NOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN.

Storlek: px
Starta visningen från sidan:

Download "NOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN."

Transkript

1 Ari Hliloic: EXTRA ÖVNINGAR NOLLRUMMET och BILDRUMMET ill e lijärildig. MATRISENS RANG. DIMENSIONSSATSEN. NOLLRUM (Kerel (kär i kuroke Defiiio. Lå T r e lijär ildig frå R ill R. Mägde ll ekorer i R o ild på ollekor i R kll ildige ollru ( eller kär och eeck ed ker(t eller Null(T. Solik ekrier i ollrue på följde ä ker( T { R : T ( } O T ge på rifore T ( A då är ker( { T R : A } Med dr ord ollrue är löigägde ill ekioe ( T BILDRUM (ärderu ärdeägd Defiiio. Lå T r e lijär ildig frå R ill R. Mägde ll ilder ( ll fukioe ärde T ( i R kll ildige ildru (oer: ärderu ärdeägd och eeck ed i(t. Solik ekrier i ildrue på följde ä i( T { T ( : Ekile defiiio: i( T { R R } : T (. för ågo Allå k i(t defiier o ägde ll d A hr i e löig R. R } R för ilk ekioe T ( För e gie ri A p k i geo T ( A defiier T : R R. Därför defiierr i ildru I(A och ollru ker(a för e ri elig följde. Defiiio. Nollrue ker(a ill e ri A p defiier o ägde ll - dieioell ekorer o ifierr ekioe A. Defiiio. (Bildrue ill e ri Lå A r e ri pe. Bildrue ill A eeck i(a och defiier o I( A { A R }. Efero Sid 5

2 Ari Hliloic: EXTRA ÖVNINGAR p( A er i ildrue i de här flle pä upp rie koloekorer i (T p(. E och dieioe ildrue k eä ed hjälp de koloer o rr o ledde eor i rie rppfor. Eepel. Agör o ågo ekorer ( ( eller c ( illhör ollrue ker( T. Beä ollrue ill ildige T frå R ill R då T ( ( c O ll ekorer i orrue hr i rpuker i origo då ildr ll ädpuker e ägd i R. Tolk de ägd geoerik ( e puk e lije e pl eller hel R Löig: Vi eräkr T ( ( ( Efero ( T illhör ekor ollrue ker( T. De dr ekor ( illhör INTE ollrue ker( T för T ( (7 Vekor c ( illhör ollrue ker( T för T ( c (. Vi eäer löigägde ill ekioe ( T. T hr i Frå ( ( o ger å klär ekioer: ( ( i äder Gueliiioe Sid 5

3 Ari Hliloic: EXTRA ÖVNINGAR Vi hr å ledde riler och e fri riel o i eeckr ed. Löige och krier i på ekorfor ( ( ( Däred är ker (T { ( } där rierr fri. c O rpuker ligger i origo då ildr ll ädpuker { ( } e lije i R (o går geo origo. Sr: Se oåede löig. ker (T { ( } c E lije i R (o går geo origo. Eepel. Vi erkr e lijär ildig T frå R ill R o defiier ( T Beä ildige ollru (kär ker(t Beä e ill ollrue c Beä ollrue dieio. Löig: Vi eäer löigägde ill ekioe ( T. Frå ( T hr i o i krier o klär ekioer: See hr å ledde riler och å fri riler och. See löig. För få ollrue krier i löigr på ekorfor ( och eprerr - och -dele : Sid 5

4 Ari Hliloic: EXTRA ÖVNINGAR Aildige ollru är ker(t ker(t { }. Vi äger ollrue pä upp å ekorer och leri eeckr ker(t p( Vi er ollrue är e ägd ll lijär koiioer o ild ed hjälp å ( upper lijär oeroede ekorer och o därför ugör e ill ollrue. Däred är ollrue dieio le ekorer ( le fri riler Sr: ker(t { } eller ( leri ker(t p( E ill ollrue är. c di(ker(t. Eepel. Vi erkr e lijär ildig T frå R ill R o hr rie A d A T ( Sid 5

