,, (arar mo ledande ean i rappegform. Eempel. Lå S Span(, Beäm om ekor illhör S om a b. Enlig definiionen en ekor illhör nderrmme S Span(, om och enda om kan kria om en linjär kombinaion a ekorerna och. a Ekaionen d krier i om e ekaionem med kalära ekaioner: Sida 9 a

10 om har löningen,. Allå är ekorn en linjär kombinaion a och och därför ligger i S. b Ekaionen d eme aknar löning ( och aifierar ine föra ekaionen. Vekorn är ine en linjär kombinaion a ekorerna, och därför ine illhör S. Sar a Ja b Nej Sida a

v p ORTOGONALT KOMPLEMENT TILL ETT UNDERRUM

v p ORTOGONALT KOMPLEMENT TILL ETT UNDERRUM OROGONL KOMPLEMEN ILL E UNDERRUM Definiion 7 Lå ara e underrum i R n De orogonala omlemene ill är mängden a de eorer i R n om är orogonala mo alla eorer i : n { R : för alla i } n Sa : Om an å är en eor

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

Sida 1 av Låt VV = RR nn där RR nn är mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs

Sida 1 av Låt VV = RR nn där RR nn är mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs Sida av 7 ALLMÄNNA VEKTORRUM VEKTORRUM Definition Mängden V sägs vara ett reellt vektorrum om det finns i) en additionsoperation som till varje uu VV och vv VV ordnar uu vv VV ii) en operation kallad multiplikation

Läs mer

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algorimer, daarukurer och komplexie Övning Anon Grenjö grenjo@cc.kh.e okober 20 Anon Grenjö ADK Övning okober 20 / 38 Överik Kurplanering F2: Grafer: MST och Dijkra Ö4: Dynamik programmering F3: Grafer:

Läs mer

NOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN.

NOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN. Ari Hliloic: EXTRA ÖVNINGAR NOLLRUMMET och BILDRUMMET ill e lijärildig. MATRISENS RANG. DIMENSIONSSATSEN. NOLLRUM (Kerel (kär i kuroke Defiiio. Lå T r e lijär ildig frå R ill R. Mägde ll ekorer i R o ild

Läs mer

Föreläsning 3: Fler grafalgoritmer. Kortaste vägar mellan alla noder

Föreläsning 3: Fler grafalgoritmer. Kortaste vägar mellan alla noder Föreläning 3: Fler grafalgorimer Korae vägar mellan alla noder Maximal flöde i graf Bipari machning Korae vägar mellan alla noder Dijkra och Bellman-Ford algorimer beräknar korae avånd från en nod ill

Läs mer

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r

Räta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med r Amin Halilovic: EXTRA ÖVNINGAR RÄTA LINJER OCH PLAN Räa linje och plan Räa linje i D-umme: Lå L vaa den äa linjen genom punken P x, y, om ä paallell med vekon v v, v, v ) 0. Räa linjen ekvaion på paameefom

Läs mer

(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.

(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd. Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

GRAM-SCHMIDTS METOD ... Med hjälp av Gram-Schmidts metod kan vi omvandla n st. linjäroberoende vektorer. samma rum dvs som satisfierar

GRAM-SCHMIDTS METOD ... Med hjälp av Gram-Schmidts metod kan vi omvandla n st. linjäroberoende vektorer. samma rum dvs som satisfierar Armin Halilovic: EXTRA ÖVNINGAR GRAM-SCHMIDTS METOD Med hjälp av kan vi omvandla n st linjäroberoende vektorer vv vv nn i ett vektorrum till n st ortonormerade vektorer ff ff nn som spänner upp samma rum

Läs mer

Bevarandelagar för fluidtransport, dimensionsanalys och skalning

Bevarandelagar för fluidtransport, dimensionsanalys och skalning Bearandelagar för flidranspor, dimensionsanals och skalning Innehåll Blodes reologi Balansekaionerna på differeniell form Dimensionsanals Naier-Sokes ekaioner på dimensionslös form Krpsrömning Blodes reologi

Läs mer

Lösningar till Matematisk analys IV,

Lösningar till Matematisk analys IV, Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en

Läs mer

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

a VEKTORRUMMET R, - dimesioella etorer.. STANDARDBASEN i R. LINJÄRA KOMBINATIONER AV VEKTORER LINJÄRT BEROENDE OCH OBEROENDE VEKTORER LINJÄRT HÖLJE (LINJÄRT SPAN) -----------------------------------------------------------------

Läs mer

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3). TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a

Läs mer

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0.

Vektorrum. EX. Plan och linjer i rummet genom origo. Allmänt; mängden av lösningar till AX = 0. Vektorrum Denna kurs handlar till stor del om s k linjära rum eller vektorrum. Dessa kan ses som generaliseringar av R n. Skillnaden består främst i att teorin nu blir mer abstrakt. Detta är själva poängen;

Läs mer

Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan

Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan ORTOGONALA VEKTORER OCH ORTONORMERADE (ORTONORMALA) BASER I R n INLEDNING ( repetition om R n ) Låt RR nn vara mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs RR nn {(aa, aa,, aa

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

Aerodynamik och kompressibel strömning

Aerodynamik och kompressibel strömning Aerodnamik och kompressibel srömning Kompressibelsrömning Ma < 0.3 Inkompressibel 0.3 < Ma < 0.8 Sbsonisk srömning 0.8 < Ma < 1. Transonisk srömning 1. < Ma < 3.0 Spersonisk srömning 3.0 < Ma Hpersonisk

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 6 Institutionen för matematik KTH 11 november 2016 Feedback Innan vi börjar: En liten feedback-övning Vad menas med rangen av en matris? Vad menas med ett homogent linjärt ekvationssystem?

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS DIAGONALISERING AV EN MATRIS Definition ( Diagonaliserbar matris ) Låt A vara en kvadratisk matris dvs en matris av typ n n. Matrisen A är diagonaliserbar om det finns en inverterbar matris P och en diagonalmatris

Läs mer

Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3)

Bevarandelagar för fluidtransport, dimensionsanalys och skalning (Kapitel 3) Bearandelaar för flidransor, dimensionsanals och skalnin (Kaiel 3) Ida: Kaiel 3 Blodes reoloi (res från kaiel iår) Generella balansekaionerna å differeniell form Dimensionsanals Naier-Sokes ekaioner å

Läs mer

Elektronik. Kapacitanser, induktanser, transienter. Översikt. Kapacitanser och induktanser. Plattekondensator

Elektronik. Kapacitanser, induktanser, transienter. Översikt. Kapacitanser och induktanser. Plattekondensator Elekronik Överik Kapacianer, indukaner, raniener Piero Andreani Iniuionen för elekro och informaioneknik Lund univerie Kapacianer () och indukaner (L) Srömmar och pänningar i kapacianer och indukaner Ömeiga

Läs mer

10.2. Underrum Underrum 89

10.2. Underrum Underrum 89 10.2 Underrum 89 10.2. Underrum Definition 10.12. En icke-tom delmängd U i ett linjärt rum V kallas ett underrum i V om för arje u, U och arje reellt tal λ gäller att 1. u + U. 2. λu U. Anmärkning 10.13.

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska

Läs mer

2. Optimering Linjär programmering

2. Optimering Linjär programmering . Optimering Linjär programmering Ett optimeringprolem etår av: En målfunktion, f(), var maimum, eller minimum ka öka. En eller flera -varialer (elutvarialer om man tr över). Normalt okå ett antal ivillkor

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

6.4. Linjära ekvationssytem och matriser

6.4. Linjära ekvationssytem och matriser 5 6 MATRISER 6.4. Linjära ekvationssytem och matriser Vi har tidigare sett att linjära ekvationssytem kan skrivas om med hjälp av matriser, så visst finns det ett samband mellan dessa. Nedan ska vi studera