5 Ari Hliloic: EXTRA ÖVNINGAR Beä ildige ollru (kär ker(t Beä e ill ollrue c Beä ollrue dieio. d Vilke ägd ildr ädpuker ill ollrue ekorer o rpuker ligger i origo?. Löig: Vi löer ekioe T ( d A eller Morde ekioe är o hr löig. See hr å ledde riler ige fri riel och ed de riil löige o i krier på ekorfor:. Sr: ker(t { } Nollrue o eår r e ollekor hr ige. (elig defiiioe eår e oeroede ekorer och däred k ie iehåll c di(ker(t. d E puk (origo Eepel. Vi erkr e lijär ildig T frå R ill R o hr rie A d T ( A Beä ildige ollru (kär ker(t e ill ollrue c ollrue dieio. d rie rg. Sid 5 5

6 Ari Hliloic: EXTRA ÖVNINGAR e o ågo ekorer illhör ollrue ker( T. Löig: Vi löer ekioe A eller 5 Morde ekioe är See hr ledde riel och fri riel. See löig u u 5. För få ollrue krier i löigr på ekorfor ( och eprerr u- - - och -dele : u u u u 5 u Sr: ker(t p( Sid 6 5

7 Ari Hliloic: EXTRA ÖVNINGAR Vekorer är lijär oeroede och päer hel ollrue. Därför ildr ekorer e ill ker(t. c di(ker(t le ekorer ( le fri riler. d Mrie rg ed le rie oeroede rder le oeroede koloer le ledde eor i rie rppfor le ledde riler i rppfore för orde ekioe. e A Allå illhör ker(t. {Vi k kri korre ker(t } För de dr ekor gäller 8 A Däred illhör ie ker(t. { Vi k kri ker(t}. BILDRUMMET ( Ige i kuroke o illhör e lijärildig. O T defiier ed e ri A p då eår ildrue ll ekorer A T ( p( Allå ildrue ( o kll äe rie koloru i de här flle pä upp rie koloekorer Sid 7 5

8 Ari Hliloic: EXTRA ÖVNINGAR (T i p(. E och dieioe ildrue k eä ed hjälp de koloer o rr o ledde eor i rie rppfor Eepel 5. Vi erkr e lijär ildig T ed rie A Beä ildige ildru i(t Beä e ill ildrue c Beä ildrue dieio. d Beä rie rg. e Agör o ågo ekorer illhör ildrue i( T. f Beä ll ekorer R åd ( T där. Löig: Bildru i(t pä up rie koloekorer och därför i(t p(. Aleri eeckig: i(t { z : z och är klärer o rierr fri}. För älj e ill p( äljer i (ör le lijär oeroede koloekorer; de koloer o rr o ledde eor i rie rppfor. Sid 8 5

9 Ari Hliloic: EXTRA ÖVNINGAR ~ ~ Ledde eor fi i för och dr koloer och därför äljer i rie för och dr kolo o ill ildrue (kolorue. de redje koloekor är eroede de för å. Sr E ild koloekorer. Aärkig: Efero redje koloekor är e lijärkoiio för å hr i p( p( för rje lijär koiio o ikluderr redje ekor k urck ed hjälp de för å ekorer. Vi förlorr ige koiio o i r or eroede ekorer ld de o päer upp e uderru. Sr c Bildrue dieio är ( le ildrue ekorer le ledde eor i rie rppfor. d Mrie rg är ( le oeroede koloekorer le oeroede rdekorer le le ledde eor i rie rppfor. e För gör o illhör i(t uderöker i o ekioe A är koie ( d o ekioe hr i e löig. Frå A hr i See hr oädlig åg löigr. Vekor illhör ildrue i(t efero ee A är koie ( lör d de fi å A ( eller ( T De dr ekor illhör ie ildrue i(t efero ekioe A kr löig ( koroller jäl. All löigr ill ekioe ( T d ill ekioe A elig e-dele ge Sid 9 5

10 Ari Hliloic: EXTRA ÖVNINGAR. Vi k kri de på ekorfor där är e godcklig reell l. Sr: I(T p( p( E är (. c di(i(t d Rg(A e illhör ildrue i(t. illhör ie ildrue i(t. f där är e godcklig reell l. Eepel 6. Vi erkr e lijär ildig T frå R ill R o hr rie A d A T ( Beä ildige ollru (kär ker(t e ill ollrue c ollrue dieio. d ildige ildru i(t e e ill ildrue f ildrue dieio. g rie rg. Löig: Vi löer ekioe A eller Morde ekioe är Sid 5

11 Ari Hliloic: EXTRA ÖVNINGAR See hr ledde riel och fri riel. See löig. För få ollrue krier i löigr på ekorfor ( och eprerr u- - - och -dele : Sr: ker(t p( Vekorer är lijär oeroede och päer hel ollrue. Därför ildr ekorer e ill ker(t. c di(ker(t le ekorer ( le fri riler d ildige ildru i(t pä upp koloekorer där oeroede rr o ledde eor. Därför i(t p( e e ill ildrue är f ildrue dieio di(i(t ( le ledde eor i rie rppfor. g rie rg ( le ledde eor i rie rppfor. DIMENSIONSSATSEN O i erkr e ri A p och orde ekioe A Sid 5

12 Ari Hliloic: EXTRA ÖVNINGAR efer i öerför ee ill rppfore er i ( le ledde riler ( le fri riler ( le ll riler d di( i(a di(ker(a eller rg(a di(ker(a Eepel 7. Tee 9 Uppgif 6 Berk e lijär ildig T : R R åd löigägde ill T ( ge där är e reell preer. Beä ollrue Ker(T Beä ildrue I(T Löig E ä lö uppgifer är för eä ildige ri och därefer Ker(A och I(A. Lå A r de ri o hör ill ildige T. Lå c d. Ekioe T ( k kri på fore A eller ( c d Vi k för eä A ed hjälp gie löig: Elig gde är e löig för rje R. Vi k därför älj ågr - ärde uiuer i och eä c och d. O i e äljer får i är e löig ill och därför gäller ( uiuer och i : ( c d O i äljer får i är e löig ill och därför( uiuer och i : Sid 5

13 Ari Hliloic: EXTRA ÖVNINGAR ( c d Frå och eräkr i c och d. Vi k e grupper de ekioer o iehåller och : och och eä / och /. På ä frå c d och c d hr i c / och d /. / / Däred lir A /. / / Här hr i oedelr I(ASp( Sp(. För eä Ker(A löer i ekioe A eller / E fri riel. Därför. Allå Ker(TKer(A Sp ( ( Aärkig: Sp ( Sp ( Sr: Ker(TKer(A Sp ( I(T I(ASp(. Eepel 8. Tee --j Uppgif 7 (leri löig Beä ll lijär ildigr T : R R o uppfller följde å kr: Vekorer och ugör e för ollrue för T. Bildrue för T är lije ed rikigekor. Löig: Lå A r illhörde ildigri. Vi k eä A ed hjälp gi å kr. Bildrue för T är lik i(a p(k k k där k k och k är koloer i A. Sid 5

14 Ari Hliloic: EXTRA ÖVNINGAR Elig gde är ildrue i(a p(. Däred är rje kolo i A e lijär koiio ekor d hr fore för ågo. Lå k k och c k r koloekorer i A. Då är c A där i e c är kild frå. ( O ll c är då är A e ollri och i(a { } o ie äer ed år gde i(a p(. Vi eäer och c ed hjälp för illkore d i äder ekorer och o ligger i ollrue: Frå A hr i c d (ek Frå A hr i c c d c (ek Vi k älj c ( e godcklig l kil frå då är och. Här c A och z z T ( Vi k kri de på äe på följde for: z z T ( ( Sr: z z T ( ( (där är e godcklig l kil frå Sid 5

15 Ari Hliloic: EXTRA ÖVNINGAR eller T (. z z Sid 5 5

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.

(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd. Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER

LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder LINJÄ VBILDNING V PUNKE OCH PUNKMÄNGDE vildig v e puk Vi hr defiier lijär vildigr ell vå vekorru Vi k forell erk puker so orsvekorer och däred erk vildigr

Läs mer

1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER rmi Hliloic: EXTR ÖVNINGR EGENVÄRDEN och EGENVEKTORER Defiitio. Egeektor och egeärde för e lijär bildig Låt V r ett ektorrum och T : V V e lijär bildig frå V till V. Om det fis e ollskild ektor och e sklär

Läs mer

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1.

UNDERRUM. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjärt hölje) Definition 1. (LINJÄR KOMBINATION) Exempel 1. LINJÄRA KOMBINATIONER. BASER. LINJÄRT SPANN (eller linjär hölje Definiion. (LINJÄR KOMBINATION Lå V ara e ekorrm. En ekor w är linjär kombinaion a,,, nn om de finn kalärer (al,,, nn å a ww nn nn Eempel.