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng

Läs mer

på två sätt och därför resultat måste vara lika: ) eller ekvivalent

på två sätt och därför resultat måste vara lika: ) eller ekvivalent Armn Halloc: EXRA ÖVNINGAR SYMMERISKA MARISER Defnton (Smmetrsk matrs) En kadratsk matrs kallas smmetrsk om A A V upprepar defntonen a en ortogonal matrs Defnton ( Ortogonal matrs ) En kadratsk matrs kallas

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Optimering Linjär programmering

Optimering Linjär programmering Optimering Linjär programmering Ett optimeringprolem etår av: En målfunktion, f(), var maimum, eller minimum ka öka. En eller flera -varialer (elutvarialer om man tr över). Eventuellt ockå ett antal ivillkor

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Laborationstillfälle 4 Numerisk lösning av ODE

Laborationstillfälle 4 Numerisk lösning av ODE Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

9. Diskreta fouriertransformen (DFT)

9. Diskreta fouriertransformen (DFT) Arbesmaerial 6, Signaler&Sysem I, 2003/E.. 9. Diskrea ourierransormen (DF) 9.1 eriodicie pulsåg Av 6.3(i), arb.mar.4, sid 50, ramgick a ourierransormen (F) av en unkion är e pulsåg X[k]δ( k/) med pulsavsånd

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i

Läs mer

PROV 5 Skogars ekologi och användning

PROV 5 Skogars ekologi och användning Helingfor univerie Urvalprove 3.5. Agrikulur-forveenkapliga fakuleen POV 5 Skogar ekologi och användning Man ka få min poäng i urvalprove å a han eller hon för vardera A- och B-delen får min 5 poäng. Om

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT 4 EKVATIONER I de vni k vi i på den enkle formen v ekvioner de linjär. ALGEBRAISK LÖSNING AV EKVATIONER Meoden när mn löer ekvioner v för grden, llå ekvioner om innehåller -ermer men ej ermer

Läs mer

Algebraiska egenskaper hos R n i)u + v = v + U

Algebraiska egenskaper hos R n i)u + v = v + U Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e ett koordinataxel.

1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e ett koordinataxel. rmin Haliloic: EXTR ÖVNINGR a 9 aser och koordinater i D-rummet SER CH KRDINTER Vektorer i ett plan Vektorer i rummet SER CH KRDINTER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betraktar ektorer som ligger

Läs mer

0.2. u u u u u 6. Eller anvand lemma 4.6 (\path length lemma"): W = 1:0 + 0:8 + 0:4 + 0:4 + 0:2 = 2:8.

0.2. u u u u u 6. Eller anvand lemma 4.6 (\path length lemma): W = 1:0 + 0:8 + 0:4 + 0:4 + 0:2 = 2:8. Kapiel. (Jfr exempel..) a).. u.8. XXXXX... XXX X X u u. u... XXXXX b) (U) =(:; :; :; :; :; :) = log + log = + log :. W = i= f U (u i ) w i = :+ :+ :+ :+ :+ : =:8. Eller anvand lemma. (\pah lengh lemma"):

Läs mer

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +

Läs mer

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal. OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Anm 3: Var noga med att läsa och studera kurslitteraturen.

Anm 3: Var noga med att läsa och studera kurslitteraturen. TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15.

Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15. 1 Matematiska Institutionen KTH Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15. 1. Undersök om vektorn (1,, 1, ) tillhör span{(1,, 3, 4), (1, 0, 1, 1),

Läs mer

Föreläsning 7 Kap G71 Statistik B

Föreläsning 7 Kap G71 Statistik B Föreläsning 7 Kap 6.1-6.7 732G71 aisik B Muliplikaiv modell i Miniab Time eries Decomposiion for Försäljning Muliplicaive Model Accurac Measures Från föreläsning 6 Daa Försäljning Lengh 36 NMissing 0 MAPE

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

Elektronik. Kapacitanser, induktanser, transienter. Översikt. Kapacitanser och induktanser. Plattekondensator

Elektronik. Kapacitanser, induktanser, transienter. Översikt. Kapacitanser och induktanser. Plattekondensator Elekronik Överik Kapaianer, indukaner, raniener Piero Andreani Iniuionen för elekro oh informaioneknik Lund univerie Kapaianer () oh indukaner (L) Srömmar oh pänningar i kapaianer oh indukaner Ömeiga indukaner

Läs mer

Hemuppgift 1, SF1861 Optimeringslära, VT 2016

Hemuppgift 1, SF1861 Optimeringslära, VT 2016 Hemuppgift 1, SF1861 Optimeringslära, VT 2016 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas in till någon av oss senast tisdag 19 april

Läs mer

(1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0) och (2, 2, 1, 8)

(1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0) och (2, 2, 1, 8) 1 Matematiska Institutionen KTH Tentamen på kursen SF1604 (och B1109, för D1, Mars 9, 008, kl: 9:00-14:00 Inga hjälpmedel ät tillåtna 1 poäng totalt eller mer ger minst omdömet Fx 1 poäng totalt eller

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

Rotation Rotation 187

Rotation Rotation 187 6. Rotation 87 6.. Rotation Vi har tidigare i Exempel 6.5 isat hur man roterar rummets ektorer kring en axel parallell med en a basektorerna. Nu är i redo att besara frågan om hur man rider kring en godtycklig

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

LINJÄR ALGEBRA II LEKTION 3

LINJÄR ALGEBRA II LEKTION 3 LINJÄR ALGEBRA II LEKTION 3 JOHAN ASPLUND INNEHÅLL Basbyten Kolonnrum, radrum och nollrum 3 Linjära avbildningar från R n till R m 4 Uppgifter 3 46:3 3 47:a 3 48:3a 4 48:a 4 49:9 4 40:7a,b BASBYTEN Om

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 14.00-19.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

A = x

A = x Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,

Läs mer

Andragradspolynom Några vektorrum P 2

Andragradspolynom Några vektorrum P 2 Låt beteckna mängden av polynom av grad högst 2. Det betyder att p tillhör om p(x) = ax 2 + bx + c där a, b och c är reella tal. Några exempel: x 2 + 3x 7, 2x 2 3, 5x + π, 0 Man kan addera två polynom

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

[ ] 1 1. Föreläsningar i Mekanik (FMEA30) Del 2: Dynamik. Läsvecka 2. Mekanik, Del 2, Dynamik 2014, Utgåva 1

[ ] 1 1. Föreläsningar i Mekanik (FMEA30) Del 2: Dynamik. Läsvecka 2. Mekanik, Del 2, Dynamik 2014, Utgåva 1 Mekanik, Del, Dynaik 4, Ugåa Föreläsningar i Mekanik (FMEA3) Del : Dynaik Läsecka Föreläsning : Ipulsekaionen (3/8-3/9, 3/-3/ i Läroboken) En krafs ipuls: En parikel P ed assan påerkas a en kraf F = F

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 UPPGIFT (1) Låt V vara mängden av vektorer (x 1, x 2, x 3 ) i R 3 som uppfyller

Läs mer

Objects First With Java A Practical Introduction Using BlueJ. 4. Grouping objects. Collections och iterators

Objects First With Java A Practical Introduction Using BlueJ. 4. Grouping objects. Collections och iterators Objecs Firs Wih Java A Pracical Inroducion Using BlueJ 4. Grouping objecs Collecions och ieraors Innehåll Collecions Loopar Ieraorer Arrays Objecs Firs wih Java - A Pracical Inroducion using BlueJ, David

Läs mer

Diagonalisering och linjära system ODE med konstanta koe cienter.