Läs mer

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =. Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav

Läs mer

16.3. Projektion och Spegling

16.3. Projektion och Spegling 6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.

Läs mer

Approximationen med den här metoden kallas minstakvadratmetoden.

Approximationen med den här metoden kallas minstakvadratmetoden. Ari Hlilovic: EXTRA ÖVNINGAR MINSTAKVADRATMETODEN Mistvdrtetode. INLEDNING frå lijär lger) Låt vr ett olösrt sste dvs. ett sste so sr lösig). Vi sriv ssteet på fore A = ss ) där...... A, och................

Läs mer

Uppgift 3. (1p) Beräkna volymen av pyramiden vars hörn är A=(2,2,2), B=(2,3,4), C=(3,3,3) och D=(3,4,9).

Uppgift 3. (1p) Beräkna volymen av pyramiden vars hörn är A=(2,2,2), B=(2,3,4), C=(3,3,3) och D=(3,4,9). Kotrollskriig 9 sep 06 VERSION B Tid: 8:5-000 Kurser: HF008 Aalys och lijär algebra (algebradele HF006 Lijär algebra och aalys (algebradele Lärare: Ari Haliloic, Maria Arakelya, Fredrik Berghol Exaiator:

Läs mer

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Armi Hlilovic: ETRA ÖVNINGAR, SF676 Sysem v lijär DE Sid v 6 SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Iehåll: Mrisorm Begyelsevärdesprobleme Eises- och eydighessse ör lijär sysem

Läs mer

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten ) rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie. Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.

Läs mer

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a Kompletterde löigförlg och ledigr, Mtemtik 000 kur C, kpitel Kpitel. 0, 0, 0, 0 Exempel om löe i boke. 0 ) 7 0 + + + 6 + 8 + 06 ) +, + 6 6 + + + 69 69 + +, + + 6 6+ 9 8+ + 07 Se boke ledig. Kotkt di lärre

Läs mer

a VEKTORRUMMET R, - dimesioella etorer.. STANDARDBASEN i R. LINJÄRA KOMBINATIONER AV VEKTORER LINJÄRT BEROENDE OCH OBEROENDE VEKTORER LINJÄRT HÖLJE (LINJÄRT SPAN) -----------------------------------------------------------------

Läs mer

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Omtentamen med lösningar i IE1304 Reglerteknik Fredag 12/

Omtentamen med lösningar i IE1304 Reglerteknik Fredag 12/ Omeme me löigr i IE Reglerekik Freg /6 5.-. Allmä iformio Emior: Willim Sqvi. Avrig lärre: Willim Sqvi, el -79 7 mpu i, Temeuppgifer ehöver ie åerläm är u lämr i i krivig. Hjälpmeel: Räkre/rfräkre. ure

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 8 Institutionen för matematik KTH 16 november 2016 Matriser och linjära avbildningar Dagens ämnen (kap 3.3 och 3.4): Exempel på linjära avbildningar Nollrum och Bildrum Dimensionssatsen / Rangsatsen

Läs mer

v p ORTOGONALT KOMPLEMENT TILL ETT UNDERRUM

v p ORTOGONALT KOMPLEMENT TILL ETT UNDERRUM OROGONL KOMPLEMEN ILL E UNDERRUM Definiion 7 Lå ara e underrum i R n De orogonala omlemene ill är mängden a de eorer i R n om är orogonala mo alla eorer i : n { R : för alla i } n Sa : Om an å är en eor

Läs mer

Formler, grundläggande statistik

Formler, grundläggande statistik Formler, grudläggade aiik Medelvärde N X μ σ Sadardavvikele, populaio Sadardavvikele, ickprov Sadardavvikele, räkevälig z Z-poäg z z r Pearo korrelaio, urpruglig r Pearo korrelaio, räkeväligare Oe ample

Läs mer

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmi Hliloic: EXR ÖVNINGR Lijär bildigr LINJÄR VBILDNINGR INLEDNING: Fktioer bildigr Beteckigr och grdbegrepp Defiitio E fktio eller bildig frå e mägd till e mägd B är e regel som till ågr elemet i ordr

Läs mer

Kontrollskrivning (KS1) 16 sep 2019

Kontrollskrivning (KS1) 16 sep 2019 Kotrollskrivig (KS) sep 9 Tid: 8:- Kurs: HF Lijär algebra och aals (algebradele) Lärare: Maria Shaou, Ari Halilovic För godkät krävs poäg (av a 9p) Godkäd KS ger bous eligt kurs-pm Fullstädiga lösigar

Läs mer

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad P e r S a mu el s s on S i da 1 (14 ) A n k o m s tdatum 2018-07 - 09 M R M K on s u l t AB Ut f ä r dad 2018-07 - 16 P e r S a mu el s s on T a v as tg a t a n 34 118 24 S to ck ho lm S w e d en P r o j e kt B e s tnr S p å

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är H009, Inrodukionskurs i memik Armin Hlilovi NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definiion. En irkel är mängden v de punker i plne vrs vsånd ill en given punk är

Läs mer

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma

Läs mer

=============================================== Plan: Låt vara planet genom punkten )

=============================================== Plan: Låt vara planet genom punkten ) Amin Hliloic: EXTRA ÖVNINGAR Rä linje och pln RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punken P som ä pllell med ekon 0 3. Rä linjens ekion på pmeefom en ekoekion 3 Rä linjens ekione på pmeefom:

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

Hemuppgift 1, SF1861 Optimeringslära, VT 2016

Hemuppgift 1, SF1861 Optimeringslära, VT 2016 Hemuppgift 1, SF1861 Optimeringslära, VT 2016 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas in till någon av oss senast tisdag 19 april

Läs mer

äkta Bredband, ett krav för framtidens multiservice nät?

äkta Bredband, ett krav för framtidens multiservice nät? äkta Bredband, ett krav för framtidens multiservice nät? U lf V in n e ra s D e s ig n c o n s u lta n t, C is c o S y s te m s 2 0 0 2, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. U lf V

Läs mer

Bröderna fara väl vilse ibland (epistel nr 35)

Bröderna fara väl vilse ibland (epistel nr 35) Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me

Läs mer

Tentamen med lösningar i IE1304 Reglerteknik Måndag 16/

Tentamen med lösningar i IE1304 Reglerteknik Måndag 16/ Tetme me löigr i IE4 Reglertei Måg 6/ 9.-. Allmä iformtio Emitor: Willim Sqvit. Avrig lärre: Willim Sqvit, tel 8-79 4487 Cmpu Kit, Tetmeuppgifter behöver ite återläm är u lämr i i rivig. Hjälpmeel: Räre/rfräre.

Läs mer

Matematisk statistik

Matematisk statistik Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls

Läs mer

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system. Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer

Läs mer

helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god

helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god Teme i TEN, HF, Memisk sisik Dum -8-7 Kurskod HF Skrivid: 5-75 Lärre: Armi Hlilovi Hjälmedel: Bifog formelhäfe (" Formler oh beller i sisik ") oh miiräkre v vilke y som hels De är INTE TILLÅTET väd miilo,

Läs mer

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

6 Strukturer hos tidsdiskreta system

6 Strukturer hos tidsdiskreta system 6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.

Läs mer

GOSPEL PÅ SVENSKA 2. Innehåll

GOSPEL PÅ SVENSKA 2. Innehåll GOSPEL PÅ SVENSKA 2 Innehåll Kom oh se 7 Lovsung vår Gud 8 Barmhärtige Gud 10 Igen 11 är min Herde 1 Ditt Ord estår 16 redo 18 När delar 21 Herre hör vår ön 2 Vår ader 2 ör mig 26 O Herre längtar 28 Hallelua,

Läs mer

4. Laplacetransformmetoder

4. Laplacetransformmetoder 4. Laplaceraforeoer 4. Differeialekvaioer Differeialekvaioer gör gre för e aeaik ekrivig av aika e i koierlig i åo fragår av exeple i avi 3.. E iffereialekvaio ekriver hr e vi variael eror av e eller flera

Läs mer

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral ri Hlilovic: EX ÖVNING Mss och tgdput ILLÄMPNING V INEGLE. MSSN OCH YNGDPUN MSSN Huvud etod för eräig v ss för e v e ropp ed desitete, är trippelitegrl, dd so hör till urse i flervriells. Me, ågr el prole