Diagonalisering och linjära system ODE med konstanta koe cienter. Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

Linjär algebra I, vt 12 Vecko PM läsvecka 4

Linjär algebra I, vt 12 Vecko PM läsvecka 4 Linjär algebra I, vt 12 Vecko PM läsvecka 4 Lay: 2.8-2.9, 4.1-4.6 Underrum i R n, dimension och rang. Vektorrum. Innehållet i avsnitten 2.8 och 2.9 täcks av kapitel 4, men presenterar begreppen på ett

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Mekanik. Fysik 4, Rörelselagarna. En kropps rörelse. Grafer. Likformig rörelse. Herman Norrgrann Sir Isaac Newton, 1643-1727. 1.1 Likformig rörelse

Mekanik. Fysik 4, Rörelselagarna. En kropps rörelse. Grafer. Likformig rörelse. Herman Norrgrann Sir Isaac Newton, 1643-1727. 1.1 Likformig rörelse Meknik sik 4, Rörelselgrn Hermn Norrgrnn Sir Isc Newon, 1643-1727 lileo lilei, 1564-1642 En kropps rörelse 1.1 Likformig rörelse Rörelse r Hsighe (ekor) Likformig rörelse rfer Likformig rörelse om hsigheen

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Kontsys F7 Skalärprodukt och normer

Kontsys F7 Skalärprodukt och normer Repetition Skalärprodukt Norm Kontsys F7 Skalärprodukt och normer Pelle 11 februari 2019 Linjära rum Repetition Skalärprodukt Norm Linjära rum Linjärt underrum Ett linjärt rum över R är en mängd H där

Läs mer

TMV166 Linjär algebra för M, vt 2016

TMV166 Linjär algebra för M, vt 2016 TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

Laboration D158. Sekvenskretsar. Namn: Datum: Kurs:

Laboration D158. Sekvenskretsar. Namn: Datum: Kurs: UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Lars Wållberg/Håkan Joëlson 2001-02-28 v 3.1 ELEKTRONIK Digialeknik Laboraion D158 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Tentamen i EJ1200 Eleffektsystem, 6 hp

Tentamen i EJ1200 Eleffektsystem, 6 hp Elekro- och yeeknik Elekrika akiner och effekelekronik Sefan Ölund 7745 Tenaen i EJ00 Eleffekye, 6 hp Den 5:e augui 008, 4.00-9.00 i al K5, K5 och K53 Räknedoa och aeaik handbok (Bea) får använda. Tenaen

Läs mer

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2 Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.

Läs mer

Laboration 2. Minsta kvadratproblem

Laboration 2. Minsta kvadratproblem Laboraion Tillämpade Numeriska Meoder Minsa kvadraproblem Farid Bonawiede Michael Lion fabo@kh.se lion@kh.se 5 februari 5 Inledning När man har skapa en maemaisk modell som beskriver e viss fenomen vill

Läs mer

DEL I 15 poäng totalt inklusive bonus poäng.

DEL I 15 poäng totalt inklusive bonus poäng. Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel

Läs mer

1 EN DRAKE. Kom, My. Vänta, Jon. Kom nu, My. Jag såg en drake!

1 EN DRAKE. Kom, My. Vänta, Jon. Kom nu, My. Jag såg en drake! 1 EN DRAKE Kom, My. Vänta, Jon. Kom nu, My. Jag såg en drake! 2 FEL, FEL, FEL Cc Dd Ee Ff Gg Hh Ii Jj Kk Ll Mm Nn Oo Pp Qq Rr Ss Tt Uu Vv Xx Yy Zz Åå Ää Öö Moa VÄLKOMMEN! Hej, säger Moa. Hej, säger My.

Läs mer

Hemuppgift 1, SF1861 Optimeringslära för T

Hemuppgift 1, SF1861 Optimeringslära för T Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon

Läs mer

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

KONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna

Läs mer

Algebrans fundamentalsats

Algebrans fundamentalsats School of Science and Technology SE-701 8 Örebro, Sweden Algebrans fundamentalsats Ett linjäralgebraiskt bevis Andreas Thore Örebro Universitet Akademin för naturvetenskap och teknik Matematik C, 61 75

Läs mer