Läs mer

Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:

Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid: TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8

Läs mer

BALLERINA. Prima. look

BALLERINA. Prima. look b Mi TOP-li få TOPMl- äl! Ciy lic Ciy iy C y C P i c i f y li c y l äl li b J ä! Cy ä äi pi ö: bäppfyll j få böj bö M j P A i C b fö i! i l x c Hli TOPMl li å f Hli J äl i äl li på äll c ö cl jbb på ll

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on

R app o r t T A n a l y s a v f as t p r o v. Ut f ä r dad A le xa n d e r G i r on S i da 1 (13 ) A n k o m s tdatum 2016-05 - 31 T y r é n s AB Ut f ä r dad 2016-06 - 08 A le xa n d e r G i r on P r o j e kt Ka b el v e r k e t 6 B e s tnr 268949 P e t e r M y nd es B ac k e 16 118

Läs mer

Hemuppgift 1, SF1861 Optimeringslära för T

Hemuppgift 1, SF1861 Optimeringslära för T Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon

Läs mer

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process. Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk

Läs mer

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl

Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 14.00-19.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

Rotation Rotation 187

Rotation Rotation 187 6. Rotation 87 6.. Rotation Vi har tidigare i Exempel 6.5 isat hur man roterar rummets ektorer kring en axel parallell med en a basektorerna. Nu är i redo att besara frågan om hur man rider kring en godtycklig

Läs mer

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet 1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:

Läs mer

Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa.

Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa. Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa. O Y F IS K A R S A B Verksamhetsberättelse för 1969, bolagets 86 verksamhetsär. E x t e m f ö r s ä l j n i n g o c h e x p o r t ( 1 0 0 0 m

Läs mer

Patie nts äke rhe ts be rätte ls e för Slotts s tade ns Läkarhus Re hab o Häls a år 2015

Patie nts äke rhe ts be rätte ls e för Slotts s tade ns Läkarhus Re hab o Häls a år 2015 Patie nts äke rhe ts be rätte ls e för Slotts s tade ns Läkarhus Re hab o Häls a år 2015 Ko s tn ad s s tälle n u m m e r 1 6 3 9 8 0, 1 6 3 9 9 8 I enlighet med 3 kap 10 patientsäkerhetslagen (2010:659)

Läs mer

bruksanvisning/ user manual

bruksanvisning/ user manual bruksanvisning/ user manual IBU 50 - IBU 50 RF L ä s d e n n a b r u k s a n v i s n i n g f ö r s t! B ä s t a k u n d, T a c k f ö r a t t d u h a r v a l t a t t k -p ö pra o deun k t C. y lvii n dhao

Läs mer

Korrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12

Korrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12 Sigal- oc Bildbeadlig FÖELÄSNING Korrelaio (D) Korskorrelaio (ofa kalla bara korrelaio) Auokorrelaio oc effekspekrum Brus Lijära ssem LTI-ssem (Lijär idsivaria ssem) Differeial- oc differes-ekvaioer (kursiv)

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

I Kristus själv Stuart Townend/Keith Getry Arr: Thomas Hellsten

I Kristus själv Stuart Townend/Keith Getry Arr: Thomas Hellsten / K G vensk text: Åsa & ara urge I Kristus sälv tuart ownend/keith Getry rr: homas Hellsten Fiol/flöt 4 3 5 1 10 V 2 1I Kris tus Mm sälv ag fun nit liv Han är mitt lus, min kraft, min Mm 14 V sång En sä

Läs mer

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) = gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:

Läs mer

Lektionssammanfattning Syra-Bas-Jämvikter

Lektionssammanfattning Syra-Bas-Jämvikter Lektiossmmfttig SyrBsJämvikter Det fis ytterligre e typ v jämvikter som vi sk t upp i vi käer oss öjd. Nämlige Syrsjämvikter. De type v jämvikter väds huvudsklige för svg syror oh ser. Ett exempel på e

Läs mer

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl

Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 1 Matematiska Institutionen, KTH Lösning av tentamensskrivning på kursen Linjär algebra, SF1604, för CDATE, CTFYS och vissa CL, tisdagen den 20 maj 2014 kl 08.00-13.00. Examinator: Olof Heden. OBS: Inga

Läs mer

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då

Läs mer

Jag vill inte vara ensam

Jag vill inte vara ensam Jg ill ine r ensm Krl-Gunnr Sensson G =132 f l m n o u s s s z f l l u z mp n s s n s s n s s n s s s s n s s n s s mps s n s s n s s n s s n s s n s s n ff s s s s s s s s s s s s mp s s s s s s s s s

Läs mer

M edlem sblad för H allsbergsn aturskyddsförening N r2 1999

M edlem sblad för H allsbergsn aturskyddsförening N r2 1999 M edlem sblad för H allsbergsn aturskyddsförening N r2 1999 Majviva En ca decimeterhög vacker viva med violetta blommor Majvivan är ganska sällsynt på öppen, fuktig, kalkrik mark. Kalkkärr mm. Minskande.

Läs mer

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25 SF676, am 5 aug 7 Isiuio för mamaik, KH SF676, Diffrialkvaior md illämpigar am isdag 5 aug 7 Skrivid: 8:-: Eamiaor: Krisia Bjrklöv För godkä (bg E krävs r godkäda modulrr frå dl I Varj moduluppgif bsår

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar KTH/ICT IX50:F7 IX305:F Göra Adero goera@th.e Statiti: Sattigar Statiti Vi all u tudera obervatioer av toatia variabler. Vad blev det för värde? Dea obervatioer alla ett ticprov (ample). Iom tatitie fi

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Nr 3 år 2005 Med programmet för augusti - oktober

Nr 3 år 2005 Med programmet för augusti - oktober För Landskrona FBU-förening och 54:e HV komp. Nr 3 år 2005 Med programmet för augusti - oktober !"# $ $% #$ &'$ $ &($$) *!)$ ) +, -.$ $ / 01 1. )#*!.01.1 2. 123 4,1 4.!" # $%& '( ) * # +* +'(, +'( -./%

Läs mer

A = x

A = x Matematiska Institutionen KTH Lösningar till några övningar på linjära avbildningar och egenvärden och ehenvektorer inför lappskrivning nummer 5 på kursen linjär algebra SF604, ht 07.. (a) A(2,, 0) A(2(,

Läs mer

Beställare: Skanska Sverige AB genom Tommie Gutén A ntal sidor: 10. Projektansvarig: Niklas Jakobsson Datum:

Beställare: Skanska Sverige AB genom Tommie Gutén A ntal sidor: 10. Projektansvarig: Niklas Jakobsson Datum: i M3- Riig ä föäig fö E Bäll: S Sig AB g Ti Gé A l i: j: 3 jig: Nil Jb D: 7-- O il Sällig ågäfölg O jbiig Aibyå h S Sig AB g Ti Gé få i ppg äll i löig bli ll fö ppfyll hög illå ljiå h fö y lägh i O il.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Tre julvisor. för blandad kör SATB. I kärlekens tid. SATB a cappella, piano ad lib. œ œ œ. œ œ. œ œ. œ œ. J œ. bar lju bar. nen set.

Tre julvisor. för blandad kör SATB. I kärlekens tid. SATB a cappella, piano ad lib. œ œ œ. œ œ. œ œ. œ œ. J œ. bar lju bar. nen set. opran lt enor as (ad lib) Pno ext: Pernilla Rosin 6???? 1 er 2 er 3 er Do do do do do do do do do Do do do do do do do do do Do do do do do do do do do 1 er 2 er 3 er 1 er 2 er 3 er re ulvisor dụ för blandad

Läs mer

NORDENS STÖRSTA MÖTESPLATS FÖR MOTORBRANSCHENS SERVICE- OCH EFTERMARKNAD

NORDENS STÖRSTA MÖTESPLATS FÖR MOTORBRANSCHENS SERVICE- OCH EFTERMARKNAD NORDENS STÖRSTA MÖTESPLATS FÖR MOTORBRANSCHENS SERVICE- OCH EFTERMARKNAD 15 18 ji 2020, Sv Mä i Göbg A N R E D! N E R T P P TO y fi fö i fö v ll. D ö ä På A väx fä 1 i v ll. i j il i f ä 847 D glbl i i

Läs mer

1 Armin Halilovic: EXTRA ÖVNINGAR

1 Armin Halilovic: EXTRA ÖVNINGAR Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger

Läs mer

Fluxarnas resa till jobbet

Fluxarnas resa till jobbet Fluxarnas resa till jobbet E tidig orgo i April hä tar Ro ut klar a till de vita usse XGK, e ar etsdag har pre is örjat. På dage s första tur eger ha sig ot de vilda stade i väster. Ro sätter sig till

Läs mer

Höstvisa. I k k k k k kkk k j kz. l l l l. l l l l

Höstvisa. I k k k k k kkk k j kz. l l l l. l l l l Höstvis Musik: E. Tur, Text: Tve Jss S1 S2 A1 G =70 4 k 1.Vä-ge hem vr mc -ket låg ch ig e 4 k 4 kk k j - hr jg mött, srt blir kväl- lr- k-li - g ch se -. Km kk k j 1.Vä-ge hem vr mc -ket låg ch ig-e hr

Läs mer

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1. Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att

Läs mer

Fröding, Gustaf. Morgondröm : Gustaf Frödings kärleksdikt : fullständig : beslagtagen och frikänd / Gustaf Fröding. Stockholm : B. Alm (distr.

Fröding, Gustaf. Morgondröm : Gustaf Frödings kärleksdikt : fullständig : beslagtagen och frikänd / Gustaf Fröding. Stockholm : B. Alm (distr. Fröding, Gustaf Morgondröm : Gustaf Frödings kärleksdikt : fullständig : beslagtagen och frikänd / Gustaf Fröding Stockholm : B. Alm (distr.) 1916 EOD Miljoner böcker bara en knapptryckning bort. I mer

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 27-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a

Läs mer

Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system

Bilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om

Läs mer

"#$%&&'()!*%++!,-!&*)./*.)!*%++!&/-00!12)!$34&/+%5(!)3**%56#*#)!789:!;<=<>?<@!

#$%&&'()!*%++!,-!&*)./*.)!*%++!&/-00!12)!$34&/+%5(!)3**%56#*#)!789:!;<=<>?<@! "#$ &'(')+(,-.+,/'0 1)2'0,3.)-+.4,4'5.)0'3'+0'0 6777809:-;9/3 809:-;9/3

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

Var är tvålen. o dk sj jz kkk. um ba - um. um um um um 2 4 j. stan - na upp ett tag och grub - bla, är det nå n som sett min tvål?

Var är tvålen. o dk sj jz kkk. um ba - um. um um um um 2 4 j. stan - na upp ett tag och grub - bla, är det nå n som sett min tvål? är våle Pver Rel rr. Erc Srby Spr Al1 Al 2 Ter Bss 1 Bss 2 Spr f f D G =80 Al f f D 1 Al f f D 2 Ter f f D l M Bss 1 jz d sj jz u b - u u - j u b - u u j s j jz u b - u u s j jz f f f N s v-drr ge- l-ve

Läs mer

Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =

Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) = Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom

Läs mer

Modell för fukt på vind Enligt figuren kan en energi balans ställas upp:

Modell för fukt på vind Enligt figuren kan en energi balans ställas upp: Mode för fk på d Eg fgre ka e eerg aas säas pp: förs för I fgre eda sas defoera för ärme oh fkaas. Om fgres koeoer föjs r ärmeaase (ge maera aas ha ågo ärmekapae (myke förekad mode oh ge sråg på sda eer

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT 4 EKVATIONER I de vni k vi i på den enkle formen v ekvioner de linjär. ALGEBRAISK LÖSNING AV EKVATIONER Meoden när mn löer ekvioner v för grden, llå ekvioner om innehåller -ermer men ej ermer

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

Arborelius, Olof Per Ulrik. Olof Arborelius. : Minnesutställning anordnad af Svenska konstnärernas förening Stockholm 1916.

Arborelius, Olof Per Ulrik. Olof Arborelius. : Minnesutställning anordnad af Svenska konstnärernas förening Stockholm 1916. Arborelus, Olof Per Ulrk Olof Arborelus. : Mnnesutställnng anordnad af Svenska konstnärernas förenng 1916. Stockholm 1916. EOD Mljoner böcker bara en knapptrycknng bort. I mer än 10 europeska länder! Tack

Läs mer

Anm 3: Var noga med att läsa och studera kurslitteraturen.

Anm 3: Var noga med att läsa och studera kurslitteraturen. TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer